Supplemental material: Better generalization with less data using robust gradient descent

Matthew J. Holland Kazushi Ikeda Osaka University Nara Institute of Science and Technology

A Technical appendix

A.1 Preliminaries

Our generic data shall be denoted by $z \in \mathbb{Z}$. Let μ denote a probability measure on \mathbb{Z} , equipped with an appropriate σ -field. Data samples shall be assumed independent and identically distributed (iid), written z_1, \ldots, z_n . We shall work with loss function $l : \mathbb{R}^d \times \mathbb{Z} \to \mathbb{R}_+$ throughout, with $l(\cdot; z)$ assumed differentiable for each $z \in \mathbb{Z}$. Write **P** for a generic probability measure, most commonly the product measure induced by the sample. Let $f : \mathbb{Z} \to \mathbb{R}$ be an measurable function. Expectation is written $\mathbf{E}_{\mu} f(z) := \int f d\mu$, with variance $\operatorname{var}_{\mu} f(z)$ defined analogously. For *d*-dimensional Euclidean space \mathbb{R}^d , the usual (ℓ_2) norm shall be denoted $\|\cdot\|$ unless otherwise specified. For function F on \mathbb{R}^d with partial derivatives defined, write the gradient as $F'(u) := (F'_1(u), \ldots, F'_d(u))$ where for short, we write $F'_j(u) := \partial F(u)/\partial u_j$. For integer k, write $[k] := \{1, \ldots, k\}$ for all the positive integers from 1 to k. Risk shall be denoted $R(w) := \mathbf{E}_{\mu} l(w; z)$, and its gradient g(w) := R'(w). We make a running assumption that we can differentiate under the integral sign in each coordinate [1, 6], namely that

$$\boldsymbol{g}(\boldsymbol{w}) = \left(\mathbf{E}_{\mu} \frac{\partial l(\boldsymbol{w}; \boldsymbol{z})}{\partial w_1}, \dots, \mathbf{E}_{\mu} \frac{\partial l(\boldsymbol{w}; \boldsymbol{z})}{\partial w_d}\right).$$
(1)

Smoothness and convexity of functions shall also be utilized. For convex function F on convex set \mathcal{W} , say that F is λ -Lipschitz if, for all $\boldsymbol{w}_1, \boldsymbol{w}_2 \in \mathcal{W}$ we have $|F(\boldsymbol{w}_1) - F(\boldsymbol{w}_2)| \leq \lambda ||\boldsymbol{w}_1 - \boldsymbol{w}_2||$. We say that F is λ -smooth if F' is λ -Lipschitz. Finally, F is strongly convex with parameter $\kappa > 0$ if for all $\boldsymbol{w}_1, \boldsymbol{w}_2 \in \mathcal{W}$,

$$F(\boldsymbol{w}_1) - F(\boldsymbol{w}_2) \ge \langle F'(\boldsymbol{w}_2), \boldsymbol{w}_1 - \boldsymbol{w}_2 \rangle + \frac{\kappa}{2} \| \boldsymbol{w}_1 - \boldsymbol{w}_2 \|^2$$

for any norm $\|\cdot\|$ on \mathcal{W} , though we shall be assuming $\mathcal{W} \subseteq \mathbb{R}^d$. If there exists $\boldsymbol{w}^* \in \mathcal{W}$ such that $F'(\boldsymbol{w}^*) = 0$, then it follows that \boldsymbol{w}^* is the unique minimum of F on \mathcal{W} . Let $f : \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable, convex, λ -smooth function. The following basic facts will be useful: for any choice of $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d$, we have

$$f(\boldsymbol{u}) - f(\boldsymbol{v}) \le \frac{\lambda}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2 + \langle f'(\boldsymbol{v}), \boldsymbol{u} - \boldsymbol{v} \rangle$$
(2)

$$\frac{1}{2\lambda} \|f'(\boldsymbol{u}) - f'(\boldsymbol{v})\|^2 \le f(\boldsymbol{u}) - f(\boldsymbol{v}) - \langle f'(\boldsymbol{v}), \boldsymbol{u} - \boldsymbol{v} \rangle.$$
(3)

Proofs of these results can be found in any standard text on convex optimization, e.g. [5].

We shall leverage a special type of M-estimator here, built using the following convenient class of functions.

Definition 1 (Function class for location estimates). Let $\rho : \mathbb{R} \to [0, \infty)$ be an even function $(\rho(u) = \rho(-u))$ with $\rho(0) = 0$ and the following properties. Denote $\psi(u) := \rho'(u)$.

- 1. $\rho(u) = O(u)$ as $u \to \pm \infty$.
- 2. $\rho(u)/(u^2/2) \to 1 \text{ as } u \to 0.$
- 3. $\psi' > 0$, and for some C > 0, and all $u \in \mathbb{R}$,

$$-\log(1 - u + Cu^2) \le \psi(u) \le \log(1 + u + Cu^2).$$

Of particular importance in the proceeding analysis is the fact that $\psi = \rho'$ is bounded, monotonically increasing and Lipschitz on \mathbb{R} , plus the upper/lower bounds which let us generalize the technique of Catoni [3].

Example 2 (Valid ρ choices). In addition to the Gudermannian function (section 2 footnote), functions such as $2(\sqrt{1+u^2/2}-1)$ and $\log \cosh(u)$ are well-known examples that satisfy the desired criteria. Note that the wide/narrow functions of Catoni do not meet all these criteria, nor does the classic Huber function.

A.2 Proofs

Proof of Lemma 1 (main text). For cleaner notation, write $x_1, \ldots, x_n \in \mathbb{R}$ for our iid observations. Here ρ is assumed to satisfy the conditions of Definition 1. A high-probability concentration inequality follows by direct application of the specified properties of ρ and $\psi := \rho'$, following the general technique laid out by Catoni [2, 3]. For $u \in \mathbb{R}$ and s > 0, writing $\psi_s(u) := \psi(u/s)$, and taking expectation over the random draw of the sample,

$$\mathbf{E} \exp\left(\sum_{i=1}^{n} \psi_s(x_i - u)\right) \le \left(1 + \frac{1}{s}(\mathbf{E}\,x - u) + \frac{C}{s^2} \mathbf{E}(x^2 + u^2 - 2xu)\right)^n$$
$$\le \exp\left(\frac{n}{s}(\mathbf{E}\,x - u) + \frac{Cn}{s^2}(\operatorname{var} x + (\mathbf{E}\,x - u)^2)\right).$$

The inequalities above are due to an application of the upper bound on ψ , and and the inequality $(1+u) \leq \exp(u)$. Now, letting

$$A := \frac{1}{n} \sum_{i=1}^{n} \psi_s(x_i - u)$$
$$B := \frac{1}{s} (\mathbf{E} x - u) + \frac{C}{s^2} (\operatorname{var} x + (\mathbf{E} x - u)^2)$$

we have a bound on $\mathbf{E} \exp(nA) \leq \exp(nB)$. By Chebyshev's inequality, we then have

$$\mathbf{P}\{A > B + \varepsilon\} = \mathbf{P}\{\exp(nA) > \exp(nB + n\varepsilon)\}$$
$$\leq \frac{\mathbf{E}\exp(nA)}{\exp(nB + n\varepsilon)}$$
$$\leq \exp(-n\varepsilon).$$

Setting $\varepsilon = \log(\delta^{-1})/n$ for confidence level $\delta \in (0, 1)$, and for convenience writing

$$b(u) := \mathbf{E} x - u + \frac{C}{s} (\operatorname{var} x + (\mathbf{E} x - u)^2),$$

we have with probability no less than $1 - \delta$ that

$$\frac{s}{n}\sum_{i=1}^{n}\psi_{s}(x_{i}-u) \le b(u) + \frac{s\log(\delta^{-1})}{n}.$$
(4)

The right hand side of this inequality, as a function of u, is a polynomial of order 2, and if

$$1 \ge D := 4\left(\frac{C^2 \operatorname{var} x}{s^2} + \frac{C \log(\delta^{-1})}{n}\right),$$

then this polynomial has two real solutions. In the hypothesis, we stated that the result holds "for large enough n and s_j ." By this we mean that we require n and s to satisfy the preceding inequality (for each $j \in [d]$ in the multi-dimensional case). The notation D is for notational simplicity. The solutions take the form

$$u = \frac{1}{2} \left(2 \mathbf{E} x + \frac{s}{C} \pm \frac{s}{C} (1 - D)^{1/2} \right).$$

Looking at the smallest of the solutions, noting $D \in [0, 1]$ this can be simplified as

$$u_{+} := \mathbf{E} x + \frac{s}{2C} \frac{(1 - \sqrt{1 - D})(1 + \sqrt{1 - D})}{1 + \sqrt{1 - D}}$$

= $\mathbf{E} x + \frac{s}{2C} \frac{D}{1 + \sqrt{1 - D}}$
 $\leq \mathbf{E} x + sD/2C,$ (5)

where the last inequality is via taking the $\sqrt{1-D}$ term in the previous denominator as small as possible. Now, writing \hat{x} as the M-estimate using s and ρ as in (3, main text), note that \hat{x} equivalently satisfies $\sum_{i=1}^{n} \psi_s(\hat{x} - x_i) = 0$. Using (4), we have

$$\frac{s}{n}\sum_{i=1}^{n}\psi_s(x_i - u_+) \le b(u_+) + \frac{s\log(\delta^{-1})}{n} = 0,$$

and since the left-hand side of (4) is a monotonically decreasing function of u, we have immediately that $\hat{x} \leq u_+$ on the event that (4) holds, which has probability at least $1 - \delta$. Then leveraging (5), it follows that on the same event,

$$\widehat{x} - \mathbf{E} \, x \le sD/2C.$$

An analogous argument provides a $1 - \delta$ event on which $\hat{x} - \mathbf{E} x \ge -sD/2C$, and thus using a union bound, one has that

$$|\widehat{x} - \mathbf{E}\,x| \le 2\left(\frac{C\operatorname{var} x}{s} + \frac{s\log(\delta^{-1})}{n}\right) \tag{6}$$

holds with probability no less than $1 - 2\delta$. Setting the x_i to $l'_j(\boldsymbol{w}; \boldsymbol{z}_i)$ for $j \in [d]$ and some $\boldsymbol{w} \in \mathbb{R}^d$, $i \in [n]$, and \hat{x} to $\hat{\theta}_j$ corresponds to the special case considered in this Lemma. Dividing δ by two yields the $(1 - \delta)$ result.

Proof of Lemma 3 (main text). For any fixed w and $j \in [d]$, note that

. . .

<u>ہ</u>

$$\begin{aligned} |\theta_{j} - g_{j}(\boldsymbol{w})| &\leq \varepsilon_{j} \\ &:= 2\left(\frac{C \operatorname{var}_{\mu} l_{j}'(\boldsymbol{w}; \boldsymbol{z})}{s_{j}} + s_{j} \log(2\delta^{-1})\right) \\ &= 2\sqrt{\frac{\log(2\delta^{-1})}{n}} \left(\frac{C \operatorname{var}_{\mu} l_{j}'(\boldsymbol{w}; \boldsymbol{z})}{\widehat{\sigma}_{j}} + \widehat{\sigma}_{j}\right) \\ &\leq \varepsilon^{*} := 2\sqrt{\frac{V \log(2\delta^{-1})}{n}} c_{0} \end{aligned}$$
(8)

holds with probability no less than $1 - \delta$. The first inequality holds via direct application of Lemma 1 (main text), which holds under (10, main text) and using ρ which satisfies (7, main text). The equality follows immediately from (5, main text). The final inequality follows from (A4) and (9, main text), along with the definition of c_0 .

Making the dependence on \boldsymbol{w} explicit with $\hat{\theta}_j = \hat{\theta}_j(\boldsymbol{w})$, an important question to ask is how sensitive this estimator is to a change in \boldsymbol{w} . Say we perturb \boldsymbol{w} to $\tilde{\boldsymbol{w}}$, so that $\|\boldsymbol{w} - \tilde{\boldsymbol{w}}\| = a > 0$. By (A2), for any sample we have

$$\|l'(\boldsymbol{w}; \boldsymbol{z}_i) - l'(\widetilde{\boldsymbol{w}}; \boldsymbol{z}_i)\| \le \lambda \|\boldsymbol{w} - \widetilde{\boldsymbol{w}}\| = \lambda a, \quad i \in [n]$$

which immediately implies $|l'_j(\boldsymbol{w}; \boldsymbol{z}_i) - l'_j(\widetilde{\boldsymbol{w}}; \boldsymbol{z}_i)| \leq \lambda a$ for all $j \in [d]$ as well. Given a sample of $n \geq 1$ points, the most extreme shift in $\hat{\theta}_j(\cdot)$ that is feasible would be if, given the *a*-sized shift from \boldsymbol{w} to $\widetilde{\boldsymbol{w}}$, all data points moved the maximum amount (namely λa) in the same direction. Since $\hat{\theta}_j(\widetilde{\boldsymbol{w}})$ is defined by balancing the distance between points to its left and right, the most it could conceivably shift is thus equal to λa . That is, smoothness of the loss function immediately implies a Lipschitz property of the estimator,

$$|\widehat{ heta}_j(oldsymbol{w}) - \widehat{ heta}_j(\widetilde{oldsymbol{w}})| \leq \lambda \|oldsymbol{w} - \widetilde{oldsymbol{w}}\|.$$

Considering the vector of estimates $\widehat{\theta}(w) := (\widehat{\theta}_1(w), \dots, \widehat{\theta}_d(w))$, we then have

$$\|\widehat{\boldsymbol{\theta}}(\boldsymbol{w}) - \widehat{\boldsymbol{\theta}}(\widetilde{\boldsymbol{w}})\| \le \sqrt{d\lambda} \|\boldsymbol{w} - \widetilde{\boldsymbol{w}}\|.$$
(9)

This will be useful for proving uniform bounds on the estimation error shortly.

First, let's use these one-dimensional results for statements about the vector estimator of interest. In d dimensions, using $\hat{\theta}(w)$ just defined for any pre-fixed w, then for any $\varepsilon > 0$ we have

$$egin{aligned} \mathbf{P}\left\{\|\widehat{oldsymbol{ heta}}(oldsymbol{w})-oldsymbol{g}(oldsymbol{w})\|&>arepsilon
ight\}&=\mathbf{P}\left\{\|\widehat{oldsymbol{ heta}}(oldsymbol{w})-oldsymbol{g}(oldsymbol{w})\|^2>arepsilon^2
ight\}\ &\leq\sum_{j=1}^d\mathbf{P}\left\{|\widehat{eta}_j(oldsymbol{w})-oldsymbol{g}_j(oldsymbol{w})|>rac{arepsilon}{\sqrt{d}}
ight\}. \end{aligned}$$

Using the notation of ε_i and ε^* from (7), filling in $\varepsilon = \sqrt{d}\varepsilon^*$, we thus have

$$\begin{split} \mathbf{P}\left\{\|\widehat{\boldsymbol{\theta}}(\boldsymbol{w}) - \boldsymbol{g}(\boldsymbol{w})\| > \sqrt{d}\varepsilon^*\right\} &\leq \sum_{j=1}^d \mathbf{P}\left\{|\widehat{\theta}_j(\boldsymbol{w}) - g_j(\boldsymbol{w})| > \varepsilon^*\right\} \\ &\leq \sum_{j=1}^d \mathbf{P}\left\{|\widehat{\theta}_j(\boldsymbol{w}) - g_j(\boldsymbol{w})| > \varepsilon_j\right\} \\ &\leq d\delta. \end{split}$$

The second inequality is because $\varepsilon_j \leq \varepsilon^*$ for all $j \in [d]$. It follows that the event

$$\mathcal{E}(\boldsymbol{w}) := \left\{ \|\widehat{\boldsymbol{\theta}}(\boldsymbol{w}) - \boldsymbol{g}(\boldsymbol{w})\| > 2\sqrt{\frac{dV\log(2d\delta^{-1})}{n}}c_0 \right\}$$

has probability $\mathbf{P} \mathcal{E}(\boldsymbol{w}) \leq \delta$. In practice, however, $\widehat{\boldsymbol{w}}_{(t)}$ for all t > 0 will be random, and depend on the sample. We seek uniform bounds using a covering number argument. By (A1), \mathcal{W} is closed and bounded, and thus compact, and it requires no more than $N_{\epsilon} \leq (3\Delta/2\epsilon)^d$ balls of ϵ radius to cover \mathcal{W} , where Δ is the diameter of \mathcal{W}^{1} . Write the centers of these ϵ balls by $\{\widetilde{\boldsymbol{w}}_1, \ldots, \widetilde{\boldsymbol{w}}_{N_{\epsilon}}\}$. Given $\boldsymbol{w} \in \mathcal{W}$, denote by $\widetilde{\boldsymbol{w}} = \widetilde{\boldsymbol{w}}(\boldsymbol{w})$ the center closest to \boldsymbol{w} , which satisfies $\|\boldsymbol{w} - \widetilde{\boldsymbol{w}}\| \leq \epsilon$. Estimation error is controllable using the following new error terms:

$$\|\widehat{\theta}(w) - g(w)\| \le \|\widehat{\theta}(w) - \widehat{\theta}(\widetilde{w})\| + \|g(w) - g(\widetilde{w})\| + \|\widehat{\theta}(\widetilde{w}) - g(\widetilde{w})\|.$$
(10)

The goal is to be able to take the supremum over $w \in \mathcal{W}$. We bound one term at a time. The first term can be bounded, for any $w \in \mathcal{W}$, by (9) just proven. The second term can be bounded by

$$\|\boldsymbol{g}(\boldsymbol{w}) - \boldsymbol{g}(\widetilde{\boldsymbol{w}})\| \le \lambda \|\boldsymbol{w} - \widetilde{\boldsymbol{w}}\|$$
(11)

which follows immediately from (A2). Finally, for the third term, fixing any $\boldsymbol{w} \in \mathcal{W}$, $\tilde{\boldsymbol{w}} = \tilde{\boldsymbol{w}}(\boldsymbol{w}) \in \{\tilde{\boldsymbol{w}}_1, \ldots, \tilde{\boldsymbol{w}}_{N_{\epsilon}}\}$ is also fixed, and can be bounded on the δ event $\mathcal{E}(\tilde{\boldsymbol{w}})$ just defined. The important fact is that

$$\sup_{\boldsymbol{w}\in\mathcal{W}}\left\|\widehat{\boldsymbol{\theta}}(\widetilde{\boldsymbol{w}}(\boldsymbol{w}))-\boldsymbol{g}(\widetilde{\boldsymbol{w}}(\boldsymbol{w}))\right\|=\max_{k\in[N_{\epsilon}]}\left\|\widehat{\boldsymbol{\theta}}(\widetilde{\boldsymbol{w}}_{k})-\boldsymbol{g}(\widetilde{\boldsymbol{w}}_{k})\right\|.$$

We construct a "good event" naturally as the event in which the bad event $\mathcal{E}(\cdot)$ holds for no center on our ϵ -net, namely

$$\mathcal{E}_+ = \left(igcap_{k\in[N_\epsilon]}\mathcal{E}(\widetilde{oldsymbol{w}}_k)
ight)^c.$$

Taking a union bound, we can say that with probability no less than $1 - \delta$, for all $\boldsymbol{w} \in \mathcal{W}$, we have

$$\|\widehat{\boldsymbol{\theta}}(\widetilde{\boldsymbol{w}}(\boldsymbol{w})) - \boldsymbol{g}(\widetilde{\boldsymbol{w}}(\boldsymbol{w}))\| \le 2\sqrt{\frac{dV\log(2dN_{\epsilon}\delta^{-1})}{n}}c_0.$$
 (12)

Taking the three new bounds together, we have with probability no less than $1 - \delta$ that

$$\sup_{\boldsymbol{w}\in\mathcal{W}} \|\widehat{\boldsymbol{\theta}}(\boldsymbol{w}) - \boldsymbol{g}(\boldsymbol{w})\| \le \lambda \epsilon (\sqrt{d} + 1) + 2\sqrt{\frac{dV \log(2dN_{\epsilon}\delta^{-1})}{n}} c_0.$$

Setting $\epsilon = 1/\sqrt{n}$ we have

$$\sup_{\boldsymbol{w}\in\mathcal{W}}\|\widehat{\boldsymbol{\theta}}(\boldsymbol{w})-\boldsymbol{g}(\boldsymbol{w})\| \leq \frac{\lambda(\sqrt{d}+1)}{\sqrt{n}} + 2c_0\sqrt{\frac{dV(\log(2d\delta^{-1})+d\log(3\Delta\sqrt{n}/2))}{n}}$$

Since every step of Algorithm 1 (main text), with orthogonal projection if required, has $\hat{w}_{(t)} \in \mathcal{W}$, the desired result follows from this uniform confidence interval.

¹This is a basic property of covering numbers for compact subsets of Euclidean space [4].

Proof of Lemma 4 (main text). Given $\hat{w}_{(t)}$, running the approximate update (2, main text), we have

$$\begin{aligned} \|\widehat{\boldsymbol{w}}_{(t+1)} - \boldsymbol{w}^*\| &= \|\widehat{\boldsymbol{w}}_{(t)} - \alpha \widehat{\boldsymbol{g}}(\widehat{\boldsymbol{w}}_{(t)}) - \boldsymbol{w}^*\| \\ &\leq \|\widehat{\boldsymbol{w}}_{(t)} - \alpha \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)}) - \boldsymbol{w}^*\| + \alpha \|\widehat{\boldsymbol{g}}(\widehat{\boldsymbol{w}}_{(t)}) - \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)})\|. \end{aligned}$$

The first term looks at the distance from the target given an optimal update, using g. Using the κ -strong convexity of R, via Nesterov [5, Thm. 2.1.15] it follows that

$$\|\widehat{\boldsymbol{w}}_{(t)} - \alpha \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)}) - \boldsymbol{w}^*\|^2 \le \left(1 - \frac{2\alpha\kappa\lambda}{\kappa+\lambda}\right) \|\widehat{\boldsymbol{w}}_{(t)} - \boldsymbol{w}^*\|^2.$$

Writing $\beta := 2\kappa \lambda / (\kappa + \lambda)$, the coefficient becomes $(1 - \alpha \beta)$.

To control the second term simply requires unfolding the recursion. By hypothesis, we can leverage (6, main text) to bound the statistical estimation error by ε for every step, all on the same $1-\delta$ "good event." For notational ease, write $a := \sqrt{1-\alpha\beta}$. On the good event, we have

$$\|\widehat{\boldsymbol{w}}_{(t+1)} - \boldsymbol{w}^*\| \le a^{t+1} \|\widehat{\boldsymbol{w}}_{(0)} - \boldsymbol{w}^*\| + \alpha \varepsilon \left(1 + a + a^2 + \dots + a^t\right)$$
$$= a^{t+1} \|\widehat{\boldsymbol{w}}_{(0)} - \boldsymbol{w}^*\| + \alpha \varepsilon \frac{(1 - a^{t+1})}{1 - a}.$$

To clean up the second summand,

$$\alpha \varepsilon \frac{(1-a^{t+1})}{1-a} \le \frac{\alpha \varepsilon (1+a)}{(1-a)(1+a)}$$
$$= \frac{\alpha \varepsilon (1+\sqrt{1-\alpha\beta})}{\alpha\beta}$$
$$\le \frac{2\varepsilon}{\beta}.$$

Taking this to the original inequality yields the desired result.

Proof of Theorem 5 (main text). Using strong convexity and (2), we have that

$$\begin{aligned} R(\widehat{\boldsymbol{w}}_{(T)}) - R^* &\leq \frac{\lambda}{2} \|\widehat{\boldsymbol{w}}_{(T)} - \boldsymbol{w}^*\|^2 \\ &\leq \lambda (1 - \alpha\beta)^T D_0^2 + \frac{4\lambda\varepsilon^2}{\beta^2}. \end{aligned}$$

The latter inequality holds by direct application of Lemma 4 (main text), followed by the elementary fact $(a + b)^2 \leq 2(a^2 + b^2)$. The particular value of ε under which Lemma 4 (main text) is valid (i.e., under which (6, main text) holds) is given by Lemma 3 (main text). Filling in ε with this concrete setting yields the desired result.

Proof of Lemma 8 (main text). As in the result statement, we write

$$\Sigma_{(t)} := \mathbf{E}_{\mu} \left(l'(\widehat{\boldsymbol{w}}_{(t)}; \boldsymbol{z}) - \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)}) \right) \left(l'(\widehat{\boldsymbol{w}}_{(t)}; \boldsymbol{z}) - \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)}) \right)^{T}, \quad \boldsymbol{w} \in \mathcal{W}.$$

Running this modified version of Algorithm 1 (main text), we are minimizing the bound in Lemma 1 (main text) as a function of scale s_j , $j \in [d]$, which immediately implies that the estimates $\hat{\theta}_{(t)} = (\hat{\theta}_1, \ldots, \hat{\theta}_d)$ at each step t satisfy

$$|\widehat{\theta}_j - g_j(\widehat{\boldsymbol{w}})| > 4 \left(\frac{C \operatorname{var}_{\mu} l'_j(\widehat{\boldsymbol{w}}_{(t)}; \boldsymbol{z}) \log(2\delta^{-1})}{n} \right)^{1/2}$$
(13)

with probability no greater than δ . For clean notation, let us also denote

$$A := 4 \left(\frac{C \log(2\delta^{-1})}{n} \right)^{1/2}, \quad \varepsilon^* := A \sqrt{\operatorname{trace}(\Sigma_{(t)})}.$$

For the vector estimates then, we have

$$\begin{aligned} \mathbf{P}\left\{\|\widehat{\boldsymbol{\theta}}_{(t)} - \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)})\| &> \varepsilon^*\right\} \\ &= \mathbf{P}\left\{\sum_{j=1}^d \frac{(\widehat{\theta}_j - g_j(\widehat{\boldsymbol{w}}_{(t)}))^2}{A^2} > \operatorname{trace}(\Sigma_{(t)})\right\} \\ &= \mathbf{P}\left\{\sum_{j=1}^d \left(\frac{(\widehat{\theta}_j - g_j(\widehat{\boldsymbol{w}}_{(t)}))^2}{A^2} - \operatorname{var}_{\mu} l'_j(\widehat{\boldsymbol{w}}_{(t)}; \boldsymbol{z})\right) > 0\right\} \\ &\leq \mathbf{P}\bigcup_{j=1}^d \left\{\frac{(\widehat{\theta}_j - g_j(\widehat{\boldsymbol{w}}_{(t)}))^2}{A^2} > \operatorname{var}_{\mu} l'_j(\widehat{\boldsymbol{w}}_{(t)}; \boldsymbol{z})\right\} \\ &\leq d\delta. \end{aligned}$$

The first inequality uses a union bound, and the second inequality follows from (13). Plugging in A and taking confidence δ/d implies the desired result.

Proof of Theorem 9 (main text). From Lemma 8 (main text), the estimation error has exponential tails, as follows. Writing

$$A_1 := 2d, \quad A_2 := 4 \left(\frac{C \operatorname{trace}(\Sigma_{(t)})}{n}\right)^{1/2},$$

for each iteration t we have

$$\mathbf{P}\{\|\widehat{\boldsymbol{\theta}}_{(t)} - \boldsymbol{g}(\widehat{\boldsymbol{w}}_{(t)})\| > \varepsilon\} \le A_1 \exp\left(-\left(\frac{\varepsilon}{A_2}\right)^2\right).$$

Controlling moments using exponential tails can be done using a fairly standard argument. For random variable $X \in \mathcal{L}_p$ for $p \ge 1$, we have the classic inequality

$$\mathbf{E} |X|^p = \int_0^\infty \mathbf{P}\{|X|^p > t\} dt$$

as a starting point. Setting $X = \|\widehat{\theta}_{(t)} - g(\widehat{w}_{(t)})\| \ge 0$, and using substitution of variables twice, we have

$$\mathbf{E} |X|^{p} = \int_{0}^{\infty} \mathbf{P} \{X > t^{1/p}\} dt$$

= $\int_{0}^{\infty} \mathbf{P} \{X > t\} p t^{p-1} dt$
 $\leq A_{1} p \int_{0}^{\infty} \exp\left(-\left(t/A_{2}\right)^{2}\right) t^{p-1} dt$
= $\frac{A_{1} A_{2}^{p} p}{2} \int_{0}^{\infty} \exp(-t) t^{p/2-1} dt.$

The last integral on the right-hand side, written $\Gamma(p/2)$, is the usual Gamma function of Euler evaluated at p/2. Setting p = 2, we have $\Gamma(1) = 0! = 1$, and plugging in the values of A_1 and A_2 yields the desired result.

A.3 Computational methods

Here we discuss precisely how to compute the implicitly-defined M-estimates of (3, main text) and (5, main text). Assuming s > 0 and real-valued observations x_1, \ldots, x_n , we first look at the program

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \rho_s \left(x_i - \theta \right)$$

assuming ρ is as specified in Definition 1, with $\psi = \rho'$. Write $\hat{\theta}$ for this unique minimum, and note that it satisfies

$$\frac{s}{n}\sum_{i=1}^{n}\psi_s\left(x_i-\widehat{\theta}\right)=0.$$

Indeed, by monotonicity of ψ , this $\hat{\theta}$ can be found via ρ minimization or root-finding. The latter yields standard fixed-point iterative updates, such as

$$\widehat{\theta}_{(k+1)} = \widehat{\theta}_{(k)} + \frac{s}{n} \sum_{i=1}^{n} \psi_s \left(x_i - \widehat{\theta}_{(k)} \right).$$

Note the right-hand side has a fixed point at the desired value. In our routines, we use the Gudermannian function

$$\rho(u) := \int_0^u \psi(x) \, dx, \quad \psi(u) := 2 \operatorname{atan}(\exp(u)) - \pi/2$$

which can be readily confirmed to satisfy all requirements of Definition 1.

For the dispersion estimate to be used in re-scaling, we introduce function χ , which is even, non-decreasing on \mathbb{R}_+ , and satisfies

$$0 < \left| \lim_{u \to \pm \infty} \chi(u) \right| < \infty, \quad \chi(0) < 0.$$

In practice, we take dispersion estimate $\hat{\sigma} > 0$ as any value satisfying

$$\frac{1}{n}\sum_{i=1}^{n}\chi\left(\frac{x_i-\gamma}{\widehat{\sigma}}\right) = 0$$

where $\gamma = n^{-1} \sum_{i=1}^{n} x_i$, computed by the iterative procedure

$$\widehat{\sigma}_{(k+1)} = \widehat{\sigma}_{(k)} \left(1 - \frac{1}{\chi(0)n} \sum_{i=1}^{n} \chi\left(\frac{x_i - \gamma}{\widehat{\sigma}_{(k)}}\right) \right)^{1/2}$$

which has the desired fixed point, as in the location case. Our routines use the quadratic Geman-type χ , defined

$$\chi(u) \coloneqq \frac{u^2}{1+u^2} - c$$

with parameter c > 0, noting $\chi(0) = -c$. Writing the first term as χ_0 so $\chi(u) = \chi_0(u) - c$, we set $c = \mathbf{E} \chi_0(x)$ under $x \sim N(0, 1)$. Computed via numerical integration, this is $c \approx 0.34$.

References

- [1] Ash, R. B. and Doleans-Dade, C. (2000). Probability and Measure Theory. Academic Press.
- [2] Catoni, O. (2009). High confidence estimates of the mean of heavy-tailed real random variables. arXiv preprint arXiv:0909.5366.
- [3] Catoni, O. (2012). Challenging the empirical mean and empirical variance: a deviation study. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 48(4):1148–1185.
- [4] Kolmogorov, A. N. (1993). ε-entropy and ε-capacity of sets in functional spaces. In Shiryayev, A. N., editor, Selected Works of A. N. Kolmogorov, Volume III: Information Theory and the Theory of Algorithms, pages 86–170. Springer.
- [5] Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course. Springer.
- [6] Talvila, E. (2001). Necessary and sufficient conditions for differentiating under the integral sign. American Mathematical Monthly, 108(6):544–548.