
Connectivity-Optimized Representation Learning via Persistent Homology
– Supplementary material –

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

This supplementary material contains all proofs omitted in
the main submission. For readability, all necessary defini-
tions, theorems, lemmas and corollaries are restated (in dark
blue) and the numbering matches the original numbering.

Additional (technical) lemmas are prefixed by the section
letter, e.g., Lemma A.1.

A. Proofs for Section 3
First, we recall that the connectivity loss is defined as

Lη(S) =
∑
t∈†(S)

|η − εt| (4)

Definition 3. Let S ⊂ Rn, |S| = b and zi ∈ S. We define
the indicator function

1i,j(z1, . . . , zb) =

{
1 ∃t ∈ †(S) : εt = ||zi − zj ||
0 else ,

where {i, j} ⊂ [b] and (εk)
M
k=1 is the increasing sequence

of all pairwise distance values of S.

Theorem 1. Let S ⊂ Rn, |S| = b, such that the pairwise
distances are unique. Further, let Lη be defined as in Eq. (4)
and 1i,j as in Definition 3. Then,

Lη(S) =
∑

{i,j}⊂[b]

∣∣η − ‖zi − zj‖∣∣ · 1i,j(z1, . . . , zb) .
Proof. We have to show that∑

t∈†(S)

|η − εt|

from Eq. (4), denoted as A, equals the right-hand side of
Theorem 1, denoted as B.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Part 1 (A ≤ B). Let t ∈ †(S). Since the pairwise distances
of S are unique, t is contained only once in the multi-set
†(S) and we can treat †(S) as an ordinary set. Further, there
is a (unique) {it, jt} such that εt = ‖zit − zjt‖ and hence
1it,jt(z1, . . . , zb) = 1. This means every summand in A
is also present in B. As all summands are non-negative,
A ≤ B follows.

Part 2 (B ≤ A). Consider {i, j} ⊂ [b] contributing to the
sum, i.e., 1i,j(z1, . . . , zb) = 1. By definition

∃t ∈ †(S) : εt = ‖zi − zj‖

and therefore the summand corresponding to {i, j} in B
is present in A. Again, as all summands are non-negative
B ≤ A follows, which concludes the proof.

Lemma A.1. Let S ⊂ Rn, |S| = b, such that the pairwise
distances are unique. Then, 1i,j(S) is locally constant in S.
Formally, let 1 ≤ u ≤ b, 1 ≤ v ≤ n, h ∈ R and

S′ = {z1, . . . , zu−1, zu + h · ev, zu+1, . . . , zb}

where ev is the v-th unit vector. Then,

∃ξ > 0 : |h| < ξ ⇒ 1i,j(S) = 1i,j(S
′) .

Proof. 1i,j(X) is defined defined via †(X), which, in turn,
is defined via the Vietoris-Rips filtration of X . Hence, it
is sufficient to show that the corresponding Vietoris-Rips
filtrations of S and S′ are equal, which we will do next.

Let (εk)Mk=1 be the increasing sorted sequence of pairwise
distance values of S. As all pairwise distances are unique,
there is exactly one {ik, jk} for each k such that

εk = ‖zik − zjk‖ .

Further, let S′ = {z′1, . . . , z′b} be such that

z′i =

{
zi i 6= u

zu + h · ev i = u
,

and ε′k = ‖z′ik − z
′
jk
‖. We now show that (ε′k)

M
k=1 is sorted

and strictly increasing. First, let

µ = min
1≤k<M

εk+1 − εk . (1)

Connectivity-Optimized Representation Learning via Persistent Homology – Supplementary material

By construction, it follows that µ > 0. Now, by the triangle
inequality,∣∣‖z′i − z′j‖ − ‖zi − zj‖∣∣ ≤ |‖zi − zj‖+ |h| − ‖zi − zj‖|

= |h| ,

which is equivalent to

−|h| ≤ ‖z′i − z′j‖ − ‖zi − zj‖ ≤ |h| .

This yields

‖z′i − z′j‖ ≥ ‖zi − zj‖ − |h| (2)

and
− ‖z′i − z′j‖ ≥ −‖zi − zj‖ − |h| . (3)

Using Eqs. (2) and (3) we get

ε′k+1 − ε′k = ‖z′ik+1
− z′jk+1

‖ − ‖z′ik − z
′
jk
‖

≥ ‖zik+1
− zjk+1

‖ − |h| − ‖zik − zjk‖ − |h|
= εk+1 − εk − 2|h|
by Eq. (1)
≥ µ− 2|h| .

Overall, (ε′k)
M
k=1 is sorted and strictly increasing if

µ− 2|h| > 0⇔ |h| < µ

2
.

It remains to show that the Vietoris-Rips filtration

∅ ⊂ V0(S) ⊂ Vε1/2(S) ⊂ · · · ⊂ VεM/2(S)

is equal to

∅ ⊂ V0(S′) ⊂ Vε′1/2
(S′) ⊂ · · · ⊂ Vε′M/2

(S′) .

For
V0(S) =

{
{1}, . . . , {N}

}
= V0(S′)

this is obvious. For fS , fS′ , as in Definition 1 (main paper;
Vietoris-Rips complex), we get

f−1S (εk+1/2) =
{
{ik, jk}

}
= f−1S′ (ε

′
k+1/2)

since

εk = ‖zik − zjk‖ and ε′k = ‖z′ik − z
′
jk
‖

and the pairwise distances are unique. Now, by induction

Vε′k+1/2
(S′) = Vε′k/2

(S′) ∪ f−1S′ (ε
′
k+1/2)

= Vεk/2(S) ∪ f−1S′ (ε
′
k+1/2)

= Vεk/2(S) ∪ f−1S (εk+1/2) = Vεk+1/2(S) .

Setting ξ = µ/2 concludes the proof.

Theorem 2. Let S ⊂ Rn, |S| = b, such that the pairwise
distances are unique. Then, for 1 ≤ u ≤ b and 1 ≤ v ≤ n,
the partial (sub-)derivative of Lη(S) w.r.t. the v-th coordi-
nate of zu exists, i.e.,

∂Lη(S)
∂zu,v

=
∑

{i,j}⊂[b]

∂
∣∣η − ‖zi − zj‖∣∣

∂zu,v
· 1i,j(z1, . . . , zb) .

Proof. By Theorem 1, we can write

Lη(S) =
∑

{i,j}⊂[b]

∣∣η − ‖zi − zj‖∣∣ · 1i,j(z1, . . . , zb) .
Further, from Lemma A.1, we know that 1i,j is locally
constant for u, v. Consequently, the partial derivative w.r.t.
zu,v exists and is zero. The rest follows from the product
rule of differential calculus.

B. Proofs for Section 4
Lemma 1. Let 2 ≤ b ≤ m and M ⊂ Rn with |M | = m
such that for each S ⊂ M with |S| = b, it holds that
S is α-β-connected. Then, for d = m − b and z ∈ M
arbitrary but fixed, we find Mz ⊂ M with |Mz| = d + 1
and Mz ⊂ B(z, α, β).

Proof. Let z ∈M . Our strategy is to iteratively construct a
set of points

{z1, . . . , zd+1} ⊂ B(z, α, β) ∩ (M \ {z}) .

First, consider some S(1) ⊂M with z ∈ S(1) and |S(1)| =
b. Since S(1) is α-β-connected (by assumption), there is
S(1) 3 z1 ∈ B(z, α, β).

By repeatedly considering S(i) ⊂ M with zi ∈ S(i) and
|S(i)| = b, we can construct M (i)

z = {z1, . . . , zi} for i ≤
d = m− b. It holds that

|M \M (i)
z | = m− i ≥ m− d = m− (m− b) = b . (5)

Hence, we find S(i+1) ⊂ M \ M (i+1)
z with z ∈ S(i+1)

such that |S(i+1)| = b. Again, as S(i+1) is α-β-connected,
there is S(i+1) 3 zi+1 ∈ B(z, α, β). Overall, this specific
procedure allows constructing d+1 points, as for i ≥ d+1,
Eq. (5) is no longer fulfilled.

Corollary 1. Let 2 ≤ b ≤ m and M ⊂ Rn with |M | = m
such that for each S ⊂ M with |S| = b, it holds that S is
α-β-connected. Then M is (m− b+ 1)-β-dense.

Proof. By Lemma 1, we can construct m − b + 1 points,
Mz , such that Mz ⊂ B(z, α, β). Conclusively,

y ∈Mz ⇒ ‖z − y‖ ≤ β .

Connectivity-Optimized Representation Learning via Persistent Homology – Supplementary material

Corollary 2. Let 2 ≤ b ≤ m and M ⊂ Rn with |M | = m
such that for each S ⊂ M with |S| = b, it holds that S is
α-β-connected. Then, for ε > 0 and m− b+ 1 > Eε,nα,β , it
follows that M is not ε-separated.

Proof. Choose some z ∈ M . By Lemma 1, we can con-
struct m − b + 1 points, Mz , such that Mz ⊂ B(z, α, β).
The distance induced by ‖ · ‖ is translation invariant, hence

Eε,nα,β = Nε
(
B(z, α, β)

)
.

Ifm−b+1 > Eε,nα,β , we conclude thatMz is not ε-separated
and therefore M is not ε-separated.

Lemma 2. Let ε < 2α and α < β. Then, in (Rn, ‖ · ‖1), it
holds that Eε,nα,β ≤ (2β/ε+ 1)n − (2α/ε− 1)n.

Proof. Let M ⊂ B(0, α, β) such that M is ε-separated.
Then, the open balls B0(z, ε/2), z ∈ M , are pairwise dis-
jointly contained in B(0, α− ε/2, β + ε/2). To see this, let
y ∈ B0(z, ε/2). We get

‖y‖ ≤ ‖y − z‖+ ‖z‖ < ε/2 + β

and (by the reverse triangle inequality)

‖y‖ = ‖z − (z − y)‖ ≥
∣∣‖z‖ − ‖z − y‖∣∣

≥ ‖z‖ − ‖z − y‖ ≥ α− ε/2 .

Hence, y ∈ B(0, α, β). The balls are pairwise disjoint as
M is ε-separated and the radius of each ball is chosen as ε/2.
Let λ denote the Lebesgue measure in Rn. It holds that

|M | · λ
(
B0(0, ε/2)

)
= λ

(⋃
z∈M

B0(z, ε/2)

)
≤ λ

(
B(0, α− ε/2, β + ε/2)

)
as λ is translation invariant and⋃

z∈M
B0(z, ε/2) ⊂ B(0, α− ε/2, β + ε/2) .

The volume of the ‖ · ‖1-ball with radius r is

λ
(
B(0, r)

)
=

2n

n!
rn .

Hence, we get

|M | · ε
n

n!
≤ 2n

n!
((β + ε/2)n − (α− ε/2)n)

and thus

|M | ≤ 2n

εn
·
(
(β + ε/2)n − (α− ε/2)n

)
=

2n

εn
· ε

n

2n
(
(2β/ε+ 1)n − (2α/ε− 1)n

)
= (2β/ε+ 1)n − (2α/ε− 1)n .

As the upper bound holds for any M , it specifically holds
for the largest M , which bounds the metric entropy Eε,nα,β
and completes the proof.

C. Parallel persistent homology computation
While there exist many libraries for computing persistent
homology (DIPHA (Bauer et al., 2014a), Dinoysus1,
JavaPlex2 (Tausz et al., 2014), GUDHI3) of a filtered
simplicial complex, or fast (RIPSER4) and approximate
(SimBa) (Dey et al., 2016) computation of Vietoris-Rips
persistent homology, we are not aware of an available im-
plementation that

(P1) fully operates on the GPU and

(P2) offers easy access to the persistence pairings.

As most deep learning platforms are optimized for GPU
computations, (P1) is important to avoid efficiency bottle-
necks caused by expensive data transfer operations between
main memory and GPU memory; (P2) is required to en-
able the integration of persistent homology in an automatic
differentiation framework, such as PyTorch.

Next, we present a straightforward (and not necessarily
optimal) variant of the standard reduction algorithm to com-
pute persistent homology, as introduced in (Edelsbrunner
& Harer, 2010, p. 153), that offers both properties. While
many improvements of our parallelization approach are pos-
sible, e.g., using clearing (Bauer et al., 2014b) or computing
cohomology (de Silva et al., 2011) instead, we do not follow
these directions here. We only present a simple parallel
variant that is sufficient for the purpose of this work.

The core idea of the original reduction algorithm is to trans-
form the boundary matrix of a filtered simplicial complex
such that the “birth-death” times of its homological features
can be easily read off. More precisely, the boundary matrix
(Edelsbrunner & Harer, 2010) is transformed to its reduced
form (see Definition C.1) via left-to-right column additions,
defined in Algorithm 1.

First, we need to define what is meant by a reduced form of
a boundary matrix B over Zm×n2 .

Definition C.1. Let B ∈ Zm×n2 and B[i], B[≤ i] denote
the i-th column and the sub-matrix of the first i columns,
resp., of B. Then, for B[j] 6= 0, we define

low(B, i) = j

iff j is the row-index of the lowest 1 in B[i]. For conve-
nience, we set

low(B, i) = −1
for B[j] = 0. We call B reduced iff for 1 ≤ i < j ≤ n

B[i], B[j] 6= 0⇒ low(B, i) 6= low(B, j) .

1
http://www.mrzv.org/software/dionysus2

2
https://appliedtopology.github.io/javaplex/

3
http://gudhi.gforge.inria.fr

4
https://github.com/Ripser/ripser

http://www.mrzv.org/software/dionysus2
https://appliedtopology.github.io/javaplex/
http://gudhi.gforge.inria.fr
https://github.com/Ripser/ripser

Connectivity-Optimized Representation Learning via Persistent Homology – Supplementary material

Algorithm 1 Column addition
function ADD(B, i, j):

B[j]← B[j] +B[i] . Addition in Z2

end function

Next, we restate the original (sequential) reduction algo-
rithm. Let ∂ be the boundary matrix of a filtered simplicial
complex.

Algorithm 2 Standard PH algorithm
(Edelsbrunner & Harer, 2010, p. 153)

B← ∂
for i← 1, n do

while ∃j0 < j : low(B, j0) = low(B, j) do
ADD(B, j0, j)

end while
end for

Algorithm 2 consists of two nested loops. We argue that in
case column additions would be data-independent, we could
easily perform these operations in parallel without conflicts.
To formalize this idea, let us consider a set M of index pairs

M = {(ik, jk)}k ⊂ {1, . . . , b} × {1, . . . , b} .

If the conditions

(i) {ik}k ∩ {jk}k = ∅, and

(ii) ∀jk : ∃!ik : (ik, jk) ∈M

are satisfied, the ADD(B, ik, jk) operations from Algo-
rithm 1 are data-independent. Informally, condition (i)
ensures that no column is target and origin of a merge
operation and condition (ii) ensures that each column is
targeted by at most one merging operation. In the following
definition, we construct two auxiliary operators that will
allows us to construct M such that conditions (i) and (ii) are
satisfied.

Definition C.2. LetB ∈ Zm×n2 and 1 ≤ j ≤ m. We define

I(B, j) =

{
∅ |{i : low(B, i) = j}| < 2

{i : low(i) = j} else

and

M(B, j) =

{
∅ if I(B, j) = ∅
µ(B, j)× I(B, j) \ µ(B, j) else

where µ(B, j) = {min I(B, j)}. Finally, let

M(B) =

n⋃
j=1

M(B, j) .

By construction, it holds that M(B) = ∅ iff B is reduced.
We can now propose a parallel algorithm, i.e., Algorithm 3,
that iterates until M(B) = ∅.

Algorithm 3 GPU PH algorithm
function ADD PARALLEL(B,M):

parallel for (i, j) ∈M do
ADD(B, i, j)

end parallel for
end function

B ← ∂
M ←M(B)
while M 6= ∅ do

ADD PARALLEL(B,M)
M ←M(B)

end while

Upon termination, M(B) = ∅, and hence B is reduced. It
only remains to show that termination is achieved after a
finite number of iterations.

Lemma C.1. For B ∈ Zm×n2 , Algorithm 3 terminates after
finitely many iterations.

Proof. Let B(k) be the state of B in the k-th iteration. For
1 ≤ l ≤ n it holds that M(B(k)[≤ l]) = ∅ if B(k)[≤ l] is
reduced. Conclusively, for k′ > k

B(k)[≤ l] is reduced ⇒ B(k′)[≤ l] is reduced

as B[≤ l] does not change any more after the k-th iteration.
Hence we can inductively show that the algorithm termi-
nates after finitely many iterations.
First, note that B(k)[≤ 1] is reduced. Now assume B(k)[≤
l] is reduced and consider B(k)[≤ l + 1]. If B(k)[≤ l + 1]
is not reduced

M
(
B(k)[≤ l + 1]

)
⊂ {1, . . . , l} × {l + 1}

as B(k)[≤ l] is already reduced. Thus, if the algorithm
continues to the k+1-th iteration the lowest 1 ofB(k)[l+1]
is eliminated and therefore

low(B(k+1), l + 1) < low(B(k), l + 1) .

Hence, after d ≤ low(B(k), l + 1) iterations
B(k+d)[≤ l + 1] is reduced as either B(k+d)[l + 1] = 0
or there is no j ≤ l such that

low
(
B(k+d)[≤ l], j

)
= low

(
B(k+d)[≤ l + 1], l + 1

)
.

In consequenceB(k0)[≤ n] = B(k0) is reduced for k0 <∞
which concludes the proof.

Connectivity-Optimized Representation Learning via Persistent Homology – Supplementary material

Figure 1. Runtime comparison of Ripser & Dionysus (both
CPU) vs. our parallel GPU variant. Runtime (in seconds) is
reported for 0-dimensional VR persistent homology, computed
from random samples of size b drawn from a unit multivariate
Gaussian in R10.

100 200 300 400 500
Sample size b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 ru
nt

im
e

[s
] ±

 3

Data: Unit Gaussian in 10

Ripser
Dionysus
Ours

Runtime study. We conducted a simple runtime compar-
ison to Ripser and Dionysus (which both run on the
CPU). Both implementations are available through Python
wrappers5. Dionysus implements persistent cohomology
computation (de Silva et al., 2011), while Ripser imple-
ments multiple recent algorithmic improvements, such as
the aforementioned clearing optimization as well as com-
puting cohomology. Rips complexes are built using ‖ · ‖1,
up to the enclosing radius of the point cloud.

Specifically, we compute 0-dimensional features on samples
of varying size (b), drawn from a unit multivariate Gaussian
in R10. Runtime is measured on a system with ten Intel(R)
Core(TM) i9-7900X CPUs (3.30GHz), 64 GB of RAM
and a Nvidia GTX 1080 Ti GPU. Figure 1 shows runtime in
seconds, averaged over 50 runs. Note that in this experiment,
runtime includes construction of the Rips complex as well.

While Ripser is, on average, slightly faster than our im-
plementation, we note that for mini-batch sizes customary
in training neural networks (e.g., 32, 64, 128), the runtime
difference is negligible, especially compared to the overall
cost of backpropagation. Importantly, our method integrates
well into existing deep learning frameworks, such as Py-
Torch, and thus facilitates to easily experiment with new
loss functions, such as the proposed connectivity loss.

D. Supplementary figures
Fig. 2 shows a second variant of Fig. 6 from the main paper,
only that we replace CIFAR-10 with TinyImage-Net (test-
ing portion). The autoencoder was trained on the training
portion of CIFAR-100.

5For Ripser, see https://scikit-tda.org/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Branch ID

1.80

1.85

1.90

1.95

2.00

2.05

av
g.

d,

d
(S

),
|S

|=
10

0 Tiny-ImageNet
CIFAR-100

Figure 2. Average εd, d ∈ †(S), per branch, computed from
batches, S, of size 100 over CIFAR-100 (test split) and Tiny-
ImageNet (test split); fθ is learned from the training portion of
CIFAR-100 with η = 2.

E. Algorithmic summary
Algorithm 4 provides a high-level description of the work-
flow to apply the presented method for one-class learning.

Algorithm 4 Summary of training steps
Parameters: η > 0 (scaling parameter for Lη); λ > 0
(weighting for Lη); B ≥ 1 (number of branches); D ≥ 1
(branch dimensionality); b (mini-batch size);

Remark: These are all global parameters.

function SLICE(z, j):
return z[D · (j − 1) : D · j]

end function

Step 1: Autoencoder training
Train gφ and fθ using an auxiliary unlabled dataset
{a1, . . . , aM}, minimizing (over batches of size b)

1

b

b∑
i=1

‖ai − gφ ◦ fθ(ai)‖1 + λ

B∑
j=1

Lη({zj1, . . . , z
j
b})

where zi = fθ(ai) with zji = SLICE(zi, j).

Remark: This autoencoder can be re-used. That is, if
we already have fθ trained on {a1, . . . , aM} (e.g., from
another one-class scenario) using the same η,B,D pa-
rameter choices, autoencoder training can be omitted.

Step 2: Create one-class model
For one-class samples {x1, . . . , xm}, compute and store
zji = SLICE(fθ(xi), j).

Step 3: Evaluate one-class model
For each new sample y∗, obtain yj∗ = SLICE(fθ(y∗), j)
and compute the one-class score

s(y∗) =

B∑
j=1

∣∣∣{zji : ‖zj∗ − zji ‖ ≤ η, 1 ≤ i ≤ m}∣∣∣ .
using the stored zji from Step 2.

https://scikit-tda.org/

Connectivity-Optimized Representation Learning via Persistent Homology – Supplementary material

References
Bauer, U., Kerber, M., and Reininghaus, J. Distributed

computation of persistent homology. In ALENEX, 2014a.

Bauer, U., Kerber, M., and Reininghaus, J. Clear and com-
press: Computing persistent homology in chunks. In
Topological Methods in Data Analysis and Visualization
III, pp. 103–117. Springer, 2014b.

de Silva, V., Morozov, D., and Vejdemo-Johansson, M. Du-
alities in persistent (co)homology. Inverse Problems, 27
(12):124003, 2011.

Dey, T., Shi, D., and Wang, Y. SimBa: An efficient tool for
approximating Rips-filtration persistence via simplicial
batch-collapse. In ESA, 2016.

Edelsbrunner, H. and Harer, J. L. Computational Topology :
An Introduction. American Mathematical Society, 2010.

Tausz, A., Vejdemo-Johansson, M., and Adams, H.
JavaPlex: A research software package for persistent
(co)homology. In ICMS, 2014.

