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A. Appendix
A.1. Proof of Lemma 2

Proof. Recall that Vn =
(
X>n Xn + λId

)
. Note that

φ̂n = (X>n Xn + λId)
−1X>n f

−1(ε̂ ◦ ε̂) (39)

= V −1
n X>n f

−1(ε̂ ◦ ε̂) (40)

= V −1
n X>n

(
f−1(ε̂ ◦ ε̂)−Xnφ∗ + Xnφ∗

)
(41)

+ λV −1
n φ∗ − λV −1

n φ∗ (42)

= V −1
n X>n

(
f−1(ε̂ ◦ ε̂)−Xnφ∗

)
− λV −1

n φ∗ + φ∗.
(43)

Therefore, for any x ∈ Rd, we know

|x>φ̂n − x>φ̂∗| (44)

= |x>V −1
n X>n

(
f−1(ε̂ ◦ ε̂)−Xnφ∗

)
− λx>V −1

n φ∗|
(45)

≤ ‖x‖Vn
−1

(
λ ‖φ∗‖V −1

n
(46)

+
∥∥X>n (f−1(ε̂ ◦ ε̂)−Xnφ∗)

)∥∥
Vn

−1

)
. (47)

Moreover, by rewriting ε̂ = ε̂− ε+ ε, we have

f−1(ε̂ ◦ ε̂) (48)

= f−1
(
(ε̂− ε+ ε) ◦ (ε̂− ε+ ε)

)
(49)

= f−1(ε ◦ ε) +M−1
f

(
2
(
ε ◦Xn(θ∗ − θ̂n)

)
(50)

+
(
Xn(θ∗ − θ̂n) ◦Xn(θ∗ − θ̂n)

))
, (51)

where (50)-(51) follow from the fact that both f(·) and
f−1(·) are linear with a slope Mf and M−1

f , respectively,
as described in Section 3. Therefore, by (44)-(51) and the
Cauchy-Schwarz inequality, we have

|x>φ̂n − x>φ̂∗| ≤ ‖x‖Vn
−1

{
λ ‖φ∗‖V −1

n
(52)

+
∥∥X>n (f−1(ε ◦ ε)−Xnφ∗)

)∥∥
Vn

−1 (53)

+ 2M−1
f

∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)
)∥∥∥

Vn
−1

(54)

+M−1
f

∥∥∥X>n (Xn(θ∗ − θ̂n) ◦Xn(θ∗ − θ̂n)
)∥∥∥

Vn
−1

}
.

(55)

A.2. Proof of Lemma 3

We first introduce the following useful lemmas.

Lemma A.1 (Lemma 8.2 in (Erdős et al., 2012)) Let
{ai}Ni=1 be N independent random complex variables
with zero mean and variance σ2 and having uniform
sub-exponential decay, i.e., there exists κ1, κ2 > 0 such
that

P{|ai| ≥ xκ1} ≤ κ2e
−x. (56)

We use aH to denote the conjugate transpose of a. Let a =
(a1, · · · , aN )>, let ai denote the complex conjugate of ai,
for all i, and let B = (Bij) be a complex N × N matrix.
Then, we have

P
{
|aHBa− σ2tr(B)| ≥ sσ2

( N∑
i=1

|Bii|2
)−1/2}

(57)

≤ C1exp
(
− C2 · s1/(1+κ1)

)
, (58)

where C1 and C2 are positive constants that depend only on
κ1, κ2. Moreover, for the standard χ2

1-distribution, κ1 = 1
and κ2 = 2.

For any p× q matrix A, we define the induced matrix norm
as ‖A‖2 := maxv∈Rq,‖v‖2=1 ‖Av‖2.

Lemma A.2 ∥∥∥Vn−1/2X>
∥∥∥

2
≤ 1,∀n ∈ N. (59)

Proof. By the definition of induced matrix norm,∥∥∥Vn−1/2X>
∥∥∥

2
= max
‖v‖2=1

√
v>XVn

−1X>v (60)

= λmax

(
XVn

−1XT
)

(61)

= λmax

(
X
(
XTX + λId

)−1
XT

)
(62)

≤ λmax(X>X)

λmax(X>X) + λ
≤ 1, (63)

where (63) follows from the singular value decomposition
and λmax(X>X) ≥ 0.
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To simplify notation, we use X and V as a shorthand
for Xn and Vn, respectively. For convenience, we rewrite
V −1/2X> = [v1 · · · vn] as the matrix of n column vectors
{vi}ni=1 (each vi ∈ Rd) and show the following property.

Lemma A.3 Let vi ∈ Rd be the i-th column of the matrix
V −1/2X>, for all 1 ≤ i ≤ n. Then, we have

n∑
i=1

‖vi‖22 ≤ d. (64)

Proof of Lemma A.3. Recall that λmax(·) denotes the
largest eigenvalue of a square matrix. We know

n∑
i=1

‖vi‖22 = tr
((

XV −1/2
)(
V −1/2X>

))
(65)

= tr
((

V −1/2X
)(
X>V −1/2

))
(66)

≤ d · λmax

((
V −1/2X

)(
X>V −1/2

))
, (67)

where (66) follows from the trace of a product being com-
mutative, and (67) follows since the trace is the sum of all
eigenvalues. Moreover, we have

λmax

((
XV 1/2

)(
X>V −1/2

))
(68)

=
∥∥∥(XV 1/2

)(
X>V −1/2

)∥∥∥
2

(69)

≤
∥∥∥(XV 1/2

)∥∥∥
2

∥∥∥(X>V −1/2
)∥∥∥

2
≤ 1, (70)

where (70) follows from the fact that the `2-norm is sub-
multiplicative. Therefore, by (65)-(70), we conclude that∑n
i=1 ‖vi‖

2
2 ≤ d.

We are now ready to prove Lemma 3.

Proof of Lemma 3. To simplify notation, we use X and V
as a shorthand for Xn and Vn, respectively. To begin with,
we know f−1(ε ◦ ε) − Xφ∗ = 1

Mf
((ε ◦ ε) − f(Xφ∗)).

Therefore, we have∥∥X(f−1(ε ◦ ε)−Xφ∗)
∥∥
V

−1 (71)

=
1

Mf

√(
ε ◦ ε− f(Xφ∗)

)>
XV

−1
X>

(
ε ◦ ε− f(Xφ∗)

)
,

(72)

where each element in the vector (ε ◦ ε− f(Xφ∗)) is a cen-
tered χ2

1-distribution with a scaling of f(φ>∗ xi). Defining

W = diag
(
f(x>1 φ∗), ..., f(x>n φ∗)

)
, we have∥∥X(f−1(ε ◦ ε)−Xφ∗)

∥∥
V

−1 (73)

=
1

Mf

[ (
ε ◦ ε− f(Xφ∗)

)>
W

−1︸ ︷︷ ︸
mean=0, variance= 2

(
WXV

−1
X>W

)
(74)

W
−1
(
ε ◦ ε− f(Xφ∗)

)
︸ ︷︷ ︸

mean=0, variance=2

]1/2
. (75)

We use η = W
−1
(
ε◦ε−f(Xφ∗)

)
as a shorthand and define

U =
(
Uij
)

= WXV
−1
X>W . By Lemma A.1 and the

fact that ε(x1), · · · , ε(xn) are mutually independent given
the contexts {xi}ni=1, we have

P
{
|η>Uη − 2 · tr(U)| ≥ 2s

( n∑
i=1

|Uii|2
)1/2}

(76)

≤ C1exp(−C2

√
s). (77)

Recall that V −1/2X> = [v1 · · · vn]. The trace of U can be
upper bounded as

tr(U) = tr(WXV
−1
X>W ) (78)

= tr
(
V −1/2X>WWXV −1/2

)
(79)

=

n∑
i=1

f(x>i φ∗)
2 · ‖vi‖22 (80)

≤ (σ2
max)2

n∑
i=1

‖vi‖22 ≤ (σ2
max)2d, (81)

where the last inequality in (81) follows directly from
Lemma A.3. Also by the commutative property of the trace
operation, we have

n∑
i=1

|Uii|2
(a)

≤
( n∑
i=1

Uii

)2 (b)

≤
(
(σ2

max)2d
)2
, (82)

where (a) follows from U being positive semi-definite (all
diagonal elements are nonnegative), and (b) follows from
(81). Therefore, by (76)-(82), we have

P
{
η>Uη ≥ 2s · (σ2

max)2d+ 2(σ2
max)2d

}
(83)

≤ C1 · exp(−C2

√
s). (84)

By choosing s =
( 1

C2
ln
C1

δ

)2

, we have

P
{
η>Uη ≥ 2(σ2

max)2d
(( 1

C2
ln
C1

δ

)2

+ 1
)}
≤ δ.

(85)
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Therefore, we conclude that with probability at least 1− δ,
the following inequality holds∥∥X(f−1(ε ◦ ε)−Xφ∗)

∥∥
V

−1 (86)

≤ 1

Mf

√
2(σ2

max)2 · d
(( 1

C2
ln
C1

δ

)2

+ 1
)
.

(87)

A.3. Proof of Lemma 4

We first introduce a useful lemma.

Lemma A.4 (Theorem 4.1 in (Tropp, 2012)) Consider a
finite sequence {Ak} of fixed self-adjoint matrices of dimen-
sion d× d, and let {γk} be a finite sequence of independent
standard normal variables. Let σ2 =

∥∥∑
kA

2
k

∥∥
2
. Then, for

all s ≥ 0,

P
{
λmax

(∑
k

γkAk

)
≥ s
}
≤ d · exp(− s2

2σ2
), (88)

where λmax(·) denotes the largest eigenvalue of a square
matrix.

Now we are ready to prove Lemma 4.

Proof of Lemma 4. To simplify notation, we use X and V
as a shorthand for Xn and Vn, respectively. Recall that
V −1/2X> = [v1, v2, ..., vn] and define Ai = viv

>
i , for all

i = 1, ..., n. Note that Ai is symmetric, for all i. Define an
n × n diagonal matrix D = diag(ε1, ε2, ..., εn). Then we
have:∥∥∥X>(ε ◦ (X(θ∗ − θ̂)

))∥∥∥
V

−1 (89)

=
∥∥∥V −1/2X>

(
ε ◦
(
X(θ∗ − θ̂)

))∥∥∥
2

(90)

=
∥∥∥V −1/2X>DX(θ∗ − θ̂)

∥∥∥
2

(91)

=
∥∥∥V −1/2X>DXV −1/2V 1/2(θ∗ − θ̂)

∥∥∥
2

(92)

≤
∥∥∥V −1/2X>DXV −1/2

∥∥∥
2
·
∥∥∥V 1/2(θ∗ − θ̂)

∥∥∥
2

(93)

=
∥∥∥V −1/2X>DXV −1/2

∥∥∥
2
·
∥∥∥θ∗ − θ̂∥∥∥

V
. (94)

Next, the first term in (94) can be expanded into∥∥∥V −1/2X>DXV −1/2
∥∥∥

2
(95)

=

∥∥∥∥∥
n∑
i=1

εiviv
>
i

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

εi√
f(x>i φ∗)

·
(√

f(x>i φ∗)Ai

)∥∥∥∥∥
2

.

(96)

Note that
εi√

f(x>i φ∗)
is a standard normal random vari-

able, for all i. We also define a d × d matrix Σ =∑n
i=1 f(x>i φ∗)A

2
i . Then, we have

Σ =

n∑
i=1

f(x>i φ∗)
(
viv
>
i

)(
viv
>
i

)
(97)

=

n∑
i=1

f(x>i φ∗) ‖vi‖
2
2 viv

>
i . (98)

We also know∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

viv
>
i

∥∥∥∥∥
2

(99)

=
∥∥∥(V −1/2X>

)(
XV −1/2

)∥∥∥
2

(100)

≤
∥∥∥(V −1/2X>

)∥∥∥
2

∥∥∥(XV −1/2
)∥∥∥

2
≤ 1, (101)

where (101) follows from Lemma A.2. Moreover, we know

‖Σ‖2 =

∥∥∥∥∥
n∑
i=1

f(x>i φ∗) ‖vi‖
2
2 viv

>
i

∥∥∥∥∥
2

(102)

≤

∥∥∥∥∥d · σ2
max

n∑
i=1

viv
T
i

∥∥∥∥∥
2

(103)

= d · σ2
max

∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥ ≤ d · σ2
max, (104)

where (103) follows from Lemma A.2-A.3, f(x>i φ∗) ≤
σ2

max, and that viv>i is positive semi-definite, and the last
inequality follows directly from (101). By Lemma A.4 and
the fact that ε(x1), · · · , ε(xn) are mutually independent
given the contexts {xi}ni=1, we know that

P
{
λmax

( n∑
i=1

εiAi

)
≥
√

2 ‖Σ‖2 s
}
≤ d · e−s. (105)

Therefore, by choosing s = ln(d/δ) and the fact that
λmax

(∑n
i=1 εiAi

)
= ‖
∑n
i=1 εiAi‖2, we obtain

P
{∥∥∥∥∥

n∑
i=1

εiAi

∥∥∥∥∥
2

≥
√

2σ2
maxd ln(

d

δ
)

}
≤ δ. (106)

Finally, by applying Lemma 1 and (106) to (94), we con-
clude that for any n ∈ N, for any δ > 0, with probability at
least 1− δ, we have∥∥∥X>n (ε ◦Xn(θ∗ − θ̂n)

)∥∥∥
Vn

−1 ≤ α(1)
n (δ)·α(3)(δ). (107)



Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging

A.4. Proof of Lemma 5

We first introduce a useful lemma on the norm of the
Hadamard product of two matrices.

Lemma A.5 Given any two matrices A and B of the same
dimension, the following holds:

‖A ◦B‖F ≤ tr(AB>) ≤ ‖A‖2 · ‖B‖2 , (108)

where ‖·‖ denotes the Frobenius norm. When A and B are
vectors, the above degenerates to

‖A ◦B‖2 ≤ ‖A‖2 · ‖B‖2 . (109)

Proof of Lemma 5. To simplify notation, we use X and V
as a shorthand for Xn and Vn, respectively. Let M be a
positive definite matrix. We have

‖Av‖M =
∥∥∥M1/2Av

∥∥∥
2
≤
∥∥∥M1/2A

∥∥∥
2
· ‖v‖2 , (110)

where the last inequality holds since `2-norm is sub-
multiplicative. Meanwhile, we also observe that(
θ∗ − θ̂

)>
X>X

(
θ∗ − θ̂

)
(111)

=
(
θ∗ − θ̂

)>
V 1/2V −1/2X>XV −1/2V 1/2

(
θ∗ − θ̂

)
(112)

=

∥∥∥∥(θ∗ − θ̂)>V 1/2V −1/2X>
∥∥∥∥2

2

(113)

≤
∥∥∥∥(θ∗ − θ̂)>V 1/2

∥∥∥∥2

2

∥∥∥V −1/2X>
∥∥∥2

2
(114)

≤
∥∥∥θ∗ − θ̂∥∥∥2

V
. (115)

Therefore, we know∥∥∥X>(X(θ∗ − θ̂) ◦X(θ∗ − θ̂))∥∥∥
V

−1 (116)

≤
∥∥∥V −1/2X>

∥∥∥
2

∥∥∥(X(θ∗ − θ̂) ◦X(θ∗ − θ̂))∥∥∥
2

(117)

≤ 1 ·
∥∥∥X(θ∗ − θ̂)∥∥∥2

2
(118)

≤ 1 ·
((
θ∗ − θ̂

)>
X>X

(
θ∗ − θ̂

))
(119)

≤
∥∥∥θ∗ − θ̂∥∥∥2

V
≤ (α(1)

n (δ))2, (120)

where (118) follows from Lemma A.2 and A.5, and (120)
follows from Lemma 1. The proof is complete.

A.5. Proof of Theorem 2

Recall that hβ(u, v) =
(

Φ
(
β−u√
f(v)

))−1

. We first need the

following lemma about Lipschitz smoothness of the function
hβ(u, v).

Lemma A.6 The function hβ(u, v) defined in (31) is (uni-
formly) Lipschitz smooth on its domain, i.e., there exists
a finite Mh > 0 (Mh is independent of u, v, and β) such
that for any β with |β| ≤ B, for any u1, u2 ∈ [−1, 1] and
v1, v2 ∈ [σ2

min, σ
2
max],

|∇hβ(u1, v1)−∇hβ(u2, v2)| ≤Mh

∥∥∥∥(u1

v1

)
−
(
u2

v2

)∥∥∥∥
2

.

(121)
Moreover, we have

hβ(u2, v2)− hβ(u1, v1) ≤ (122)(
u2 − u1

v2 − v1

)>
∇hβ(u1, v1) +

Mh

2

∥∥∥∥(u2 − u1

v2 − v1

)∥∥∥∥2

2

. (123)

Proof of Lemma A.6. First, it is easy to verify that hβ(·, ·)
is twice continuously differentiable on its domain [−1, 1]×
[σ2

min, σ
2
max] and therefore is Lipschitz smooth, for some

finite positive constant Mh. To show that there exists an Mh

that is independent of u, v, β, we need to consider the gra-
dient and Hessian of hβ(·, ·). Since hβ(u, v) is a composite
function that involves Φ(·) and f(·), it is straightforward to
write down the first and second derivatives of hβ(u, v) with
respect to u and v, which depend on Φ(·), Φ′(·), Φ′′(·), f(·),
f ′(·), and f ′′(·). Given the facts that for all the u, v and β in
the domain of interest, we have Φ(β−uv ) ∈ [Φ(−B−1

σ2
min

), 1],

Φ′(β−uv ) ∈ (0, 1√
2π

), |Φ′′(β−uv )| ≤ B+1
σmin

√
2π

, and that
f(·), f ′(·), f ′′(·) are all bounded, it is easy to verify that
such an Mh indeed exists by substituting the above condi-
tions into the first and second derivatives of hβ(u, v) with
respect to u and v. Moreover, by Lemma 3.4 in (Bubeck
et al., 2015), we know that (123) indeed holds.

Proof of Theorem 2. Define

qu := sup
u0∈(−1,1)

|∂hβ
∂u
|
∣∣∣∣
u=u0

, (124)

qv := sup
v0∈(σ2

min,σ
2
max)

|∂hβ
∂v
|
∣∣∣∣
v=v0

. (125)

By the discussion in the proof of Lemma A.6, we know that
qu and qv are both positive real numbers. By substituting
u1 = θ>1 x, u2 = θ>2 x, v1 = f(φ>1 x), and v2 = f(φ>2 x)
into (123), we have

hβ
(
θ>2 x, φ

>
2 x
)
− hβ

(
θ>1 x, φ

>
1 x
)

(126)

≤
(

(θ2 − θ1)
>x

f(φ>
2 x)− f(φ>

1 x)

)>
∇hβ(θ>1 x, f(φ>1 x)) (127)

+
Mh

2

∥∥∥∥( (θ2 − θ1)
>x

f(φ>
2 x)− f(φ>

1 x)

)∥∥∥∥2

2

(128)
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≤
(
qu ‖θ2 − θ1‖M · ‖x‖M−1 (129)

+ qvMf ‖φ2 − φ1‖M · ‖x‖M−1

)
(130)

+
Mh

2

(
‖θ2 − θ1‖2M +M2

f ‖φ2 − φ1‖2M
)
· ‖x‖M−1

(131)

≤ (qu +Mh) ‖θ2 − θ1‖M · ‖x‖M−1 (132)
+Mf (qv +MhMfL) ‖φ2 − φ1‖M · ‖x‖M−1 ,

(133)

where (130)-(131) follow from the Cauchy-Schwarz inequal-
ity and the fact that f(·) is Lipschitz continuous, and (132)-
(133) follow from the facts that ‖x‖2 ≤ 1, ‖θ2 − θ1‖2 ≤ 2,
and ‖φ2 − φ1‖2 ≤ 2L. By letting C3 = qu + Mh and
C4 = Mf (qv + MhMfL), we conclude (32)-(33) indeed
holds with C3 and C4 being independent of θ1, θ2, φ1, φ2,
and β.

A.6. Proof of Lemma 6

Proof. By Theorem 2 and (35), we know

QHR
t+1(x)− hβt+1(θ>∗ x, φ

>
∗ x) (134)

= hβt+1(θ̂t
>
x, φ̂t

>
x) + ξt(δ) ‖x‖V −1

t
− hβt+1(θ>∗ x, φ

>
∗ x)

(135)

≤ 2ξt(δ) ‖x‖V −1
t

. (136)

Similarly, by switching the roles of θ>∗ , φ
>
∗ and θ̂t

>
, φ̂t
>

in
(135), we have

QHR
t+1(x)− hβt+1

(θ>∗ x, φ
>
∗ x) ≥ 0. (137)

A.7. Proof of Theorem 3

Proof. For each user t, let πHR
t = {xt,1, xt,2, · · · } denote

the action sequence under the HR-UCB policy. Under HR-
UCB, θ̂t and φ̂t are updated only after the departure of each
user. This fact implies that xt,i = xt,j , for all i, j. Therefore,
we can use xt to denote the action chosen by HR-UCB for
the user t, to simplify notation. LetR

HR
t denote the expected

lifetime of user t under HR-UCB. Similar to (30), we have

R
HR
t =

(
Φ
( βt − θ>∗ xt√

f(φ>∗ xt)

))−1

= hβt(θ
>
∗ xt, φ

>
∗ xt).

(138)

Recall that πoracle and x∗t denote the oracle policy and the
context of the action of the oracle policy for user t, respec-

tively. We compute the pseudo regret of HR-UCB as

RegretT =

T∑
t=1

R
∗
t −R

HR
t (139)

=

T∑
t=1

hβt

(
θ>∗ x

∗
t , φ
>
∗ x
∗
t

)
− hβt

(
θ>∗ xt, φ

>
∗ xt

)
.

(140)

To simplify notation, we use wt as a shorthand for
hβt

(
θ>∗ x

∗
t , φ
>
∗ x
∗
t

)
− hβt

(
θ>∗ xt, φ

>
∗ xt

)
. Given any δ > 0,

define an event Eδ in which (12) and (17) hold under the
given δ, for all t ∈ N. By Lemma 1 and Theorem 1, we know
that the event Eδ occurs with probability at least 1 − 3δ.
Therefore, with probability at least 1− 3δ, for all t ∈ N,

wt ≤ QHR
t (x∗t )− hβt

(
θ>∗ xt, φ

>
∗ xt

)
(141)

≤ QHR
t (xt)− hβt

(
θ>∗ xt, φ

>
∗ xt

)
(142)

= hβt

(
θ>∗ xt, φ

>
∗ xt

)
+ ξt−1(δ) ‖xt‖V −1

t−1
(143)

− hβt

(
θ>∗ xt, φ

>
∗ xt

)
(144)

≤ 2ξt−1(δ) · ‖xt‖V −1
t−1

, (145)

where (141) and (143) follow directly from the definition of
the UCB index, (142) follows from the design of HR-UCB
algorithm, and (145) is a direct result under the event Eδ.
Now, we are ready to conclude that with probability at least
1− 3δ, we have

RegretT =

T∑
t=1

wt ≤

√√√√T

T∑
t=1

w2
t (146)

≤

√√√√4ξ2
T (δ)T

T∑
t=1

min{‖xt‖2V −1
t−1

, 1} (147)

≤
√

8ξ2
T (δ)T · d log

(S(T ) + λd

λd

)
, (148)

where (146) follows from the Cauchy-Schwarz inequal-
ity, (147) follows from the fact that ξt(δ) is an increasing
function in t, and (148) follows from Lemma 10 and 11
in (Abbasi-Yadkori et al., 2011) and the fact that Vt =
λId + X>t Xt = λId +

∑t
i=1 xix

>
i . By substituting ξT (δ)

into (148) and using the fact that S(T ) ≤ Γ(T ), we know

RegretT = O
(√

T log Γ(T ) ·
(

log
(
Γ(T )

)
+ log(

1

δ
)
)2
)
.

(149)
By choosing Γ(T ) = KT for some constant K > 0, we
thereby conclude that

RegretT = O
(√

T log T ·
(

log T + log(
1

δ
)
)2
)
. (150)

The proof is complete.


