Supplementary Material: Stay With Me: Lifetime Maximization Through Heteroscedastic Linear Bandits With Reneging

A. Appendix

A.1. Proof of Lemma 2

Proof. Recall that $V_n = (X_n^{\top} X_n + \lambda I_d)$. Note that

$$\widehat{\phi}_n = (\boldsymbol{X}_n^\top \boldsymbol{X}_n + \lambda I_d)^{-1} \boldsymbol{X}_n^\top f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon})$$
(39)

$$= V_n^{-1} X_n^{+} f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) \tag{40}$$

$$= \boldsymbol{V}_n^{-1} \boldsymbol{X}_n^{\top} \left(f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) - \boldsymbol{X}_n \phi_* + \boldsymbol{X}_n \phi_* \right)$$
(41)

$$+\lambda V_n^{-1}\phi_* - \lambda V_n^{-1}\phi_* \tag{42}$$

$$= \boldsymbol{V}_n^{-1} \boldsymbol{X}_n^{\top} \left(f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) - \boldsymbol{X}_n \phi_* \right) - \lambda \boldsymbol{V}_n^{-1} \phi_* + \phi_*.$$
(43)

Therefore, for any $x \in \mathbb{R}^d$, we know

$$|x^{\top}\widehat{\phi}_{n} - x^{\top}\widehat{\phi}_{*}|$$

$$= |x^{\top}V^{-1}X^{\top}(f^{-1}(\widehat{\varepsilon}\circ\widehat{\varepsilon}) - X_{n}\phi_{*}) - \lambda x^{\top}V^{-1}\phi_{*}|$$
(44)

$$= |x \cdot \mathbf{v}_n \cdot \mathbf{A}_n (j \cdot (\varepsilon \circ \varepsilon) - \mathbf{A}_n \phi_*) - \lambda x \cdot \mathbf{v}_n \cdot \phi_*|$$

$$(45)$$

$$\leq \|x\|_{V_n^{-1}} \left(\lambda \|\phi_*\|_{V_n^{-1}} \right)$$
(46)

$$+ \left\| \boldsymbol{X}_{n}^{\top} \left(f^{-1} (\widehat{\varepsilon} \circ \widehat{\varepsilon}) - \boldsymbol{X}_{n} \phi_{*} \right) \right) \right\|_{\boldsymbol{V}_{n}^{-1}} \right). \quad (47)$$

Moreover, by rewriting $\widehat{\varepsilon} = \widehat{\varepsilon} - \varepsilon + \varepsilon$, we have

$$f^{-1}(\widehat{\varepsilon} \circ \widehat{\varepsilon}) \tag{48}$$

$$= f^{-1} \big((\widehat{\varepsilon} - \varepsilon + \varepsilon) \circ (\widehat{\varepsilon} - \varepsilon + \varepsilon) \big)$$
(49)

$$= f^{-1}(\varepsilon \circ \varepsilon) + M_f^{-1} \Big(2 \big(\varepsilon \circ \boldsymbol{X}_n(\theta_* - \widehat{\theta}_n) \big)$$
(50)

$$+ \left(\boldsymbol{X}_n(\theta_* - \widehat{\theta}_n) \circ \boldsymbol{X}_n(\theta_* - \widehat{\theta}_n) \right) \right), \quad (51)$$

where (50)-(51) follow from the fact that both $f(\cdot)$ and $f^{-1}(\cdot)$ are linear with a slope M_f and M_f^{-1} , respectively, as described in Section 3. Therefore, by (44)-(51) and the Cauchy-Schwarz inequality, we have

$$|x^{\top}\widehat{\phi}_{n} - x^{\top}\widehat{\phi}_{*}| \leq ||x||_{\boldsymbol{V}_{n}^{-1}} \left\{\lambda ||\phi_{*}||_{\boldsymbol{V}_{n}^{-1}} \right.$$
(52)

$$+ \left\| \boldsymbol{X}_{n}^{\top} \left(f^{-1}(\varepsilon \circ \varepsilon) - \boldsymbol{X}_{n} \phi_{*} \right) \right\|_{\boldsymbol{V}_{n}^{-1}}$$
(53)

$$+2M_{f}^{-1}\left\|\boldsymbol{X}_{n}^{\top}\left(\boldsymbol{\varepsilon}\circ\boldsymbol{X}_{n}(\boldsymbol{\theta}_{*}-\widehat{\boldsymbol{\theta}}_{n})\right)\right\|_{\boldsymbol{V}_{n}^{-1}}$$
(54)

$$+ M_f^{-1} \left\| \boldsymbol{X}_n^{\top} \left(\boldsymbol{X}_n (\theta_* - \widehat{\theta}_n) \circ \boldsymbol{X}_n (\theta_* - \widehat{\theta}_n) \right) \right\|_{\boldsymbol{V}_n^{-1}} \right\}$$
(55)

A.2. Proof of Lemma 3

We first introduce the following useful lemmas.

Lemma A.1 (Lemma 8.2 in (Erdős et al., 2012)) Let

 $\{a_i\}_{i=1}^N$ be N independent random complex variables with zero mean and variance σ^2 and having uniform sub-exponential decay, i.e., there exists $\kappa_1, \kappa_2 > 0$ such that

$$\mathbb{P}\{|a_i| \ge x^{\kappa_1}\} \le \kappa_2 e^{-x}.$$
(56)

We use a^{H} to denote the conjugate transpose of a. Let $a = (a_1, \dots, a_N)^{\top}$, let $\overline{a_i}$ denote the complex conjugate of a_i , for all i, and let $\mathbf{B} = (B_{ij})$ be a complex $N \times N$ matrix. Then, we have

$$\mathbb{P}\Big\{|a^{\mathsf{H}}\boldsymbol{B}a - \sigma^{2}\mathsf{tr}(\boldsymbol{B})| \ge s\sigma^{2}\Big(\sum_{i=1}^{N}|B_{ii}|^{2}\Big)^{-1/2}\Big\} \quad (57)$$

$$\leq C_1 \exp\left(-C_2 \cdot s^{1/(1+\kappa_1)}\right),\tag{58}$$

where C_1 and C_2 are positive constants that depend only on κ_1, κ_2 . Moreover, for the standard χ_1^2 -distribution, $\kappa_1 = 1$ and $\kappa_2 = 2$.

For any $p \times q$ matrix A, we define the induced matrix norm as $\|A\|_2 := \max_{v \in \mathbb{R}^q, \|v\|_2 = 1} \|Av\|_2$.

Lemma A.2

$$\left\| \boldsymbol{V}_{n}^{-1/2} \boldsymbol{X}^{\top} \right\|_{2} \leq 1, \forall n \in \mathbb{N}.$$
(59)

Proof. By the definition of induced matrix norm,

$$\left\| \boldsymbol{V}_{n}^{-1/2} \boldsymbol{X}^{\top} \right\|_{2} = \max_{\|v\|_{2}=1} \sqrt{v^{\top} \boldsymbol{X} \boldsymbol{V}_{n}^{-1} \boldsymbol{X}^{\top} v} \quad (60)$$

$$=\lambda_{\max}\left(\boldsymbol{X}\boldsymbol{V}_{n}^{-1}\boldsymbol{X}^{T}\right) \tag{61}$$

$$= \lambda_{\max} \left(\boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_d \right)^{-1} \boldsymbol{X}^T \right)$$
(62)

$$\leq \frac{\lambda_{\max}(\boldsymbol{X}^{\top}\boldsymbol{X})}{\lambda_{\max}(\boldsymbol{X}^{\top}\boldsymbol{X}) + \lambda} \leq 1,$$
(63)

where (63) follows from the singular value decomposition and $\lambda_{\max}(\mathbf{X}^{\top}\mathbf{X}) \geq 0$. To simplify notation, we use X and V as a shorthand for X_n and V_n , respectively. For convenience, we rewrite $V^{-1/2}X^{\top} = [v_1 \cdots v_n]$ as the matrix of n column vectors $\{v_i\}_{i=1}^n$ (each $v_i \in \mathbb{R}^d$) and show the following property.

Lemma A.3 Let $v_i \in \mathbb{R}^d$ be the *i*-th column of the matrix $V^{-1/2}X^{\top}$, for all $1 \leq i \leq n$. Then, we have

$$\sum_{i=1}^{n} \|v_i\|_2^2 \le d.$$
 (64)

Proof of Lemma A.3. Recall that $\lambda_{\max}(\cdot)$ denotes the largest eigenvalue of a square matrix. We know

$$\sum_{i=1}^{n} \|v_i\|_2^2 = \operatorname{tr}\left(\left(\boldsymbol{X}\boldsymbol{V}^{-1/2}\right)\left(\boldsymbol{V}^{-1/2}\boldsymbol{X}^{\top}\right)\right)$$
(65)

$$= \operatorname{tr}\left(\left(\boldsymbol{V}^{-1/2} \boldsymbol{X} \right) \left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1/2} \right) \right)$$
(66)

$$\leq d \cdot \lambda_{\max} \Big((\boldsymbol{V}^{-1/2} \boldsymbol{X}) (\boldsymbol{X}^{\top} \boldsymbol{V}^{-1/2}) \Big),$$
 (67)

where (66) follows from the trace of a product being commutative, and (67) follows since the trace is the sum of all eigenvalues. Moreover, we have

$$\lambda_{\max}((\boldsymbol{X}\boldsymbol{V}^{1/2})(\boldsymbol{X}^{\top}\boldsymbol{V}^{-1/2})) \tag{68}$$

$$= \left\| \left(\boldsymbol{X} \boldsymbol{V}^{1/2} \right) \left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1/2} \right) \right\|_{2}$$
(69)

$$\leq \left\| \left(\boldsymbol{X} \boldsymbol{V}^{1/2} \right) \right\|_{2} \left\| \left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1/2} \right) \right\|_{2} \leq 1, \quad (70)$$

where (70) follows from the fact that the ℓ_2 -norm is submultiplicative. Therefore, by (65)-(70), we conclude that $\sum_{i=1}^{n} \|v_i\|_2^2 \leq d.$

We are now ready to prove Lemma 3.

Proof of Lemma 3. To simplify notation, we use X and V as a shorthand for X_n and V_n , respectively. To begin with, we know $f^{-1}(\varepsilon \circ \varepsilon) - X\phi_* = \frac{1}{M_f}((\varepsilon \circ \varepsilon) - f(X\phi_*))$. Therefore, we have

$$\left\|\boldsymbol{X}(f^{-1}(\varepsilon \circ \varepsilon) - \boldsymbol{X}\phi_*)\right\|_{\boldsymbol{V}^{-1}}$$
(71)

$$=\frac{1}{M_f}\sqrt{\left(\varepsilon\circ\varepsilon-f(\boldsymbol{X}\phi_*)\right)^{\top}\boldsymbol{X}\boldsymbol{V}^{-1}\boldsymbol{X}^{\top}\left(\varepsilon\circ\varepsilon-f(\boldsymbol{X}\phi_*)\right)}$$
(72)

where each element in the vector $(\varepsilon \circ \varepsilon - f(\mathbf{X}\phi_*))$ is a centered χ_1^2 -distribution with a scaling of $f(\phi_*^{\top}x_i)$. Defining

$$\boldsymbol{W} = \operatorname{diag}(f(x_1^{\top}\phi_*), ..., f(x_n^{\top}\phi_*)))$$
, we have

$$\left\| \boldsymbol{X}(f^{-1}(\varepsilon \circ \varepsilon) - \boldsymbol{X}\phi_*) \right\|_{\boldsymbol{V}^{-1}}$$
(73)

$$= \frac{1}{M_f} \Big[\underbrace{\left(\varepsilon \circ \varepsilon - f(\boldsymbol{X}\phi_*) \right)^{\top} \boldsymbol{W}^{-1}}_{\text{mean=0, variance= 2}} \left(\boldsymbol{W} \boldsymbol{X} \boldsymbol{V}^{-1} \boldsymbol{X}^{\top} \boldsymbol{W} \right)$$
(74)

$$\underbrace{\boldsymbol{W}^{-1}\left(\varepsilon\circ\varepsilon-f(\boldsymbol{X}\phi_{*})\right)}_{\text{mean=0, variance=2}}\Big]^{1/2}.$$
(75)

We use $\eta = W^{-1}(\varepsilon \circ \varepsilon - f(X\phi_*))$ as a shorthand and define $U = (U_{ij}) = WXV^{-1}X^{\top}W$. By Lemma A.1 and the fact that $\varepsilon(x_1), \dots, \varepsilon(x_n)$ are mutually independent given the contexts $\{x_i\}_{i=1}^n$, we have

$$\mathbb{P}\Big\{|\eta^{\top} \boldsymbol{U}\eta - 2 \cdot \operatorname{tr}(\boldsymbol{U})| \ge 2s\Big(\sum_{i=1}^{n} |\boldsymbol{U}_{ii}|^2\Big)^{1/2}\Big\}$$
(76)

$$\leq C_1 \exp(-C_2 \sqrt{s}). \tag{77}$$

Recall that $V^{-1/2}X^{\top} = [v_1 \cdots v_n]$. The trace of U can be upper bounded as

$$tr(\boldsymbol{U}) = tr(\boldsymbol{W}\boldsymbol{X}\boldsymbol{V}^{-1}\boldsymbol{X}^{\top}\boldsymbol{W})$$
(78)

$$= \operatorname{tr} \left(\boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{W} \boldsymbol{X} \boldsymbol{V}^{-1/2} \right)$$
(79)

$$=\sum_{i=1}^{n} f(x_{i}^{\top}\phi_{*})^{2} \cdot \|v_{i}\|_{2}^{2}$$
(80)

$$\leq (\sigma_{\max}^2)^2 \sum_{i=1}^n \|v_i\|_2^2 \leq (\sigma_{\max}^2)^2 d,$$
 (81)

where the last inequality in (81) follows directly from Lemma A.3. Also by the commutative property of the trace operation, we have

$$\sum_{i=1}^{n} |U_{ii}|^2 \stackrel{(a)}{\leq} \left(\sum_{i=1}^{n} U_{ii}\right)^2 \stackrel{(b)}{\leq} \left((\sigma_{\max}^2)^2 d \right)^2, \quad (82)$$

where (a) follows from U being positive semi-definite (all diagonal elements are nonnegative), and (b) follows from (81). Therefore, by (76)-(82), we have

$$\mathbb{P}\left\{\eta^{\top} \boldsymbol{U}\eta \geq 2s \cdot (\sigma_{\max}^2)^2 d + 2(\sigma_{\max}^2)^2 d\right\}$$
(83)

$$\leq C_1 \cdot \exp(-C_2\sqrt{s}). \tag{84}$$

by choosing $s = \left(\frac{1}{C_2} \ln \frac{C_1}{\delta}\right)^2$, we have

$$\mathbb{P}\left\{\eta^{\top} \boldsymbol{U}\eta \geq 2(\sigma_{\max}^2)^2 d\left(\left(\frac{1}{C_2}\ln\frac{C_1}{\delta}\right)^2 + 1\right)\right\} \leq \delta.$$
(85)

Therefore, we conclude that with probability at least $1 - \delta$, the following inequality holds

$$\begin{aligned} \left\| \boldsymbol{X}(f^{-1}(\varepsilon \circ \varepsilon) - \boldsymbol{X}\phi_*) \right\|_{\boldsymbol{V}^{-1}} & (86) \\ &\leq \frac{1}{M_f} \sqrt{2(\sigma_{\max}^2)^2 \cdot d\left(\left(\frac{1}{C_2} \ln \frac{C_1}{\delta}\right)^2 + 1\right)}. \end{aligned}$$

$$(87)$$

A.3. Proof of Lemma 4

We first introduce a useful lemma.

Lemma A.4 (Theorem 4.1 in (Tropp, 2012)) Consider a finite sequence $\{A_k\}$ of fixed self-adjoint matrices of dimension $d \times d$, and let $\{\gamma_k\}$ be a finite sequence of independent standard normal variables. Let $\sigma^2 = \left\|\sum_k A_k^2\right\|_2$. Then, for all $s \ge 0$,

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{k}\gamma_{k}\boldsymbol{A}_{k}\right)\geq s\right\}\leq d\cdot\exp(-\frac{s^{2}}{2\sigma^{2}}),\quad(88)$$

where $\lambda_{\max}(\cdot)$ denotes the largest eigenvalue of a square matrix.

Now we are ready to prove Lemma 4.

Proof of Lemma 4. To simplify notation, we use X and V as a shorthand for X_n and V_n , respectively. Recall that $V^{-1/2}X^{\top} = [v_1, v_2, ..., v_n]$ and define $A_i = v_i v_i^{\top}$, for all i = 1, ..., n. Note that A_i is symmetric, for all i. Define an $n \times n$ diagonal matrix $D = \text{diag}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$. Then we have:

$$\left\| \boldsymbol{X}^{\top} \left(\varepsilon \circ \left(\boldsymbol{X} (\theta_* - \widehat{\theta}) \right) \right) \right\|_{\boldsymbol{V}^{-1}}$$
(89)

$$= \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \left(\varepsilon \circ \left(\boldsymbol{X} (\theta_* - \widehat{\theta}) \right) \right) \right\|_2$$
(90)

$$= \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} (\theta_* - \widehat{\theta}) \right\|_2$$
(91)

$$= \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1/2} \boldsymbol{V}^{1/2} (\theta_* - \widehat{\theta}) \right\|_2$$
(92)

$$\leq \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1/2} \right\|_{2} \cdot \left\| \boldsymbol{V}^{1/2} (\theta_{*} - \widehat{\theta}) \right\|_{2}$$
(93)

$$= \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1/2} \right\|_{2} \cdot \left\| \boldsymbol{\theta}_{*} - \widehat{\boldsymbol{\theta}} \right\|_{\boldsymbol{V}}.$$
(94)

Next, the first term in (94) can be expanded into

$$\left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \boldsymbol{D} \boldsymbol{X} \boldsymbol{V}^{-1/2} \right\|_{2}$$
(95)
= $\left\| \sum_{i=1}^{n} \varepsilon_{i} v_{i} v_{i}^{\top} \right\|_{2} = \left\| \sum_{i=1}^{n} \frac{\varepsilon_{i}}{\sqrt{f(x_{i}^{\top} \phi_{*})}} \cdot \left(\sqrt{f(x_{i}^{\top} \phi_{*})} \boldsymbol{A}_{i} \right) \right\|_{2}$ (96)

Note that $\frac{\varepsilon_i}{\sqrt{f(x_i^{\top}\phi_*)}}$ is a standard normal random variable, for all *i*. We also define a $d \times d$ matrix $\Sigma = \sum_{i=1}^n f(x_i^{\top}\phi_*) A_i^2$. Then, we have

$$\boldsymbol{\Sigma} = \sum_{i=1}^{n} f(\boldsymbol{x}_{i}^{\top}\boldsymbol{\phi}_{*}) \left(\boldsymbol{v}_{i}\boldsymbol{v}_{i}^{\top}\right) \left(\boldsymbol{v}_{i}\boldsymbol{v}_{i}^{\top}\right)$$
(97)

$$= \sum_{i=1}^{n} f(x_i^{\top} \phi_*) \|v_i\|_2^2 v_i v_i^{\top}.$$
 (98)

We also know

$$\left\|\sum_{i=1}^{n} \boldsymbol{A}_{i}\right\|_{2} = \left\|\sum_{i=1}^{n} v_{i} v_{i}^{\top}\right\|_{2}$$

$$(99)$$

$$= \left\| \left(\boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \right) \left(\boldsymbol{X} \boldsymbol{V}^{-1/2} \right) \right\|_{2}$$
(100)

$$\leq \left\| \left(\boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \right) \right\|_{2} \left\| \left(\boldsymbol{X} \boldsymbol{V}^{-1/2} \right) \right\|_{2} \leq 1, \quad (101)$$

where (101) follows from Lemma A.2. Moreover, we know

$$\|\mathbf{\Sigma}\|_{2} = \left\|\sum_{i=1}^{n} f(x_{i}^{\top}\phi_{*}) \|v_{i}\|_{2}^{2} v_{i}v_{i}^{\top}\right\|_{2}$$
(102)

$$\leq \left\| d \cdot \sigma_{\max}^2 \sum_{i=1}^n v_i v_i^T \right\|_2 \tag{103}$$

$$= d \cdot \sigma_{\max}^{2} \left\| \sum_{i=1}^{n} \boldsymbol{A}_{i} \right\| \le d \cdot \sigma_{\max}^{2}, \qquad (104)$$

where (103) follows from Lemma A.2-A.3, $f(x_i^{\top}\phi_*) \leq \sigma_{\max}^2$, and that $v_i v_i^{\top}$ is positive semi-definite, and the last inequality follows directly from (101). By Lemma A.4 and the fact that $\varepsilon(x_1), \dots, \varepsilon(x_n)$ are mutually independent given the contexts $\{x_i\}_{i=1}^n$, we know that

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{i=1}^{n}\varepsilon_{i}\boldsymbol{A}_{i}\right)\geq\sqrt{2\left\|\boldsymbol{\Sigma}\right\|_{2}s}\right\}\leq d\cdot e^{-s}.$$
 (105)

Therefore, by choosing $s = \ln(d/\delta)$ and the fact that $\lambda_{\max}\left(\sum_{i=1}^{n} \varepsilon_i A_i\right) = \left\|\sum_{i=1}^{n} \varepsilon_i A_i\right\|_2$, we obtain

$$\mathbb{P}\left\{\left\|\sum_{i=1}^{n}\varepsilon_{i}\boldsymbol{A}_{i}\right\|_{2} \geq \sqrt{2\sigma_{\max}^{2}d\ln(\frac{d}{\delta})}\right\} \leq \delta.$$
(106)

Finally, by applying Lemma 1 and (106) to (94), we conclude that for any $n \in \mathbb{N}$, for any $\delta > 0$, with probability at least $1 - \delta$, we have

$$\left\| \boldsymbol{X}_{n}^{\top} \left(\varepsilon \circ \boldsymbol{X}_{n} (\theta_{*} - \widehat{\theta}_{n}) \right) \right\|_{\boldsymbol{V}_{n}^{-1}} \leq \alpha_{n}^{(1)}(\delta) \cdot \alpha^{(3)}(\delta).$$
(107)

A.4. Proof of Lemma 5

We first introduce a useful lemma on the norm of the Hadamard product of two matrices.

Lemma A.5 Given any two matrices **A** and **B** of the same dimension, the following holds:

$$\|\boldsymbol{A} \circ \boldsymbol{B}\|_{F} \leq \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}^{\top}) \leq \|\boldsymbol{A}\|_{2} \cdot \|\boldsymbol{B}\|_{2}, \qquad (108)$$

where $\|\cdot\|$ denotes the Frobenius norm. When A and B are vectors, the above degenerates to

$$\|\boldsymbol{A} \circ \boldsymbol{B}\|_{2} \leq \|\boldsymbol{A}\|_{2} \cdot \|\boldsymbol{B}\|_{2}.$$
 (109)

Proof of Lemma 5. To simplify notation, we use X and V as a shorthand for X_n and V_n , respectively. Let M be a positive definite matrix. We have

$$\left\|\boldsymbol{A}\boldsymbol{v}\right\|_{\boldsymbol{M}} = \left\|\boldsymbol{M}^{1/2}\boldsymbol{A}\boldsymbol{v}\right\|_{2} \le \left\|\boldsymbol{M}^{1/2}\boldsymbol{A}\right\|_{2} \cdot \left\|\boldsymbol{v}\right\|_{2}, \quad (110)$$

where the last inequality holds since ℓ_2 -norm is submultiplicative. Meanwhile, we also observe that

$$\left(\theta_{*}-\widehat{\theta}\right)^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\left(\theta_{*}-\widehat{\theta}\right)$$
(111)

$$= \left(\theta_* - \widehat{\theta}\right)^\top \boldsymbol{V}^{1/2} \boldsymbol{V}^{-1/2} \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{V}^{-1/2} \boldsymbol{V}^{1/2} \left(\theta_* - \widehat{\theta}\right)$$
(112)

$$= \left\| \left(\theta_* - \widehat{\theta} \right)^\top \boldsymbol{V}^{1/2} \boldsymbol{V}^{-1/2} \boldsymbol{X}^\top \right\|_2^2$$
(113)

$$\leq \left\| \left(\theta_* - \widehat{\theta} \right)^\top \boldsymbol{V}^{1/2} \right\|_2^2 \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^\top \right\|_2^2 \tag{114}$$

$$\leq \left\|\theta_* - \widehat{\theta}\right\|_{V}^2. \tag{115}$$

Therefore, we know

$$\left\| \boldsymbol{X}^{\top} \left(\boldsymbol{X} \left(\theta_{*} - \widehat{\theta} \right) \circ \boldsymbol{X} \left(\theta_{*} - \widehat{\theta} \right) \right) \right\|_{\boldsymbol{V}^{-1}}$$
(116)

$$\leq \left\| \boldsymbol{V}^{-1/2} \boldsymbol{X}^{\top} \right\|_{2} \left\| \left(\boldsymbol{X} \left(\theta_{*} - \theta \right) \circ \boldsymbol{X} \left(\theta_{*} - \theta \right) \right) \right\|_{2}$$
(117)

$$\leq 1 \cdot \left\| \boldsymbol{X} \left(\theta_* - \widehat{\theta} \right) \right\|_2^2 \tag{118}$$

$$\leq 1 \cdot \left(\left(\theta_* - \widehat{\theta} \right)^\top \boldsymbol{X}^\top \boldsymbol{X} \left(\theta_* - \widehat{\theta} \right) \right)$$
(119)

$$\leq \left\|\theta_* - \widehat{\theta}\right\|_{\boldsymbol{V}}^2 \leq (\alpha_n^{(1)}(\delta))^2, \tag{120}$$

where (118) follows from Lemma A.2 and A.5, and (120) follows from Lemma 1. The proof is complete. \Box

A.5. Proof of Theorem 2

Recall that $h_{\beta}(u, v) = \left(\Phi\left(\frac{\beta-u}{\sqrt{f(v)}}\right)\right)^{-1}$. We first need the following lemma about Lipschitz smoothness of the function $h_{\beta}(u, v)$.

Lemma A.6 The function $h_{\beta}(u, v)$ defined in (31) is (uniformly) Lipschitz smooth on its domain, i.e., there exists a finite $M_h > 0$ (M_h is independent of u, v, and β) such that for any β with $|\beta| \leq B$, for any $u_1, u_2 \in [-1, 1]$ and $v_1, v_2 \in [\sigma_{\min}^2, \sigma_{\max}^2]$,

$$|\nabla h_{\beta}(u_{1}, v_{1}) - \nabla h_{\beta}(u_{2}, v_{2})| \leq M_{h} \left\| \begin{pmatrix} u_{1} \\ v_{1} \end{pmatrix} - \begin{pmatrix} u_{2} \\ v_{2} \end{pmatrix} \right\|_{2}.$$
(121)

Moreover, we have

$$h_{\beta}(u_2, v_2) - h_{\beta}(u_1, v_1) \le$$
 (122)

$$\begin{pmatrix} u_2 - u_1 \\ v_2 - v_1 \end{pmatrix}^{\top} \nabla h_{\beta}(u_1, v_1) + \frac{M_h}{2} \left\| \begin{pmatrix} u_2 - u_1 \\ v_2 - v_1 \end{pmatrix} \right\|_2^2.$$
(123)

Proof of Lemma A.6. First, it is easy to verify that $h_{\beta}(\cdot, \cdot)$ is twice continuously differentiable on its domain $[-1, 1] \times$ $[\sigma_{\min}^2, \sigma_{\max}^2]$ and therefore is Lipschitz smooth, for some finite positive constant M_h . To show that there exists an M_h that is independent of u, v, β , we need to consider the gradient and Hessian of $h_{\beta}(\cdot, \cdot)$. Since $h_{\beta}(u, v)$ is a composite function that involves $\Phi(\cdot)$ and $f(\cdot)$, it is straightforward to write down the first and second derivatives of $h_{\beta}(u, v)$ with respect to u and v, which depend on $\Phi(\cdot), \Phi'(\cdot), \Phi''(\cdot), f(\cdot), f(\cdot)$ $f'(\cdot)$, and $f''(\cdot)$. Given the facts that for all the u, v and β in the domain of interest, we have $\Phi(\frac{\beta-u}{v}) \in [\Phi(\frac{-B-1}{\sigma_{\min}^2}), 1]$, $\Phi'(\frac{\beta-u}{v}) \in (0, \frac{1}{\sqrt{2\pi}}), |\Phi''(\frac{\beta-u}{v})| \leq \frac{B+1}{\sigma_{\min}\sqrt{2\pi}}, \text{ and that } f(\cdot), f'(\cdot), f''(\cdot) \text{ are all bounded, it is easy to verify that}$ such an M_h indeed exists by substituting the above conditions into the first and second derivatives of $h_{\beta}(u, v)$ with respect to u and v. Moreover, by Lemma 3.4 in (Bubeck et al., 2015), we know that (123) indeed holds.

Proof of Theorem 2. Define

$$q_u := \sup_{u_0 \in (-1,1)} \left| \frac{\partial h_\beta}{\partial u} \right|_{u=u_0}, \tag{124}$$

$$q_v := \sup_{v_0 \in (\sigma_{\min}^2, \sigma_{\max}^2)} \left| \frac{\partial h_\beta}{\partial v} \right| \bigg|_{v=v_0}.$$
 (125)

By the discussion in the proof of Lemma A.6, we know that q_u and q_v are both positive real numbers. By substituting $u_1 = \theta_1^{\top} x$, $u_2 = \theta_2^{\top} x$, $v_1 = f(\phi_1^{\top} x)$, and $v_2 = f(\phi_2^{\top} x)$ into (123), we have

$$h_{\beta}\left(\theta_{2}^{\top}x, \phi_{2}^{\top}x\right) - h_{\beta}\left(\theta_{1}^{\top}x, \phi_{1}^{\top}x\right)$$
(126)

$$\leq \begin{pmatrix} (\theta_2 - \theta_1)^\top x \\ f(\phi_2^\top x) - f(\phi_1^\top x) \end{pmatrix}^\top \nabla h_\beta(\theta_1^\top x, f(\phi_1^\top x)) \quad (127)$$

$$+ \frac{M_h}{2} \left\| \begin{pmatrix} (\theta_2 - \theta_1)^\top x \\ f(\phi_2^\top x) - f(\phi_1^\top x) \end{pmatrix} \right\|_2^2$$
(128)

$$\leq \left(q_u \left\|\theta_2 - \theta_1\right\|_{\boldsymbol{M}} \cdot \left\|x\right\|_{\boldsymbol{M}^{-1}}$$
(129)

$$+ q_v M_f \|\phi_2 - \phi_1\|_{\boldsymbol{M}} \cdot \|x\|_{\boldsymbol{M}^{-1}})$$
(130)

$$+\frac{M_{h}}{2}\left(\left\|\theta_{2}-\theta_{1}\right\|_{\boldsymbol{M}}^{2}+M_{f}^{2}\left\|\phi_{2}-\phi_{1}\right\|_{\boldsymbol{M}}^{2}\right)\cdot\left\|x\right\|_{\boldsymbol{M}^{-1}}$$
(131)

$$\leq (q_u + M_h) \|\theta_2 - \theta_1\|_{M} \cdot \|x\|_{M^{-1}}$$
(132)

+
$$M_f(q_v + M_h M_f L) \|\phi_2 - \phi_1\|_{\boldsymbol{M}} \cdot \|x\|_{\boldsymbol{M}^{-1}},$$
(133)

where (130)-(131) follow from the Cauchy-Schwarz inequality and the fact that $f(\cdot)$ is Lipschitz continuous, and (132)-(133) follow from the facts that $||x||_2 \leq 1$, $||\theta_2 - \theta_1||_2 \leq 2$, and $||\phi_2 - \phi_1||_2 \leq 2L$. By letting $C_3 = q_u + M_h$ and $C_4 = M_f(q_v + M_h M_f L)$, we conclude (32)-(33) indeed holds with C_3 and C_4 being independent of $\theta_1, \theta_2, \phi_1, \phi_2$, and β .

A.6. Proof of Lemma 6

Proof. By Theorem 2 and (35), we know

$$Q_{t+1}^{\mathrm{HR}}(x) - h_{\beta_{t+1}}(\theta_*^{\top} x, \phi_*^{\top} x)$$
(134)
= $h_{\beta_{t+1}}(\hat{\theta}_t^{\top} x, \hat{\phi}_t^{\top} x) + \xi_t(\delta) \|x\|_{V_t^{-1}} - h_{\beta_{t+1}}(\theta_*^{\top} x, \phi_*^{\top} x)$ (135)
 $\leq 2\xi_t(\delta) \|x\|_{V_t^{-1}}.$ (136)

Similarly, by switching the roles of θ_*^{\top} , ϕ_*^{\top} and $\hat{\theta}_t^{\top}$, $\hat{\phi}_t^{\top}$ in (135), we have

$$Q_{t+1}^{\text{HR}}(x) - h_{\beta_{t+1}}(\theta_*^{\top} x, \phi_*^{\top} x) \ge 0.$$
 (137)

A.7. Proof of Theorem 3

Proof. For each user t, let $\pi_t^{\text{HR}} = \{x_{t,1}, x_{t,2}, \cdots\}$ denote the action sequence under the HR-UCB policy. Under HR-UCB, $\hat{\theta}_t$ and $\hat{\phi}_t$ are updated only after the departure of each user. This fact implies that $x_{t,i} = x_{t,j}$, for all i, j. Therefore, we can use x_t to denote the action chosen by HR-UCB for the user t, to simplify notation. Let $\overline{R}_t^{\text{HR}}$ denote the expected lifetime of user t under HR-UCB. Similar to (30), we have

$$\overline{R}_{t}^{\mathsf{HR}} = \left(\Phi\left(\frac{\beta_{t} - \theta_{*}^{\top} x_{t}}{\sqrt{f(\phi_{*}^{\top} x_{t})}}\right)\right)^{-1} = h_{\beta_{t}}(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t}).$$
(138)

Recall that π^{oracle} and x_t^* denote the oracle policy and the context of the action of the oracle policy for user t, respec-

tively. We compute the pseudo regret of HR-UCB as

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} \overline{R}_{t}^{*} - \overline{R}_{t}^{\operatorname{HR}}$$

$$= \sum_{t=1}^{T} h_{\beta_{t}} \left(\theta_{*}^{\top} x_{t}^{*}, \phi_{*}^{\top} x_{t}^{*} \right) - h_{\beta_{t}} \left(\theta_{*}^{\top} x_{t}, \phi_{*}^{\top} x_{t} \right).$$

$$(140)$$

To simplify notation, we use w_t as a shorthand for $h_{\beta_t}(\theta_*^\top x_t^*, \phi_*^\top x_t^*) - h_{\beta_t}(\theta_*^\top x_t, \phi_*^\top x_t)$. Given any $\delta > 0$, define an event E_{δ} in which (12) and (17) hold under the given δ , for all $t \in \mathbb{N}$. By Lemma 1 and Theorem 1, we know that the event E_{δ} occurs with probability at least $1 - 3\delta$. Therefore, with probability at least $1 - 3\delta$, for all $t \in \mathbb{N}$,

$$w_t \le Q_t^{\mathrm{HR}}(x_t^*) - h_{\beta_t} \left(\theta_*^\top x_t, \phi_*^\top x_t \right)$$
(141)

$$\leq Q_t^{\rm HR}(x_t) - h_{\beta_t} \left(\theta_*^\top x_t, \phi_*^\top x_t \right) \tag{142}$$

$$= h_{\beta_t} \left(\theta_*^\top x_t, \phi_*^\top x_t \right) + \xi_{t-1}(\delta) \left\| x_t \right\|_{V_{t-1}^{-1}}$$
(143)

$$-h_{\beta_t} \left(\theta_*^\top x_t, \phi_*^\top x_t \right) \tag{144}$$

$$\leq 2\xi_{t-1}(\delta) \cdot \|x_t\|_{V_{t-1}^{-1}}, \qquad (145)$$

where (141) and (143) follow directly from the definition of the UCB index, (142) follows from the design of HR-UCB algorithm, and (145) is a direct result under the event E_{δ} . Now, we are ready to conclude that with probability at least $1 - 3\delta$, we have

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} w_{t} \le \sqrt{T \sum_{t=1}^{T} w_{t}^{2}}$$
(146)

$$\leq \sqrt{4\xi_T^2(\delta)T\sum_{t=1}^T \min\{\|x_t\|_{V_{t-1}^{-1}}^2, 1\}} \quad (147)$$

$$\leq \sqrt{8\xi_T^2(\delta)T \cdot d\log\left(\frac{\mathcal{S}(T) + \lambda d}{\lambda d}\right)}, \quad (148)$$

where (146) follows from the Cauchy-Schwarz inequality, (147) follows from the fact that $\xi_t(\delta)$ is an increasing function in t, and (148) follows from Lemma 10 and 11 in (Abbasi-Yadkori et al., 2011) and the fact that $V_t = \lambda I_d + X_t^{\top} X_t = \lambda I_d + \sum_{i=1}^t x_i x_i^{\top}$. By substituting $\xi_T(\delta)$ into (148) and using the fact that $S(T) \leq \Gamma(T)$, we know

$$\operatorname{Regret}_{T} = \mathcal{O}\left(\sqrt{T \log \Gamma(T) \cdot \left(\log\left(\Gamma(T)\right) + \log\left(\frac{1}{\delta}\right)\right)^{2}}\right).$$
(149)

By choosing $\Gamma(T) = KT$ for some constant K > 0, we thereby conclude that

$$\operatorname{Regret}_{T} = \mathcal{O}\left(\sqrt{T\log T \cdot \left(\log T + \log(\frac{1}{\delta})\right)^{2}}\right).$$
(150)
The proof is complete

The proof is complete.