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Abstract
Suppose an agent is in a (possibly unknown)
Markov Decision Process in the absence of a re-
ward signal, what might we hope that an agent
can efficiently learn to do? This work studies a
broad class of objectives that are defined solely as
functions of the state-visitation frequencies that
are induced by how the agent behaves. For exam-
ple, one natural, intrinsically defined, objective
problem is for the agent to learn a policy which
induces a distribution over state space that is as
uniform as possible, which can be measured in an
entropic sense. We provide an efficient algorithm
to optimize such such intrinsically defined objec-
tives, when given access to a black box planning
oracle (which is robust to function approximation).
Furthermore, when restricted to the tabular setting
where we have sample based access to the MDP,
our proposed algorithm is provably efficient, both
in terms of its sample and computational com-
plexities. Key to our algorithmic methodology is
utilizing the conditional gradient method (a.k.a.
the Frank-Wolfe algorithm) which utilizes an ap-
proximate MDP solver.

1. Introduction
A fundamental problem in reinforcement learning is that of
exploring the state space. How do we understand what is
even possible in the context of a given environment in the
absence of a reward signal?

This question has received a lot of attention, with approaches
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such as learning with intrinsic reward and curiosity driven
methods, surveyed below. Our work studies a class of objec-
tives1 that is defined solely as function of the state-visitation
frequencies. A natural such objective is finding a policy that
maximizes the entropy of the induced distribution over the
state space. More generally, our approach extends to any
concave function over distributions.

Suppose the MDP is fully and precisely known, in terms of
states, actions, and the entire transition matrix. Then maxi-
mizing the entropy can be recast as a convex optimization
problem (see Section 3.2.2 or (De Farias & Van Roy, 2003))
over the space of state-visitation frequencies induced by the
exhaustive set of all policies. However, most RL instances
that are common in practice exhibit at least one of several
complications:
— prohibitively large state space (i.e. Chess or Go)
— unknown transition matrix (as in common Atari games)
These scenarios often require function approximation, ie.
restricting the search to a non-linearly parameterized pol-
icy class (eg. neural networks), which makes the entropy
maximization problem non-convex.

As a remedy for the computational difficulty, we propose
considering an approximate planning oracle: an efficient
method that given a well-specified reward signal can find an
optimizing policy. Such sample-based planning oracles have
been empirically observed to work well with non-linearly
parameterized policy classes. Given such an oracle, we give
a provably efficient method for exploration based on the
conditional gradient (or Frank-Wolfe) algorithm (Frank &
Wolfe, 1956).

Formally, we show how to generate a sequence of reward
signals, that when sequentially optimized give rise to a
policy with an entropy on the state distribution close to
optimal. Our main theorem gives a bound on the number of
calls to the planning oracle, which is independent of the size
of the state space of the MDP and that of the policy class.
Next, we outline an efficient construction of such oracles and
state the resultant sample & computational complexity in the
tabular MDP setting. As a proof of concept, we implement
the proposed method and demonstrate experiments over

1In contrast to scalar rewards, such objectives permit a broader
framework for reward specifiction, and may be useful in other
contexts.
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several mainstream RL tasks in Section 5.

1.1. Informal statement of contributions

To facilitate exploration in potentially unknown MDPs
within a restricted policy class Π, we assume access to
the environment using the following two oracles:

Approximate planning oracle: Given a reward function
(on states) r : S → R and a sub-optimality gap ε, the
planning oracle returns a policy π = APPROXPLAN(r, ε)
with the guarantee that V (π) ≥ maxπ∈Π V (π)− ε, where
V (π) is the value of policy π.

State distribution estimate oracle: A state distri-
bution oracle estimates the state distribution d̂π =
DENSITYEST(π, ε) of any given (non-stationary) policy π,
guaranteeing that ‖dπ − d̂π‖∞ ≤ ε.

Given access to these two oracles, we describe a method that
provably optimizes any continuous and smooth objective
over the state-visitation frequencies. Of special interest is
the maximum entropy and relative entropy objectives.
Theorem 1.1 (Main Theorem - Informal). There exists
an efficient algorithm (Algorithm 1) such that for any β-
smooth measure R, and any ε > 0, in O( 1

ε log 1
ε ) calls to

APPROXPLAN & DENSITYEST , it returns a policy π̄ with

R(dπ̄) ≥ max
π∈Π

R(dπ)− ε .

1.2. Related work

We review related works in this section.

Reward Shaping & Imitation Learning: Direct optimiza-
tion approaches to RL (such as policy gradient methods)
tend to perform favorably when random sequences of ac-
tions lead the agent to some positive reward, but tend to fail
when the rewards are sparse or myopic. Thus far, the most
practical approaches to address this have either been through
some carefully constructed reward shaping (e.g. (Ng et al.,
1999) where dense reward functions are provided to make
the optimization problem more tractable) or through imita-
tion learning (Abbeel & Ng, 2004; Ross et al., 2011) (where
an expert demonstrates to the agent how to act).

PAC-RL Learning: For the case of tabular Markov deci-
sion processes, the balance of exploration and exploitation
has been addressed in that there are a number of methods
which utilize confidence based reward bonuses to encourage
exploration in order to ultimately behave near optimally
(Kearns & Singh, 2002; Kakade, 2003; Strehl et al., 2006;
Lattimore & Hutter, 2014; Dann & Brunskill, 2015; Szita &
Szepesvári, 2010; Azar et al., 2017). (Lim & Auer, 2012)
offer a Dijkstra-like algorithm for discovering incrementally
reachable states in the tabular setting.

Count-based Models & Directed Exploration: There are

a host of recent empirical success using deep RL methods
which encourage exploration in some form (Mnih et al.,
2015; Silver et al., 2016). The approaches are based on a
few related ideas: that of encouraging exploration through
state visitation frequencies (e.g. (Ostrovski et al., 2017;
Bellemare et al., 2016; Tang et al., 2017)) and those based on
a intrinsic reward signal derived from novelty or prediction
error (Lopes et al., 2012; Pathak et al., 2017; Savinov et al.,
2018; Fu et al., 2017; Mohamed & Jimenez Rezende, 2015;
Houthooft et al., 2016; Weber et al., 2017), aligning an
intrinsic reward to the target objective (Kaelbling, 1993;
Chentanez et al., 2005; Singh et al., 2010; 2009; Zheng
et al., 2018), or sample based approaches to tracking of
value function uncertainty (Osband et al., 2016; 2018).

Intrinsic Learning: Works in (Chentanez et al., 2005;
Singh et al., 2009; 2010) established computational the-
ories of intrinsic reward signals (and how it might help with
downstream learning of tasks) and other works also showed
how to incorporate intrinsic rewards (in the absence of any
true reward signal) (Warde-Farley et al., 2018; Burda et al.,
2018b;a; Nair et al., 2018). The potential benefit is that such
learning may help the agent reach a variety of achievable
goals and do well on other extrinsically defined tasks, not
just the task under which it was explicitly trained for under
one specific reward function (e.g. see (Chentanez et al.,
2005; Singh et al., 2009; Warde-Farley et al., 2018; Nair
et al., 2018)).

2. Preliminaries
Markov decision process: An infinite-horizon dis-
counted Markov Decision Process is a tuple M =
(S,A, r, P, γ, d0), where S is the set of states, A is the set
of actions, and d0 is the distribution of the initial state s0. At
each timestep t, upon observing the state st, the execution
of action at triggers an observable reward of rt = r(st, at)
and a transition to a new state st+1 ∼ P (·|st, at). The
performance on an infinite sequence of states and actions
(hereafter, referred to as a trajectory) is judged through the
(discounted) cumulative reward it accumulates, defined as

V (τ = (s0, a0, s1, a1, . . . )) = (1− γ)

∞∑
t=0

γtr(st, at).

Policies: A policy is a (randomized) mapping from a history,
say (s0, a0, r0, s1, a1, r1 . . . st−1, at−1, rt−1), to an action
at. A stationary policy π is a (randomized) function which
maps a state to an action in a time-independent manner, i.e.
π : S → ∆(A). When a policy π is executed on some MDP
M, it produces a distribution over infinite-length trajectories
τ = (s0, a0, s1, a1 . . . ) as specified below.

P (τ |π) = P (s0)

∞∏
i=0

(π(ai|si)P (si+1|si, ai))
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The (discounted) value Vπ of a policy π is the expected
cumulative reward an action sequence sampled from the
policy π gathers.

Vπ = E
τ∼P (·|π)

V (τ) = (1− γ) E
τ∼P (·|π)

∞∑
t=0

γtr(st, at)

Induced state distributions: The t-step state distribution
and the (discounted) state distribution of a policy π that
result are

dt,π(s) = P (st = s|π) =
∑

all τ with st=s

P (τ |π), (2.1)

dt,π(s, a) = P (st = s, at = a|π) =
∑

all τ with st=s,at=a

P (τ |π),

(2.2)

dπ(s) = (1− γ)

∞∑
t=1

γtdt,π(s), (2.3)

dπ(s, a) = (1− γ)

∞∑
t=1

γtdt,π(s, a). (2.4)

The latter distribution can be viewed as the analogue of the
stationary distribution in the infinite horizon setting.

Mixtures of stationary policies: Given a sequence of k
policies C = (π0, . . . πk−1), and α ∈ ∆k (the simplex),
we define πmix = (α,C) to be a mixture over stationary
policies. The (non-stationary) policy πmix is one where, at
the first timestep t = 0, we sample policy πi with probability
αi and then use this policy for all subsequent timesteps. In
particular, the behavior of a mixture πmix with respect to
an MDP is that it induces infinite-length trajectories τ =
(s0, a0, s1, a1 . . . ) with the probability law :

P (τ |πmix) =

k−1∑
i=0

αiP (τ |πi) (2.5)

and the induced state distribution is:

dπmix(s) =

k−1∑
i=0

αidπi(s). (2.6)

Note that such a distribution over policies need not be rep-
resentable as a stationary stochastic policy (even if the πi’s
are stationary) due to that the sampled actions are no longer
conditionally independent given the states.

3. The Objective: MaxEnt Exploration
As each policy induces a distribution over states, we can as-
sociate a concave reward functional R(·) with this induced
distribution. We say that a policy π∗ is a maximum-entropy
exploration policy, also to referred to as the max-ent pol-
icy, if the corresponding induced state distribution has the

maximum possible R(dπ) among the policy class Π. When
considering the class of all policies, Lemma 3.3 assures
us that the search over the class of stationary policies is
sufficient.

π∗ ∈ arg max
π∈Π

R(dπ).

Our goal is to find a policy that induces a state distribution
with a comparable value of the reward functional.

3.1. Examples of reward functionals

A possible quantity of interest that serves as a motivation for
considering such functionals is the entropy of the induced
distribution2.

max
π∈Π
{H(dπ) = − E

s∼dπ
log dπ(s)}

The same techniques we derive can also be used to optimize
other entropic measures. For example, we may be interested
in minimizing:

min
π∈Π

{
KL(dπ||Q) = E

s∼dπ
log

dπ(s)

Q(s)

}
for some given distribution Q(s). Alternatively, we may
seek to minimize a cross entropy measure:

min
π∈Π

{
E
s∼Q

log
1

dπ(s)
= KL(Q||dπ) +H(Q)

}
where the expectation is now under Q. For uniform Q, this
latter measure may be more aggressive in forcing π to have
more uniform coverage than the entropy objective.

3.2. Landscape of the objective function

In this section, we establish that the entropy of the state
distribution is not a concave function of the policy. Similar
constructions can establish analogous statements for other
non-trivial functionals. Subsequently, when the policy class
in consideration is exhasutive, we discuss a possible con-
vex reformulation of the objective in the space of induced
distributions which constitute a convex set.

3.2.1. NON-CONVEXITY IN THE POLICY SPACE

Despite the concavity of the entropy function, our overall
maximization problem is not concave as the state distribu-
tion is not an affine function of the policy. This is stated
precisely in the following lemma.
Lemma 3.1. H(dπ) is not concave in π.

Proof. Figure 1 demonstrates the behavior of π0, π1, π2

on a 6-state MDP with binary actions. Note that for suf-
ficiently large γ → 1 and any policy π, the discounted

2Please note the distinction from the conditional entropy of
actions given the state, e.g. (Todorov, 2007; Haarnoja et al., 2018).
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Figure 1. Description of π0, π1, π2.

state distribution converges to the distribution on the states
at the second timestep, or formally dπ → d2,π. Now
with the realization π0 = π1+π2

2 , observe that d2,π0 is
not uniform on {s2,0, s2,1, s2,2}, implying that H(d2,π0

) <
H(d2,π1 )+H(d2,π2 )

2 .

Lemma 3.2. For any policy π and MDP M, define the
matrix Pπ ∈ R|S|×|S| so that

Pπ(s′, s) =
∑
a∈A

π(a|s)P (s′|s, a).

Then it is true that

1. Pπ is linear in π,

2. dt,π = P tπd0 for all t ≥ 0,

3. dπ = (1− γ)(I − γPπ)−1d0.

Proof. Linearity of Pπ is evident from the definition. (2,3)
may be verified by calculation.

3.2.2. CONVEXITY IN THE DISTRIBUTION SPACE

Define the set of all induced distributions as K = {d :
d(s, a) ≥ 0 and satisfies the constraints stated below}. For
every d ∈ K, it is possible to construct a policy π with
dπ = d, and for every π, dπ ∈ K holds (Puterman, 2014).∑

a

d(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

For an exhaustive policy class, the search for a max-ent
policy can be recast as a convex optimization problem over
the space of distributions.

max
d∈K

R(d).

Although the above reduction is outlined for an exhaustive
policy class, similar reductions are possible for linearly-
parameterized policy classes (Peters et al., 2010; Neu et al.,
2017). These techniques can be extended to the case of
MDPs with unknown dynamics (De Farias & Van Roy,
2003).

3.2.3. SUFFICIENCY OF STATIONARY POLICIES

The set of non-Markovian policies is richer than the set
of Markov stationary policies in terms of the distributions
over trajectories each may induce. A priori, it is not evident
that maximizing R(dπ) over the set of stationary policies is
sufficient to guarantee the optimality in a larger class of all
policies. Lemma 3.3 establishes this claim by equating the
set of achievable induced state distributions for these two
sets of policies.

Lemma 3.3. (Puterman, 2014) For any possibly non-
Markovian policy π, define a stationary Markov policy π′

as π′(a|s) = dπ(s,a)
dπ(s) . Then, dπ = dπ′ .

4. Algorithms & Main Results
The algorithm maintains a distribution over policies, and
proceeds by adding a new policy to the support of the mix-
ture and reweighing the components. To describe the algo-
rithm, we will utilize access to two kinds of oracles. The
constructions for these are detailed in later sections.

Approximate planning oracle: Given a reward function
(on states) r : S → R and a sub-optimality gap ε1, the
planning oracle returns a policy3 π = APPROXPLAN(r, ε1)
with the guarantee that Vπ ≥ maxπ∈Π Vπ − ε1.

State distribution estimate oracle: A state distri-
bution oracle estimates the state distribution d̂π =
DENSITYEST(π, ε0) of any given (non-stationary) policy
π, guaranteeing that ‖dπ − d̂π‖∞ ≤ ε0.

3As the oracle is solving a discounted problem, we know the
optimal value is achieved by a stationary policy.
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Algorithm 1 Maximum-entropy policy computation.

1: Input: Step size η, number of iterations T , planning
oracle error tolerance ε1 > 0, state distribution oracle
error tolerance ε0 > 0, reward functional R.

2: Set C0 = {π0} where π0 is an arbitrary policy.
3: Set α0 = 1.
4: for t = 0, . . . , T − 1 do
5: Call the state distribution oracle on πmix,t = (αt, Ct):

d̂πmix,t = DENSITYEST (πmix,t, ε0)

6: Define the reward function rt as

rt(s) = ∇R(d̂πmix,t) :=
dR(X)

dX

∣∣∣∣∣
X=d̂πmix,t

.

7: Compute the (approximately) optimal policy on rt:

πt+1 = APPROXPLAN (rt, ε1) .

8: Update πmix,t+1 = (αt+1, Ct+1) to be

Ct+1 = (π0, . . . , πt, πt+1), (4.1)
αt+1 = ((1− η)αt, η). (4.2)

9: end for
10: return πmix,T = (αT , CT ).

We shall assume in the following discussion that the reward
functional R is β-smooth, B-bounded, and that it satisfies
the following inequality for all X,Y .

‖∇R(X)−∇R(Y )‖∞ ≤ β‖X − Y ‖∞ (4.3)

− βI � ∇2R(X) � βI; ‖∇R(X)‖∞ ≤ B (4.4)

Theorem 4.1 (Main Theorem). For any ε > 0, set ε1 =
0.1ε, ε0 = 0.1β−1ε, and η = 0.1β−1ε. When Algorithm 1
is run for T iterations where:

T ≥ 10βε−1 log 10Bε−1 ,

we have that:

R(dπmix,T ) ≥ max
π∈Π

R(dπ)− ε .

Before we begin the proof, we state the implication for
maximizing the entropy of the induced distribution. While
the entropy objective is, strictly speaking, not smooth, one
may consider a smoothed alternative Hσ defined below.

Hσ(dπ) = −Es∼dπ log(dπ(s) + σ)

When the algorithm is fedHσ as the proxy reward functional,
it is possible make sub-optimality guarantees on the true
objective H . Lemma A.1 (D) relates the entropy functional

H to its smoothed variant Hσ, while the rest of the lemma
quantifies smoothness of Hσ. The factors of |S| incurred
below are a consequence of imposed smoothing on H , and
are not necessary for naturally smooth objectives.
Corollary 4.2. For any ε > 0, set σ = 0.1ε

2|S| , ε1 = 0.1ε,

ε0 = 0.1ε2

80|S| , and η = 0.1ε2

40|S| . When Algorithm 1 is run for T
iterations with the reward functional Hσ , where:

T ≥ 40|S|
0.1ε2

log
log |S|
0.1ε

,

we have that:

H(dπmix,T ) ≥ max
π∈Π

H(dπ)− ε .

We continue with the proof of the main theorem.

Proof of Theorem 4.1. Let π∗ be a maximum-entropy pol-
icy, ie. π∗ ∈ arg maxπ∈ΠR(dπ).

R(dπmix,t+1
) = R((1− η)dπmix,t + ηdπt+1

) Equation 2.6

≥R(dπmix,t) + η〈dπt+1
− dπmix,t ,∇R(dπmix,t)〉

− η2β‖dπt+1 − dπmix,t‖22 smoothness

The second inequality follows from the smoothness4 of R.
To incorporate the error due to the two oracles, observe

〈dπt+1 ,∇R(dπmix,t)〉

≥ 〈dπt+1
,∇R(d̂πmix,t)〉 − β‖dπmix,t − d̂πmix,t‖∞

≥ 〈dπ∗ ,∇R(d̂πmix,t)〉 − βε0 − ε1

≥ 〈dπ∗ ,∇R(dπmix,t)〉 − 2βε0 − ε1

The first and last inequalities invoke the assumptions laid
out in Equation 4.3. Note that the second inequality above
follows from the defining character of the planning oracle,
ie. with respect to the reward vector rt = ∇R(d̂πmix,t), for
any policy π′ ∈ Π, it holds true that

Vπt+1 = 〈dπt+1 , rt〉 ≥ Vπ′ − ε1 = 〈dπ′ , rt〉 − ε1

In particular, this statement holds5 for the choice π′ = π∗.

Using the above fact and continuing on

R(dπmix,t+1
)

≥R(dπmix,t) + η〈dπ∗ − dπmix,t ,∇R(dπmix,t)〉
− 2ηβε0 − ηε1 − η2β

≥(1− η)R(dπmix,t) + ηR(dπ∗)

− 2ηβε0 − ηε1 − η2β

4See Section 2.1 in (Bubeck et al., 2015) for equivalent defini-
tions of smoothness in terms of the function value and the Hessian.

5Even when when Π is chosen to be set of all stationary policies,
this argument does not rely on π∗ being a stationary policy, since
πt+1 is an optimal policy for the reward function rt among the
class of all policies.
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The last step here utilizes the concavity of R. Indeed, the
inequality follows immediately from the sub-gradient char-
acterization of concave functions. Now, with the aid of the
above, we observe the following inequality.

R(dπ∗)−R(dπmix,t+1
)

≤ (1− η)(R(dπ∗)−R(dπmix,t)) + 2ηβε0 + ηε1 + η2β.

Telescoping the inequality, this simplifies to

R(dπ∗)−R(dπmix,T )

≤ (1− η)T (R(dπ∗)−R(dπmix,0)) + 2βε0 + ε1 + ηβ

≤ Be−Tη + 2βε0 + ε1 + ηβ.

Setting ε1 = 0.1ε, ε0 = 0.1β−1ε, η = 0.1β−1ε, T =
η−1 log 10Bε−1 suffices.

4.1. Tabular setting

In general, the construction of provably computationally
efficient approximate planning oracle for MDPs with large
or continuous state spaces poses a challenge. Discounting
limited settings (eg. the Linear Quadratic Regulators (Bert-
sekas, 2005), (Fazel et al., 2018)), one may only appeal to
the recent empirical successes of sample-based planning
algorithms that rely on the power of non-linear function
approximation.

Nevertheless, one may expect, and possibly require, that
any solution proposed to address the general case performs
reasonably when restricted to the tabular setting. In this
spirit, we outline the construction of the required oracles in
the tabular setting, where we consider the exhaustive class
of policies.

4.1.1. THE KNOWN MDP CASE

With the knowledge of the transition matrix P of a MDP
M in the form of an explicit tensor, the planning oracle
can be implemented via any of the exact solution methods
(Bertsekas, 2005), eg. value iteration, linear programming.
The state distribution oracle can be efficiently implemented
as Lemma 3.2 suggests.

Corollary 4.3. When the MDP M is known explicitly,
with the oracles described in Section 4, Algorithm 1
runs in poly

(
β, |S|, |A|, 1

1−γ ,
1
ε , logB

)
time to guarantee

R(dπmix,T ) ≥ maxπ R(dπ)− ε.

4.1.2. THE UNKNOWN MDP CASE

For the case of an unknown MDP, a sample-based algo-
rithm must iteratively try to learn about the MDP through
its interactions with the environment. Here, we assume a
γ-discounted episodic setting, where the agent can act in
the environment starting from s0 ∼ d0 for some number of

steps, and is then able to reset. Our measure of sample com-
plexity in this setting is the number of Õ

(
(1− γ)−1

)
-length

episodes the agent must sample to achieve a ε-suboptimal
performance guarantee.

The algorithm outlined below makes a distinction between
the set of states it is (relatively) sure about and the set of
states that have not been visited enough number of times
yet. The algorithm and the analysis is similar to the E3

algorithm (Kearns & Singh, 2002). Since algorithms like
E3 proceed by building a relatively accurate model on the
set of reachable states, as opposed to estimate of the value
functions, this permits the reuse of information across differ-
ent invocations, each of which might operate on a different
reward signal.

Theorem 4.4. For an unknown MDP, with Algorithm 2 as
the planning oracle and Algorithm 3 as the distribution esti-
mate oracle, Algorithm 1 runs in poly

(
β, |S|, |A|, 1

1−γ ,
1
ε

)
time and executes Õ

(
B3|S|2|A|
ε3(1−γ)2 + β3

ε3

)
episodes of length

Õ
(

log |S|ε−1

log γ−1

)
to guarantee that

R(dπmix,T ) ≥ max
π

R(dπ)− ε.

A sub-optimality bound may be derived on the non-smooth
entropy functionalH via Lemma A.1. Again, the extraneous
factors introduced in the process are a consequence of the
imposed smoothing via Hσ .

Corollary 4.5. For an unknown MDP, with Algorithm 2
as the planning oracle and Algorithm 3 as the distribution
estimate oracle and Hσ as the proxy reward functional, Al-
gorithm 1 runs in poly

(
|S|, |A|, 1

1−γ ,
1
ε

)
time and executes

Õ
(
|S|2|A|
ε3(1−γ)2 + |S|3

ε6

)
episodes of length Õ

(
log |S|ε−1

log γ−1

)
to

guarantee that

H(dπmix,T ) ≥ max
π

H(dπ)− ε.

Before we state the proof, we note the following lemmas.
The first is an adaptation of the analysis of the E3 algorithm.
The second is standard. We only include the second for
completeness. The proofs of these may be found in the
appendix.

Lemma 4.6. For any reward function r with ‖r‖∞ ≤ B,

ε > 0, with ε1 = 0.1B−1ε,m =
32B2|S| log

2|S|
δ

(1−γ)2(0.1ε)2 , n =

B log
32|S|2|A| log 2|S|

δ
(1−γ)2(0.1ε)2δ

0.1ε , t0 =
log 0.1ε

log |S|
log γ , Algorithm 4.4 guaran-

tees with probability 1− δ

Vπ ≥ max
π

Vπ − ε.

Furthermore, note that if Algorithm 4.4 is invoked T times
(on possibly different reward functions), the total number
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Algorithm 2 Sample-based planning for an unknown MDP.

1: Input: Reward r, error tolerance ε > 0, exact planning
oracle tolerance ε1 > 0, oversampling parameter m,
number of rollouts n, rollout length t0.

2: Initialize a persistent data structure C ∈ R|S|2×|A|,
which is maintained across different calls to the
planning algorithm to keep transition counts, to
C(s′|s, a) = 0 for every (s′, s, a) ∈ S2 ×A.

3: repeat
4: Declare K = {s : mina∈A

∑
s′∈S C(s′|s, a) ≥ m},

P̂ (s′|s, a) =

{
C(s′|s,a)∑
s′∈S C(s′|s,a) , if s ∈ K

1s′=s. otherwise.
5: Define the reward function as rK(s) ={

r(s), if s ∈ K
B. otherwise

.

6: Compute an (approximately) optimal policy on the
MDP induced by P̂ and reward rK. This task is
purely computational, and can be done as indicated
in Section 4.1.1. Also, modify the policy so that on
every state s ∈ S −K, it chooses the least performed
action.

π(s) =

{
(Π (rK, ε1))(s) if s ∈ K,
argmina∈A

∑
s′∈S C(s′|s, a) otherwise

7: Run π on the true MDPM to obtain n independently
sampled t0-length trajectories (τ1, . . . τn), and incre-
ment the corresponding counts in C(s′|s, a).

8: If and only if no trajectory τi contains a state s ∈
S − K, mark π as stable.

9: until π is stable.
10: return π.

Algorithm 3 Sample-based estimate of the state distribu-
tion.

1: Input: A policy π, termination length t0, oversampling
parameter m.

2: Sample m trajectories (τ0, . . . τm−1) of length t0 fol-
lowing the policy π.

3: For every t < t0, calculate the empirical state distribu-
tion d̂t,π .

dt,π(s) =
|{i < m : τi = (s0, a0, . . . ) with st = s}|

m

4: return d̂π = 1−γ
1−γt0

∑t0−1
t=0 γtd̂t,π

of episodes sampled across all the invocations is n(T +

m|S||A|) = Õ
(
BT
ε + B3|S|2|A|

ε3(1−γ)2

)
, each episode being of

length t0.

Lemma 4.7. For any ε0, δ > 0, when Algorithm 3 is run
with m = 200

ε20
log 2|S| log 0.1ε

δ log γ , t0 = log 0.1ε0
log γ , d̂π satisfies

‖d̂π − dπ‖∞ ≤ ε0 with probability at least 1 − δ. In this
process, the algorithm samples m episodes of length t0.

Proof of Theorem 4.4. The claim follows immediately from
the invocations of the two lemmas above with the parameter
settings proposed in Theorem 4.1.

5. Proof of Concept Experiments
We report the results from a preliminary set of experiments6.
In each case, the MaxEnt agent learns to access the set of
reachable states within a small number of iterations, while
monotonically increasing the entropy of the induced state
distribution.

Recall that Algorithm 1 requires access to an approximate
planning oracle and a density estimator for the induced
distribution. In most of the experimental environments, the
density estimator is deliberately chosen to be simple – a
count-based estimate over the discretized state space. It is
possible to use neural density estimators and other function-
approximation based estimators in its stead, as we do for
the Humanoid environment.

5.1. Environments and density estimation

Pendulum. The 2-dimensional state space for Pendulum
(from (Brockman et al., 2016)) was discretized evenly to
a grid of dimension 8 × 8. The dimensions represented
angular position and angular velocity. For Pendulum, the
maximum torque and velocity were capped at 1.0 and 7.0,
respectively.

Ant. The 29-dimensional state space for Ant (with a Mu-
joco engine) was first reduced to dimension 7, combin-
ing the agent’s x and y location in the gridspace with a
5-dimensional random projection of the remaining 27 states.
The x and y dimensions were discretized into 16 bins in the
range [−12, 12]. The other dimensions were each normal-
ized and discretized into 15 bins in the range [−1, 1]. While
the planning agent agent had access to the full state repre-
sentation, the density estimation was performed exclusively
on the reduced representation.

Humanoid. The 376-dimensional state space for the Mu-
joco Humanoid environment was too large and complex to
effectively discretize without significantly affecting the ac-
curacy of estimation. In view of this, the agent’s state space
density was estimated using kernel density estimation (from
scikit-learn (Pedregosa et al., 2011)), with an Epanechnikov
kernel with a bandwidth of 0.10.

6The open-source implementations may be found at https:
//github.com/abbyvansoest/maxent.

https://github.com/abbyvansoest/maxent
https://github.com/abbyvansoest/maxent
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Pendulum Ant Humanoid

(a) (b) (c)

(d)
(e) (f)

Figure 2. Results of the preliminary experiments. In each plot, blue represents the MaxEnt agent, and orange represents the random
baseline. 2a, 2b, and 2c show the entropy of the policy evolving with the number of epochs. 2d, 2e, and 2f show the log-probability of
occupancy of the two-dimensional state space. In 2e and 2f, the infinite xy grid is limited to [−20, 20] × [−20, 20].

Figure 3. The number of distinct xy states visited by Ant at vari-
ous epochs. Results were averaged over N = 20 executions. As
the number of policies in the mixture increases, the agent reaches
more unique states in the same amount of time.

5.2. Algorithmic details

Reward functional. Each planning agent was trained to
maximize a smooth variant of the KL divergence objective.

min
π∈Π

{
KLσ(Unif||dπ) = − E

s∼Unif
log(dπ(s) + σ) + C

}
.

Such a choice encourages visitation of novel states more
aggressively than the entropy objective. The smoothing
parameter was chosen to be σ = |S|− 1

2 .

Pendulum. The planning oracle is a REINFORCE (Sutton
et al., 2000) agent, where the the output policy from the
previous iteration is used as the initial policy for the next
iteration. The policy class is a neural net with a single
hidden layer consisting of 128 units. The agent is trained on
200 episodes every epoch. The baseline agent chooses its
action randomly at every time step.

Ant. The planning oracle is a Soft Actor-Critic (Haarnoja
et al., 2018) agent. The policy class is a neural net with 2
hidden layers composed of 300 units and the ReLU activa-
tion function. The agent is trained for 30 episodes, each of
which consists of a roll-out of 5000 steps. The mixed policy
is executed over 10 trials of T = 10000 steps at the end of
each epoch in order to approximate the policy distribution
and compute the next reward function. The baseline agent
chooses its actions randomly for the same number of trials
and steps.

Humanoid. The planning oracle is a Soft Actor-Critic agent.
The policy class is a neural net with 2 hidden layers com-
posed of 300 units and the ReLU activation function. The
agent is trained for 30 episodes, each of which consists of a
roll-out of 5000 steps. The mixed policy is executed for 20
trials of T = 50, 000 steps to collect input data that is used
to fit the kernel estimation model. This model is then used
to estimate the induced state density of the mixed policy.
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A. Characteristics of Hσ

The following lemma is helpful in proving the corollary for the entropy functional.

Lemma A.1. For any two distributions P,Q ∈ ∆d:

(A) (∇Hσ(P ))i = −
(

log(Pi + σ) + Pi
Pi+σ

)
,

(B) Hσ(P ) in concave in P ,

(C) Hσ(P ) is 2σ−1 smooth, ie.
−2σ−1Id � ∇2Hσ(P ) � 2σ−1Id,

(D) |Hσ(P )−H(P )| ≤ dσ,

(E) ‖∇Hσ(P )−∇Hσ(Q)‖∞ ≤ 2σ−1‖P −Q‖∞.

Proof of Lemma A.1. (A) may be verified by explicit calculation. Observe∇2Hσ(P ) is a diagonal matrix with entries

(∇2Hσ(P ))i,i = − Pi + 2σ

(Pi + σ)2
.

(B) is immediate. (C) follows as |(∇2Hσ(P ))i,i| ≤ 2σ−1.

|Hσ(P )−H(P )| =
d−1∑
i=0

Pi log
Pi + σ

Pi
≤
d−1∑
i=0

Pi
σ

Pi
= dσ.

The last inequality follows from log x ≤ x− 1,∀x > 0. Finally, to see (E), using Taylor’s theorem, observe

‖∇Hσ(P )−∇Hσ(Q)‖∞ ≤ max
i,α∈[0,1]

|(∇2Hσ(αP + (1− α)Q)i,i|‖P −Q‖∞ ≤ 2σ−1‖P −Q‖∞.

B. Proofs for the Tabular Setting
The following notions & lemmas are helpful in proving Lemma 4.6. We shall call a state s ∈ K m-known if, for all
actions a ∈ A, action a has been executed at state s at least m times. For any MDPM = (S,A, r, P, γ) and a set of
m-known states K ⊆ S, define an induced MDPMK = (S,A, rK, PK, γ) so that the states absent from K are absorbing
and maximally rewarding.

rK(s, a) =

{
r(s, a) if s ∈ K,
B otherwise,

(B.1)

PK(s′|s, a) =

{
P (s′|s, a) if s ∈ K,
1s′=s otherwise.

(B.2)

The state distribution induced by a policy π onMK shall be denoted by dMK,π . Often, in absence of an exact knowledge of
the transition matrix P , the policy π may be executed on an estimated transition matrix P̂ . We shall use dM̂K,π to denote
the state distribution of the policy π executed on the MDP with the transition matrix P̂ . Also, define the following.

PK(escape|π) = E
τ∼P (·|π)

1∃t<t0:st 6∈K,τ=(s0,a0,... ),

PK,γ(escape|π) = (1− γ) E
τ∼P (·|π)

∞∑
t=0

γt1 su∈K∀u<t and
st 6∈K,τ=(s0,a0,... )

.

Note that PK(escape|π) ≥ PK,γ(escape|π)− γt0 .
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Lemma B.1. (Lemma 8.4.4(Kakade, 2003)) For any policy π, the following statements are valid.

〈dπ, r〉 ≥ 〈dMK,π, rK〉 − PK,γ(escape|π)‖rK‖∞,
〈dMK,π, rK〉 ≥ 〈dπ, r〉.

Lemma B.2. (Lemma 8.5.4(Kakade, 2003)) If, for all (s, a) ∈ S ×A, ‖P̂ (·|s, a)− PK(·|s, a)‖1 ≤ ε, then for any reward
r, policy π, it is true that

|〈dMK,π, r〉 − 〈dM̂K,π, r〉| ≤
ε

1− γ
Lemma B.3. (Folklore, eg. Lemma 8.5.5(Kakade, 2003)) When m samples {x1, . . . xm} are drawn from a distribution
P , supported on a domain of size d, to construct an empirical distribution P̂ (x) =

∑m
i=1 1xi=x
m , it is guaranteed that with

probability 1− δ

‖P − P̂‖1 ≤

√
8d log 2d

δ

m
.

Proof of Lemma 4.6. The key observation in dealing with an unknown MDP is: either π, computed on the the transition P̂ ,
is (almost) optimal for the given reward signal on the true MDP, or it escapes the set of known states K quickly. If the former
occurs, the requirement on the output of the algorithm is met. In case of the later, π serves as a good policy to quickly
explore new states – this can happen only a finite number of times.

Let π∗ = arg maxπ Vπ . First, note that for any π chosen in the Line 6, we have

Vπ =〈dπ, r〉
≥〈dMK,π, rK〉 − (γt0 + PK(escape|π))B B.1

≥〈dM̂K,π, rK〉 −
1

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B B.2, B.3

≥〈dM̂K,π∗ , rK〉 − ε1 −
1

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B choice of π

≥〈dMK,π∗ , rK〉 − ε1 −
2

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B B.2, B.3

≥Vπ∗ − ε1 −
2

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B B.1

If PK(escape|π) > ∆, then the probability that π doesn’t escape K in n trials is e−n∆. Accounting for the failure
probabilities with a suitable union bound, Line 8 ensures that π is marked stable only if PK(escape|π) ≤ log(Nδ−1)

n , where
N is the total number of times the inner loop is executed.

To observe the truth of the second part of the claim, note that every reiteration of the inner loop coincides with the exploration
of some action at a m-unknown state. There can be at most m|S||A| such exploration steps. Finally, each run of the inner
loop samples n episodes.

Proof of Lemma 4.7. First note that it suffices to ensure for all t < t0 simultaneously, it happens ‖dt,π − d̂t,π‖∞ ≤ 0.1ε0.
This is because

‖dπ − d̂π‖∞ ≤
1− γ

(1− γt0)

t0−1∑
t=0

γt‖d̂t,π − (1− γt0)dt,π‖∞ + γt0 ≤ 1− γ
(1− γt0)

t0−1∑
t=0

γt‖d̂t,π − dt,π‖+ 0.3ε0 ≤ ε0.

Since the trajectories are independently, |d̂t,π(s)− dt,π(s)| ≤
√

2
m log 2

δ for each t < t0 and state s ∈ S with probability
1− δ, by Hoeffding’s inequality. A union bound over states and t concludes the proof.


