Supplementary Material: Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging

A. Appendix

A.1. Proof of Lemma 2

Proof. Recall that $\boldsymbol{V}_{n}=\left(\boldsymbol{X}_{n}^{\top} \boldsymbol{X}_{n}+\lambda \boldsymbol{I}_{d}\right)$. Note that

$$
\begin{align*}
\widehat{\phi}_{n}= & \left(\boldsymbol{X}_{n}^{\top} \boldsymbol{X}_{n}+\lambda I_{d}\right)^{-1} \boldsymbol{X}_{n}^{\top} f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) \tag{39}\\
= & \boldsymbol{V}_{n}^{-1} \boldsymbol{X}_{n}^{\top} f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) \tag{40}\\
= & \boldsymbol{V}_{n}^{-1} \boldsymbol{X}_{n}^{\top}\left(f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon})-\boldsymbol{X}_{n} \phi_{*}+\boldsymbol{X}_{n} \phi_{*}\right) \tag{41}\\
& \quad+\lambda \boldsymbol{V}_{n}^{-1} \phi_{*}-\lambda \boldsymbol{V}_{n}^{-1} \phi_{*} \tag{42}\\
= & \boldsymbol{V}_{n}^{-1} \boldsymbol{X}_{n}^{\top}\left(f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon})-\boldsymbol{X}_{n} \phi_{*}\right)-\lambda \boldsymbol{V}_{n}^{-1} \phi_{*}+\phi_{*} . \tag{43}
\end{align*}
$$

Therefore, for any $x \in \mathbb{R}^{d}$, we know

$$
\begin{align*}
& \left|x^{\top} \widehat{\phi}_{n}-x^{\top} \widehat{\phi}_{*}\right| \tag{44}\\
& =\left|x^{\top} \boldsymbol{V}_{n}^{-1} \boldsymbol{X}_{n}^{\top}\left(f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon})-\boldsymbol{X}_{n} \phi_{*}\right)-\lambda x^{\top} \boldsymbol{V}_{n}^{-1} \phi_{*}\right| \tag{45}\\
& \leq\|x\|_{\boldsymbol{V}_{n}-1}\left(\lambda\left\|\phi_{*}\right\|_{\boldsymbol{V}_{n}^{-1}}\right. \tag{46}\\
& \left.\left.\quad+\| \boldsymbol{X}_{n}^{\top}\left(f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon})-\boldsymbol{X}_{n} \phi_{*}\right)\right) \|_{\boldsymbol{V}_{n}-1}\right) . \tag{47}
\end{align*}
$$

Moreover, by rewriting $\widehat{\varepsilon}=\widehat{\varepsilon}-\varepsilon+\varepsilon$, we have

$$
\begin{align*}
& f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) \tag{48}\\
& =f^{-1}((\widehat{\varepsilon}-\varepsilon+\varepsilon) \circ(\widehat{\varepsilon}-\varepsilon+\varepsilon)) \tag{49}\\
& =f^{-1}(\varepsilon \circ \varepsilon)+M_{f}^{-1}\left(2\left(\varepsilon \circ \boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right)\right)\right. \tag{50}\\
& \left.\quad+\left(\boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right) \circ \boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right)\right)\right), \tag{51}
\end{align*}
$$

where (50)-(51) follow from the fact that both $f(\cdot)$ and $f^{-1}(\cdot)$ are linear with a slope M_{f} and M_{f}^{-1}, respectively, as described in Section 3. Therefore, by (44)-(51) and the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
& \left|x^{\top} \widehat{\phi}_{n}-x^{\top} \widehat{\phi}_{*}\right| \leq\|x\|_{\boldsymbol{V}_{n}-1}\left\{\lambda\left\|\phi_{*}\right\|_{\boldsymbol{V}_{n}^{-1}}\right. \tag{52}\\
& \left.\quad+\| \boldsymbol{X}_{n}^{\top}\left(f^{-1}(\varepsilon \circ \varepsilon)-\boldsymbol{X}_{n} \phi_{*}\right)\right) \|_{\boldsymbol{V}_{n}-1} \tag{53}\\
& \quad+2 M_{f}^{-1}\left\|\boldsymbol{X}_{n}^{\top}\left(\varepsilon \circ \boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right)\right)\right\|_{\boldsymbol{V}_{n}-1} \tag{54}\\
& \left.\quad+M_{f}^{-1}\left\|\boldsymbol{X}_{n}^{\top}\left(\boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right) \circ \boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right)\right)\right\|_{\boldsymbol{V}_{n}-1}\right\} \tag{55}
\end{align*}
$$

A.2. Proof of Lemma 3

We first introduce the following useful lemmas.
Lemma A. 1 (Lemma 8.2 in (Erdốs et al., 2012)) Let $\left\{a_{i}\right\}_{i=1}^{N}$ be N independent random complex variables with zero mean and variance σ^{2} and having uniform sub-exponential decay, i.e., there exists $\kappa_{1}, \kappa_{2}>0$ such that

$$
\begin{equation*}
\mathbb{P}\left\{\left|a_{i}\right| \geq x^{\kappa_{1}}\right\} \leq \kappa_{2} e^{-x} \tag{56}
\end{equation*}
$$

We use a^{H} to denote the conjugate transpose of a. Let $a=$ $\left(a_{1}, \cdots, a_{N}\right)^{\top}$, let $\overline{a_{i}}$ denote the complex conjugate of a_{i}, for all i, and let $\boldsymbol{B}=\left(B_{i j}\right)$ be a complex $N \times N$ matrix. Then, we have

$$
\begin{gather*}
\mathbb{P}\left\{\left|a^{\mathrm{H}} \boldsymbol{B} a-\sigma^{2} \operatorname{tr}(\boldsymbol{B})\right| \geq s \sigma^{2}\left(\sum_{i=1}^{N}\left|B_{i i}\right|^{2}\right)^{-1 / 2}\right\} \tag{57}\\
\leq C_{1} \exp \left(-C_{2} \cdot s^{1 /\left(1+\kappa_{1}\right)}\right) \tag{58}
\end{gather*}
$$

where C_{1} and C_{2} are positive constants that depend only on κ_{1}, κ_{2}. Moreover, for the standard χ_{1}^{2}-distribution, $\kappa_{1}=1$ and $\kappa_{2}=2$.

For any $p \times q$ matrix \boldsymbol{A}, we define the induced matrix norm as $\|\boldsymbol{A}\|_{2}:=\max _{v \in \mathbb{R}^{q},\|v\|_{2}=1}\|\boldsymbol{A} v\|_{2}$.

Lemma A. 2

$$
\begin{equation*}
\left\|\boldsymbol{V}_{n}^{-1 / 2} \boldsymbol{X}^{\top}\right\|_{2} \leq 1, \forall n \in \mathbb{N} \tag{59}
\end{equation*}
$$

Proof. By the definition of induced matrix norm,

$$
\begin{align*}
& \left\|\boldsymbol{V}_{n}^{-1 / 2} \boldsymbol{X}^{\top}\right\|_{2}=\max _{\|v\|_{2}=1} \sqrt{v^{\top} \boldsymbol{X} \boldsymbol{V}_{n}^{-1} \boldsymbol{X}^{\top} v} \tag{60}\\
& \quad=\lambda_{\max }\left(\boldsymbol{X} \boldsymbol{V}_{n}^{-1} \boldsymbol{X}^{T}\right) \tag{61}\\
& \quad=\lambda_{\max }\left(\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}_{d}\right)^{-1} \boldsymbol{X}^{T}\right) \tag{62}\\
& \quad \leq \frac{\lambda_{\max }\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)}{\lambda_{\max }\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)+\lambda} \leq 1, \tag{63}
\end{align*}
$$

where (63) follows from the singular value decomposition and $\lambda_{\max }\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right) \geq 0$.

To simplify notation, we use \boldsymbol{X} and \boldsymbol{V} as a shorthand for \boldsymbol{X}_{n} and \boldsymbol{V}_{n}, respectively. For convenience, we rewrite $\boldsymbol{V}^{-1 / 2} X^{\top}=\left[v_{1} \cdots v_{n}\right]$ as the matrix of n column vectors $\left\{v_{i}\right\}_{i=1}^{n}$ (each $v_{i} \in \mathbb{R}^{d}$) and show the following property.

Lemma A. 3 Let $v_{i} \in \mathbb{R}^{d}$ be the i-th column of the matrix $\boldsymbol{V}^{-1 / 2} X^{\top}$, for all $1 \leq i \leq n$. Then, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2} \leq d \tag{64}
\end{equation*}
$$

Proof of Lemma A.3. Recall that $\lambda_{\max }(\cdot)$ denotes the largest eigenvalue of a square matrix. We know

$$
\begin{align*}
\sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2} & =\operatorname{tr}\left(\left(\boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right)\left(\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\right)\right) \tag{65}\\
& =\operatorname{tr}\left(\left(\boldsymbol{V}^{-1 / 2} \boldsymbol{X}\right)\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1 / 2}\right)\right) \tag{66}\\
& \leq d \cdot \lambda_{\max }\left(\left(\boldsymbol{V}^{-1 / 2} \boldsymbol{X}\right)\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1 / 2}\right)\right) \tag{67}
\end{align*}
$$

where (66) follows from the trace of a product being commutative, and (67) follows since the trace is the sum of all eigenvalues. Moreover, we have

$$
\begin{align*}
\lambda_{\max } & \left(\left(\boldsymbol{X} \boldsymbol{V}^{1 / 2}\right)\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1 / 2}\right)\right) \tag{68}\\
& =\left\|\left(\boldsymbol{X} \boldsymbol{V}^{1 / 2}\right)\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1 / 2}\right)\right\|_{2} \tag{69}\\
& \leq\left\|\left(\boldsymbol{X} \boldsymbol{V}^{1 / 2}\right)\right\|_{2}\left\|\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1 / 2}\right)\right\|_{2} \leq 1 \tag{70}
\end{align*}
$$

where (70) follows from the fact that the ℓ_{2}-norm is submultiplicative. Therefore, by (65)-(70), we conclude that $\sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2} \leq d$.

We are now ready to prove Lemma 3.

Proof of Lemma 3. To simplify notation, we use \boldsymbol{X} and \boldsymbol{V} as a shorthand for \boldsymbol{X}_{n} and \boldsymbol{V}_{n}, respectively. To begin with, we know $f^{-1}(\varepsilon \circ \varepsilon)-\boldsymbol{X} \phi_{*}=\frac{1}{M_{f}}\left((\varepsilon \circ \varepsilon)-f\left(\boldsymbol{X} \phi_{*}\right)\right)$. Therefore, we have

$$
\begin{align*}
& \left\|\boldsymbol{X}\left(f^{-1}(\varepsilon \circ \varepsilon)-\boldsymbol{X} \phi_{*}\right)\right\|_{\boldsymbol{V}^{-1}} \\
& =\frac{1}{M_{f}} \sqrt{\left(\varepsilon \circ \varepsilon-f\left(\boldsymbol{X} \phi_{*}\right)\right)^{\top} \boldsymbol{X} \boldsymbol{V}^{-1} \boldsymbol{X}^{\top}\left(\varepsilon \circ \varepsilon-f\left(\boldsymbol{X} \phi_{*}\right)\right)} \tag{72}
\end{align*}
$$

where each element in the vector $\left(\varepsilon \circ \varepsilon-f\left(\boldsymbol{X} \phi_{*}\right)\right)$ is a centered χ_{1}^{2}-distribution with a scaling of $f\left(\phi_{*}^{\top} x_{i}\right)$. Defining
$\boldsymbol{W}=\operatorname{diag}\left(f\left(x_{1}^{\top} \phi_{*}\right), \ldots, f\left(x_{n}^{\top} \phi_{*}\right)\right)$, we have

$$
\begin{align*}
& \left\|\boldsymbol{X}\left(f^{-1}(\varepsilon \circ \varepsilon)-\boldsymbol{X} \phi_{*}\right)\right\|_{\boldsymbol{V}^{-1}} \tag{73}\\
& \quad=\frac{1}{M_{f}}[\underbrace{\left(\varepsilon \circ \varepsilon-f\left(\boldsymbol{X} \phi_{*}\right)\right)^{\top} \boldsymbol{W}^{-1}}_{\text {mean }=0, \text { variance }=2}\left(\boldsymbol{W} \boldsymbol{X} \boldsymbol{V}^{-1} \boldsymbol{X}^{\top} \boldsymbol{W}\right)
\end{align*}
$$

$$
\begin{equation*}
\underbrace{\boldsymbol{W}^{-1}\left(\varepsilon \circ \varepsilon-f\left(\boldsymbol{X} \phi_{*}\right)\right)}_{\text {mean }=0, \text { variance }=2}]^{1 / 2} \tag{74}
\end{equation*}
$$

We use $\eta=\boldsymbol{W}^{-1}\left(\varepsilon \circ \varepsilon-f\left(\boldsymbol{X} \phi_{*}\right)\right)$ as a shorthand and define $\boldsymbol{U}=\left(U_{i j}\right)=\boldsymbol{W} \boldsymbol{X} \boldsymbol{V}^{-1} \boldsymbol{X}^{\top} \boldsymbol{W}$. By Lemma A. 1 and the fact that $\varepsilon\left(x_{1}\right), \cdots, \varepsilon\left(x_{n}\right)$ are mutually independent given the contexts $\left\{x_{i}\right\}_{i=1}^{n}$, we have

$$
\begin{align*}
\mathbb{P}\left\{\left|\eta^{\top} \boldsymbol{U} \eta-2 \cdot \operatorname{tr}(\boldsymbol{U})\right|\right. & \left.\geq 2 s\left(\sum_{i=1}^{n}\left|\boldsymbol{U}_{i i}\right|^{2}\right)^{1 / 2}\right\} \tag{76}\\
& \leq C_{1} \exp \left(-C_{2} \sqrt{s}\right) \tag{77}
\end{align*}
$$

Recall that $\boldsymbol{V}^{-1 / 2} X^{\top}=\left[v_{1} \cdots v_{n}\right]$. The trace of \boldsymbol{U} can be upper bounded as

$$
\begin{align*}
\operatorname{tr}(\boldsymbol{U}) & =\operatorname{tr}\left(\boldsymbol{W} \boldsymbol{X} \boldsymbol{V}^{-1} \boldsymbol{X}^{\top} \boldsymbol{W}\right) \tag{78}\\
& =\operatorname{tr}\left(\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{W} \boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right) \tag{79}\\
& =\sum_{i=1}^{n} f\left(x_{i}^{\top} \phi_{*}\right)^{2} \cdot\left\|v_{i}\right\|_{2}^{2} \tag{80}\\
& \leq\left(\sigma_{\max }^{2}\right)^{2} \sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2} \leq\left(\sigma_{\max }^{2}\right)^{2} d \tag{81}
\end{align*}
$$

where the last inequality in (81) follows directly from Lemma A.3. Also by the commutative property of the trace operation, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\boldsymbol{U}_{i i}\right|^{2} \stackrel{(a)}{\leq}\left(\sum_{i=1}^{n} \boldsymbol{U}_{i i}\right)^{2} \stackrel{(b)}{\leq}\left(\left(\sigma_{\max }^{2}\right)^{2} d\right)^{2} \tag{82}
\end{equation*}
$$

where (a) follows from \boldsymbol{U} being positive semi-definite (all diagonal elements are nonnegative), and (b) follows from (81). Therefore, by (76)-(82), we have

$$
\begin{align*}
& \mathbb{P}\left\{\eta^{\top} \boldsymbol{U} \eta \geq 2 s \cdot\left(\sigma_{\max }^{2}\right)^{2} d+2\left(\sigma_{\max }^{2}\right)^{2} d\right\} \tag{83}\\
& \leq C_{1} \cdot \exp \left(-C_{2} \sqrt{s}\right) \tag{84}
\end{align*}
$$

By choosing $s=\left(\frac{1}{C_{2}} \ln \frac{C_{1}}{\delta}\right)^{2}$, we have

$$
\begin{equation*}
\mathbb{P}\left\{\eta^{\top} \boldsymbol{U} \eta \geq 2\left(\sigma_{\max }^{2}\right)^{2} d\left(\left(\frac{1}{C_{2}} \ln \frac{C_{1}}{\delta}\right)^{2}+1\right)\right\} \leq \delta \tag{85}
\end{equation*}
$$

Therefore, we conclude that with probability at least $1-\delta$, the following inequality holds

$$
\begin{align*}
& \left\|\boldsymbol{X}\left(f^{-1}(\varepsilon \circ \varepsilon)-\boldsymbol{X} \phi_{*}\right)\right\|_{\boldsymbol{V}^{-1}} \tag{86}\\
& \quad \leq \frac{1}{M_{f}} \sqrt{2\left(\sigma_{\max }^{2}\right)^{2} \cdot d\left(\left(\frac{1}{C_{2}} \ln \frac{C_{1}}{\delta}\right)^{2}+1\right)} \tag{87}
\end{align*}
$$

A.3. Proof of Lemma 4

We first introduce a useful lemma.
Lemma A. 4 (Theorem 4.1 in (Tropp, 2012)) Consider a finite sequence $\left\{\boldsymbol{A}_{k}\right\}$ of fixed self-adjoint matrices of dimension $d \times d$, and let $\left\{\gamma_{k}\right\}$ be a finite sequence of independent standard normal variables. Let $\sigma^{2}=\left\|\sum_{k} A_{k}^{2}\right\|_{2}$. Then, for all $s \geq 0$,

$$
\begin{equation*}
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{k} \gamma_{k} \boldsymbol{A}_{k}\right) \geq s\right\} \leq d \cdot \exp \left(-\frac{s^{2}}{2 \sigma^{2}}\right) \tag{88}
\end{equation*}
$$

where $\lambda_{\max }(\cdot)$ denotes the largest eigenvalue of a square matrix.

Now we are ready to prove Lemma 4.

Proof of Lemma 4. To simplify notation, we use \boldsymbol{X} and \boldsymbol{V} as a shorthand for \boldsymbol{X}_{n} and \boldsymbol{V}_{n}, respectively. Recall that $\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and define $\boldsymbol{A}_{i}=v_{i} v_{i}^{\top}$, for all $i=1, \ldots, n$. Note that \boldsymbol{A}_{i} is symmetric, for all i. Define an $n \times n$ diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$. Then we have:

$$
\begin{align*}
& \left.\| \boldsymbol{X}^{\top}\left(\varepsilon \circ\left(\boldsymbol{X}^{(} \theta_{*}-\widehat{\theta}\right)\right)\right) \|_{\boldsymbol{V}^{-1}} \tag{89}\\
& =\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\left(\varepsilon \circ\left(\boldsymbol{X}\left(\theta_{*}-\widehat{\theta}\right)\right)\right)\right\|_{2} \tag{90}\\
& =\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X}\left(\theta_{*}-\widehat{\theta}\right)\right\|_{2} \tag{91}\\
& =\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1 / 2} \boldsymbol{V}^{1 / 2}\left(\theta_{*}-\widehat{\theta}\right)\right\|_{2} \tag{92}\\
& \leq\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right\|_{2} \cdot\left\|\boldsymbol{V}^{1 / 2}\left(\theta_{*}-\widehat{\theta}\right)\right\|_{2} \tag{93}\\
& =\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right\|_{2} \cdot\left\|\theta_{*}-\widehat{\theta}\right\|_{\boldsymbol{V}} . \tag{94}
\end{align*}
$$

Next, the first term in (94) can be expanded into

$$
\begin{align*}
& \left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right\|_{2} \tag{95}\\
& =\left\|\sum_{i=1}^{n} \varepsilon_{i} v_{i} v_{i}^{\top}\right\|_{2}=\left\|\sum_{i=1}^{n} \frac{\varepsilon_{i}}{\sqrt{f\left(x_{i}^{\top} \phi_{*}\right)}} \cdot\left(\sqrt{f\left(x_{i}^{\top} \phi_{*}\right)} \boldsymbol{A}_{i}\right)\right\|_{2} \tag{96}
\end{align*}
$$

Note that $\frac{\varepsilon_{i}}{\sqrt{f\left(x_{i}^{\top} \phi_{*}\right)}}$ is a standard normal random variable, for all i. We also define a $d \times d$ matrix $\boldsymbol{\Sigma}=$ $\sum_{i=1}^{n} f\left(x_{i}^{\top} \phi_{*}\right) \boldsymbol{A}_{\boldsymbol{i}}^{2}$. Then, we have

$$
\begin{align*}
\boldsymbol{\Sigma} & =\sum_{i=1}^{n} f\left(x_{i}^{\top} \phi_{*}\right)\left(v_{i} v_{i}^{\top}\right)\left(v_{i} v_{i}^{\top}\right) \tag{97}\\
& =\sum_{i=1}^{n} f\left(x_{i}^{\top} \phi_{*}\right)\left\|v_{i}\right\|_{2}^{2} v_{i} v_{i}^{\top} . \tag{98}
\end{align*}
$$

We also know

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} \boldsymbol{A}_{i}\right\|_{2}=\left\|\sum_{i=1}^{n} v_{i} v_{i}^{\top}\right\|_{2} \tag{99}\\
& =\left\|\left(\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\right)\left(\boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right)\right\|_{2} \tag{100}\\
& \leq\left\|\left(\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\right)\right\|_{2}\left\|\left(\boldsymbol{X} \boldsymbol{V}^{-1 / 2}\right)\right\|_{2} \leq 1 \tag{101}
\end{align*}
$$

where (101) follows from Lemma A.2. Moreover, we know

$$
\begin{align*}
\|\boldsymbol{\Sigma}\|_{2} & =\left\|\sum_{i=1}^{n} f\left(x_{i}^{\top} \phi_{*}\right)\right\| v_{i}\left\|_{2}^{2} v_{i} v_{i}^{\top}\right\|_{2} \tag{102}\\
& \leq\left\|d \cdot \sigma_{\max }^{2} \sum_{i=1}^{n} v_{i} v_{i}^{T}\right\|_{2} \tag{103}\\
& =d \cdot \sigma_{\max }^{2}\left\|\sum_{i=1}^{n} \boldsymbol{A}_{i}\right\| \leq d \cdot \sigma_{\max }^{2} \tag{104}
\end{align*}
$$

where (103) follows from Lemma A.2-A.3, $f\left(x_{i}^{\top} \phi_{*}\right) \leq$ $\sigma_{\text {max }}^{2}$, and that $v_{i} v_{i}^{\top}$ is positive semi-definite, and the last inequality follows directly from (101). By Lemma A. 4 and the fact that $\varepsilon\left(x_{1}\right), \cdots, \varepsilon\left(x_{n}\right)$ are mutually independent given the contexts $\left\{x_{i}\right\}_{i=1}^{n}$, we know that

$$
\begin{equation*}
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{A}_{i}\right) \geq \sqrt{2\|\boldsymbol{\Sigma}\|_{2} s}\right\} \leq d \cdot e^{-s} \tag{105}
\end{equation*}
$$

Therefore, by choosing $s=\ln (d / \delta)$ and the fact that $\lambda_{\max }\left(\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{A}_{i}\right)=\left\|\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{A}_{i}\right\|_{2}$, we obtain

$$
\begin{equation*}
\mathbb{P}\left\{\left\|\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{A}_{i}\right\|_{2} \geq \sqrt{2 \sigma_{\max }^{2} d \ln \left(\frac{d}{\delta}\right)}\right\} \leq \delta \tag{106}
\end{equation*}
$$

Finally, by applying Lemma 1 and (106) to (94), we conclude that for any $n \in \mathbb{N}$, for any $\delta>0$, with probability at least $1-\delta$, we have

$$
\begin{equation*}
\left\|\boldsymbol{X}_{n}^{\top}\left(\varepsilon \circ \boldsymbol{X}_{n}\left(\theta_{*}-\widehat{\theta}_{n}\right)\right)\right\|_{\boldsymbol{V}_{n}{ }^{-1}} \leq \alpha_{n}^{(1)}(\delta) \cdot \alpha^{(3)}(\delta) \tag{107}
\end{equation*}
$$

A.4. Proof of Lemma 5

We first introduce a useful lemma on the norm of the Hadamard product of two matrices.

Lemma A. 5 Given any two matrices \boldsymbol{A} and \boldsymbol{B} of the same dimension, the following holds:

$$
\begin{equation*}
\|\boldsymbol{A} \circ \boldsymbol{B}\|_{F} \leq \operatorname{tr}\left(\boldsymbol{A} \boldsymbol{B}^{\top}\right) \leq\|\boldsymbol{A}\|_{2} \cdot\|\boldsymbol{B}\|_{2} \tag{108}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Frobenius norm. When \boldsymbol{A} and \boldsymbol{B} are vectors, the above degenerates to

$$
\begin{equation*}
\|\boldsymbol{A} \circ \boldsymbol{B}\|_{2} \leq\|\boldsymbol{A}\|_{2} \cdot\|\boldsymbol{B}\|_{2} \tag{109}
\end{equation*}
$$

Proof of Lemma 5. To simplify notation, we use \boldsymbol{X} and \boldsymbol{V} as a shorthand for \boldsymbol{X}_{n} and \boldsymbol{V}_{n}, respectively. Let \boldsymbol{M} be a positive definite matrix. We have

$$
\begin{equation*}
\|\boldsymbol{A} v\|_{\boldsymbol{M}}=\left\|\boldsymbol{M}^{1 / 2} \boldsymbol{A} v\right\|_{2} \leq\left\|\boldsymbol{M}^{1 / 2} \boldsymbol{A}\right\|_{2} \cdot\|v\|_{2} \tag{110}
\end{equation*}
$$

where the last inequality holds since ℓ_{2}-norm is submultiplicative. Meanwhile, we also observe that

$$
\begin{align*}
& \left(\theta_{*}-\widehat{\theta}\right)^{\top} \boldsymbol{X}^{\top} \boldsymbol{X}\left(\theta_{*}-\widehat{\theta}\right) \tag{111}\\
& \quad=\left(\theta_{*}-\widehat{\theta}\right)^{\top} \boldsymbol{V}^{1 / 2} \boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{V}^{-1 / 2} \boldsymbol{V}^{1 / 2}\left(\theta_{*}-\widehat{\theta}\right)
\end{align*}
$$

$$
\begin{equation*}
=\left\|\left(\theta_{*}-\widehat{\theta}\right)^{\top} \boldsymbol{V}^{1 / 2} \boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\right\|_{2}^{2} \tag{112}
\end{equation*}
$$

$$
\begin{equation*}
\leq\left\|\left(\theta_{*}-\widehat{\theta}\right)^{\top} \boldsymbol{V}^{1 / 2}\right\|_{2}^{2}\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\right\|_{2}^{2} \tag{113}
\end{equation*}
$$

$$
\begin{equation*}
\leq\left\|\theta_{*}-\hat{\theta}\right\|_{\boldsymbol{V}}^{2} \tag{114}
\end{equation*}
$$

Therefore, we know

$$
\begin{align*}
& \left\|\boldsymbol{X}^{\top}\left(\boldsymbol{X}\left(\theta_{*}-\hat{\theta}\right) \circ \boldsymbol{X}\left(\theta_{*}-\hat{\theta}\right)\right)\right\|_{\boldsymbol{V}^{-1}} \tag{116}\\
& \leq\left\|\boldsymbol{V}^{-1 / 2} \boldsymbol{X}^{\top}\right\|_{2}\left\|\left(\boldsymbol{X}\left(\theta_{*}-\hat{\theta}\right) \circ \boldsymbol{X}\left(\theta_{*}-\hat{\theta}\right)\right)\right\|_{2} \tag{117}\\
& \leq 1 \cdot\left\|\boldsymbol{X}\left(\theta_{*}-\hat{\theta}\right)\right\|_{2}^{2} \tag{118}\\
& \leq 1 \cdot\left(\left(\theta_{*}-\hat{\theta}\right)^{\top} \boldsymbol{X}^{\top} \boldsymbol{X}\left(\theta_{*}-\hat{\theta}\right)\right) \tag{119}\\
& \leq\left\|\theta_{*}-\hat{\theta}\right\|_{\boldsymbol{V}}^{2} \leq\left(\alpha_{n}^{(1)}(\delta)\right)^{2} \tag{120}
\end{align*}
$$

where (118) follows from Lemma A. 2 and A.5, and (120) follows from Lemma 1. The proof is complete.

A.5. Proof of Theorem 2

Recall that $h_{\beta}(u, v)=\left(\Phi\left(\frac{\beta-u}{\sqrt{f(v)}}\right)\right)^{-1}$. We first need the following lemma about Lipschitz smoothness of the function $h_{\beta}(u, v)$.

Lemma A. 6 The function $h_{\beta}(u, v)$ defined in (31) is (uniformly) Lipschitz smooth on its domain, i.e., there exists a finite $M_{h}>0\left(M_{h}\right.$ is independent of u, v, and $\left.\beta\right)$ such that for any β with $|\beta| \leq B$, for any $u_{1}, u_{2} \in[-1,1]$ and $v_{1}, v_{2} \in\left[\sigma_{\min }^{2}, \sigma_{\max }^{2}\right]$,

$$
\begin{equation*}
\left|\nabla h_{\beta}\left(u_{1}, v_{1}\right)-\nabla h_{\beta}\left(u_{2}, v_{2}\right)\right| \leq M_{h}\left\|\binom{u_{1}}{v_{1}}-\binom{u_{2}}{v_{2}}\right\|_{2} \tag{121}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& h_{\beta}\left(u_{2}, v_{2}\right)-h_{\beta}\left(u_{1}, v_{1}\right) \leq \tag{122}\\
& \binom{u_{2}-u_{1}}{v_{2}-v_{1}}^{\top} \nabla h_{\beta}\left(u_{1}, v_{1}\right)+\frac{M_{h}}{2}\left\|\binom{u_{2}-u_{1}}{v_{2}-v_{1}}\right\|_{2}^{2} . \tag{123}
\end{align*}
$$

Proof of Lemma A.6. First, it is easy to verify that $h_{\beta}(\cdot, \cdot)$ is twice continuously differentiable on its domain $[-1,1] \times$ $\left[\sigma_{\text {min }}^{2}, \sigma_{\text {max }}^{2}\right]$ and therefore is Lipschitz smooth, for some finite positive constant M_{h}. To show that there exists an M_{h} that is independent of u, v, β, we need to consider the gradient and Hessian of $h_{\beta}(\cdot, \cdot)$. Since $h_{\beta}(u, v)$ is a composite function that involves $\Phi(\cdot)$ and $f(\cdot)$, it is straightforward to write down the first and second derivatives of $h_{\beta}(u, v)$ with respect to u and v, which depend on $\Phi(\cdot), \Phi^{\prime}(\cdot), \Phi^{\prime \prime}(\cdot), f(\cdot)$, $f^{\prime}(\cdot)$, and $f^{\prime \prime}(\cdot)$. Given the facts that for all the u, v and β in the domain of interest, we have $\Phi\left(\frac{\beta-u}{v}\right) \in\left[\Phi\left(\frac{-B-1}{\sigma_{\min }^{2}}\right), 1\right]$, $\Phi^{\prime}\left(\frac{\beta-u}{v}\right) \in\left(0, \frac{1}{\sqrt{2 \pi}}\right),\left|\Phi^{\prime \prime}\left(\frac{\beta-u}{v}\right)\right| \leq \frac{B+1}{\sigma_{\min } \sqrt{2 \pi}}$, and that $f(\cdot), f^{\prime}(\cdot), f^{\prime \prime}(\cdot)$ are all bounded, it is easy to verify that such an M_{h} indeed exists by substituting the above conditions into the first and second derivatives of $h_{\beta}(u, v)$ with respect to u and v. Moreover, by Lemma 3.4 in (Bubeck et al., 2015), we know that (123) indeed holds.

Proof of Theorem 2. Define

$$
\begin{align*}
q_{u} & :=\left.\sup _{u_{0} \in(-1,1)}\left|\frac{\partial h_{\beta}}{\partial u}\right|\right|_{u=u_{0}} \tag{124}\\
q_{v} & :=\left.\sup _{v_{0} \in\left(\sigma_{\min }^{2}, \sigma_{\max }^{2}\right)}\left|\frac{\partial h_{\beta}}{\partial v}\right|\right|_{v=v_{0}} \tag{125}
\end{align*}
$$

By the discussion in the proof of Lemma A.6, we know that q_{u} and q_{v} are both positive real numbers. By substituting $u_{1}=\theta_{1}^{\top} x, u_{2}=\theta_{2}^{\top} x, v_{1}=f\left(\phi_{1}^{\top} x\right)$, and $v_{2}=f\left(\phi_{2}^{\top} x\right)$ into (123), we have

$$
\begin{align*}
& h_{\beta}\left(\theta_{2}^{\top} x, \phi_{2}^{\top} x\right)-h_{\beta}\left(\theta_{1}^{\top} x, \phi_{1}^{\top} x\right) \tag{126}\\
& \quad \leq\binom{\left(\theta_{2}-\theta_{1}\right)^{\top} x}{f\left(\phi_{2}^{\top} x\right)-f\left(\phi_{1}^{\top} x\right)}^{\top} \nabla h_{\beta}\left(\theta_{1}^{\top} x, f\left(\phi_{1}^{\top} x\right)\right) \tag{127}\\
& \quad+\frac{M_{h}}{2}\left\|\binom{\left(\theta_{2}-\theta_{1}\right)^{\top} x}{f\left(\phi_{2}^{\top} x\right)-f\left(\phi_{1}^{\top} x\right)}\right\|_{2}^{2} \tag{128}
\end{align*}
$$

$$
\begin{align*}
\leq & \left(q_{u}\left\|\theta_{2}-\theta_{1}\right\|_{M} \cdot\|x\|_{M^{-1}}\right. \tag{129}\\
& \left.+q_{v} M_{f}\left\|\phi_{2}-\phi_{1}\right\|_{M} \cdot\|x\|_{M^{-1}}\right) \tag{130}\\
& +\frac{M_{h}}{2}\left(\left\|\theta_{2}-\theta_{1}\right\|_{M^{2}}^{2}+M_{f}^{2}\left\|\phi_{2}-\phi_{1}\right\|_{M}^{2}\right) \cdot\|x\|_{M^{-1}} \tag{131}\\
\leq & \left(q_{u}+M_{h}\right)\left\|\theta_{2}-\theta_{1}\right\|_{M} \cdot\|x\|_{M^{-1}} \tag{132}\\
& +M_{f}\left(q_{v}+M_{h} M_{f} L\right)\left\|\phi_{2}-\phi_{1}\right\|_{M^{\prime}} \cdot\|x\|_{M^{-1}} \tag{133}
\end{align*}
$$

where (130)-(131) follow from the Cauchy-Schwarz inequality and the fact that $f(\cdot)$ is Lipschitz continuous, and (132)(133) follow from the facts that $\|x\|_{2} \leq 1,\left\|\theta_{2}-\theta_{1}\right\|_{2} \leq 2$, and $\left\|\phi_{2}-\phi_{1}\right\|_{2} \leq 2 L$. By letting $C_{3}=q_{u}+M_{h}$ and $C_{4}=M_{f}\left(q_{v}+M_{h} M_{f} L\right)$, we conclude (32)-(33) indeed holds with C_{3} and C_{4} being independent of $\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}$, and β.

A.6. Proof of Lemma 6

Proof. By Theorem 2 and (35), we know

$$
\begin{align*}
& Q_{t+1}^{\mathrm{HR}}(x)-h_{\beta_{t+1}}\left(\theta_{*}^{\top} x, \phi_{*}^{\top} x\right) \\
& =h_{\beta_{t+1}}\left(\widehat{\theta}_{t}^{\top} x, \widehat{\phi}_{t}^{\top} x\right)+\xi_{t}(\delta)\|x\|_{V_{t}^{-1}}-h_{\beta_{t+1}}\left(\theta_{*}^{\top} x, \phi_{*}^{\top} x\right) \tag{135}
\end{align*}
$$

$$
\begin{equation*}
\leq 2 \xi_{t}(\delta)\|x\|_{\boldsymbol{V}_{t}^{-1}} \tag{136}
\end{equation*}
$$

Similarly, by switching the roles of $\theta_{*}^{\top}, \phi_{*}^{\top}$ and $\widehat{\theta}_{t}^{\top}, \widehat{\phi}_{t}^{\top}$ in (135), we have

$$
\begin{equation*}
Q_{t+1}^{\mathrm{HR}}(x)-h_{\beta_{t+1}}\left(\theta_{*}^{\top} x, \phi_{*}^{\top} x\right) \geq 0 \tag{137}
\end{equation*}
$$

A.7. Proof of Theorem 3

Proof. For each user t, let $\pi_{t}^{\mathrm{HR}}=\left\{x_{t, 1}, x_{t, 2}, \cdots\right\}$ denote the action sequence under the HR-UCB policy. Under HR$\mathrm{UCB}, \widehat{\theta}_{t}$ and $\widehat{\phi}_{t}$ are updated only after the departure of each user. This fact implies that $x_{t, i}=x_{t, j}$, for all i, j. Therefore, we can use x_{t} to denote the action chosen by HR-UCB for the user t, to simplify notation. Let $\bar{R}_{t}^{\mathrm{HR}}$ denote the expected lifetime of user t under HR-UCB. Similar to (30), we have

$$
\begin{equation*}
\bar{R}_{t}^{\mathrm{HR}}=\left(\Phi\left(\frac{\beta_{t}-\theta_{*}^{\top} x_{t}}{\sqrt{f\left(\phi_{*}^{\top} x_{t}\right)}}\right)\right)^{-1}=h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right) \tag{138}
\end{equation*}
$$

Recall that $\pi^{\text {oracle }}$ and x_{t}^{*} denote the oracle policy and the context of the action of the oracle policy for user t, respec-
tively. We compute the pseudo regret of HR-UCB as

$$
\begin{align*}
\operatorname{Regret}_{T} & =\sum_{t=1}^{T} \bar{R}_{t}^{*}-\bar{R}_{t}^{\mathrm{HR}} \tag{139}\\
& =\sum_{t=1}^{T} h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}^{*}, \phi_{*}^{\top} x_{t}^{*}\right)-h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right) . \tag{140}
\end{align*}
$$

To simplify notation, we use w_{t} as a shorthand for $h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}^{*}, \phi_{*}^{\top} x_{t}^{*}\right)-h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right)$. Given any $\delta>0$, define an event E_{δ} in which (12) and (17) hold under the given δ, for all $t \in \mathbb{N}$. By Lemma 1 and Theorem 1, we know that the event E_{δ} occurs with probability at least $1-3 \delta$. Therefore, with probability at least $1-3 \delta$, for all $t \in \mathbb{N}$,

$$
\begin{align*}
w_{t} \leq & Q_{t}^{\mathrm{HR}}\left(x_{t}^{*}\right)-h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right) \tag{141}\\
\leq & Q_{t}^{\mathrm{HR}}\left(x_{t}\right)-h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right) \tag{142}\\
= & h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right)+\xi_{t-1}(\delta)\left\|x_{t}\right\|_{V_{t-1}}^{-1} \tag{143}\\
& \quad-h_{\beta_{t}}\left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}\right) \tag{144}\\
\leq & 2 \xi_{t-1}(\delta) \cdot\left\|x_{t}\right\|_{V_{t-1}^{-1}}, \tag{145}
\end{align*}
$$

where (141) and (143) follow directly from the definition of the UCB index, (142) follows from the design of HR-UCB algorithm, and (145) is a direct result under the event E_{δ}. Now, we are ready to conclude that with probability at least $1-3 \delta$, we have

$$
\begin{align*}
\text { Regret }_{T} & =\sum_{t=1}^{T} w_{t} \leq \sqrt{T \sum_{t=1}^{T} w_{t}^{2}} \tag{146}\\
& \leq \sqrt{4 \xi_{T}^{2}(\delta) T \sum_{t=1}^{T} \min \left\{\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}, 1\right\}} \tag{147}\\
& \leq \sqrt{8 \xi_{T}^{2}(\delta) T \cdot d \log \left(\frac{\mathcal{S}(T)+\lambda d}{\lambda d}\right)} \tag{148}
\end{align*}
$$

where (146) follows from the Cauchy-Schwarz inequality, (147) follows from the fact that $\xi_{t}(\delta)$ is an increasing function in t, and (148) follows from Lemma 10 and 11 in (Abbasi-Yadkori et al., 2011) and the fact that $\boldsymbol{V}_{t}=$ $\lambda \boldsymbol{I}_{d}+\boldsymbol{X}_{t}^{\top} \boldsymbol{X}_{t}=\lambda \boldsymbol{I}_{d}+\sum_{i=1}^{t} x_{i} x_{i}^{\top}$. By substituting $\xi_{T}(\delta)$ into (148) and using the fact that $\mathcal{S}(T) \leq \Gamma(T)$, we know
$\operatorname{Regret}_{T}=\mathcal{O}\left(\sqrt{T \log \Gamma(T) \cdot\left(\log (\Gamma(T))+\log \left(\frac{1}{\delta}\right)\right)^{2}}\right)$.
By choosing $\Gamma(T)=K T$ for some constant $K>0$, we thereby conclude that

$$
\begin{equation*}
\operatorname{Regret}_{T}=\mathcal{O}\left(\sqrt{T \log T \cdot\left(\log T+\log \left(\frac{1}{\delta}\right)\right)^{2}}\right) \tag{150}
\end{equation*}
$$

The proof is complete.

