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Abstract
Conditional kernel mean embeddings form an at-
tractive nonparametric framework for represent-
ing conditional means of functions, describing the
observation processes for many complex models.
However, the recovery of the original underlying
function of interest whose conditional mean was
observed is a challenging inference task. We for-
malize deconditional kernel mean embeddings as
a solution to this inverse problem, and show that it
can be naturally viewed as a nonparametric Bayes’
rule. Critically, we introduce the notion of task
transformed Gaussian processes and establish de-
conditional kernel means as their posterior pre-
dictive mean. This connection provides Bayesian
interpretations and uncertainty estimates for de-
conditional kernel mean embeddings, explains
their regularization hyperparameters, and reveals
a marginal likelihood for kernel hyperparameter
learning. These revelations further enable practi-
cal applications such as likelihood-free inference
and learning sparse representations for big data.

1. Introduction
Observations of complex phenomena often lead to likeli-
hoods that are described by a conditional mean. A widely
applicable setting where this occurs is collecting observa-
tions under uncertain inputs, where the task is to learn a
function f : X → R to model a real-valued response
z as a function of inputs x ∈ X without being able to
query or measure x directly to observe this phenomenon.
Instead, another measured input y ∈ Y relates to x through
p(x|y). Consequently, given y, the response Z has mean
g(y) := E[f(X)|Y = y], where g is called the conditional
mean of f . Furthermore, p(x|y) is often only available as
sample pairs {xi, yi}ni=1, from simulations, algorithms, or
separate experiments, making recovery of latent functions f
from conditional means g a challenging inference task.
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Our first contribution begins with formulating deconditional
mean embeddings (DMEs) as solutions to this inference
problem by building upon the framework of conditional
mean embeddings (CMEs) (Song et al., 2013). We show
that the DME can be established as a nonparametric Bayes’
rule in the reproducing kernel Hilbert space (RKHS) and
used for likelihood-free Bayesian inference. In contrast to
kernel Bayes’ rule (KBR) (Fukumizu et al., 2013) which
uses third order tensors that can result in vanishing priors,
DMEs use second order tensors and avoids this problem.

Together with CMEs and KBR, DMEs form a critical part of
the kernel mean embedding (KME) (Muandet et al., 2017)
framework, where probabilistic rules can be represented
nonparametrically as operators that are linear in the RKHS.
This greatly simplifies probabilistic inference without requir-
ing parametrized distributions and compromising flexibility.

Despite this connection, there are elements unique to the
KME framework that cannot be interpreted or solved via
the parallel between probability rules and RKHS mean op-
erations. Similar to empirical forms for KBR and CMEs,
empirical DMEs are obtained by replacing expectations in
its constituent operators with their empirical means, and in-
troduce regularization for operator inverses to relax RKHS
assumptions, instead of as the optimal solution to a particu-
lar loss. Setting regularization hyperparameters is difficult
in practice without an appropriate loss for the inference task.
Furthermore, similar to KBR, the nonparametric Bayes’ rule
provided by DMEs is a statement between observed (or sim-
ulated) variables and not on latent functions or quantities.
Consequently, uncertainty estimation in inference of latent
functions f still require a separate Bayesian formulation.

Our second contribution establishes a Bayesian view of
DMEs as posterior predictive means of the task transformed
Gaussian process (TTGP), a novel nonparametric Bayesian
model that recover latent relationships between variables
without observing them jointly. TTGPs are so named be-
cause we show that they are a type of transformed Gaussian
process (Murray-Smith & Pearlmutter, 2005) where the
transformations and noise covariances are learned, by trans-
forming one Gaussian process (GP) task to another, rather
than designed from expert knowledge. We use this connec-
tion to derive posterior and predictive uncertainty estimates
for DMEs and explain their regularization hyperparameters
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as a function of noise variance. Finally, we derive marginal
likelihoods and their scalable computational forms to learn
DME hyperparameters, which can also be applied to learn
inducing points for sparse representations as a special case.
All proofs are in the supplementary material.

2. Kernel Mean Embeddings
We begin with an overview of the KME framework from
which DMEs are built upon. KMEs are an arsenal of tech-
niques concerned with representations and transformations
of function expectations under highly flexible distributions.
They consider functions that lie within RKHSsHk andH`,
formed by positive definite kernels k : X × X → R and
` : Y×Y → R. The RKHSsHk andH` are the closure span
of the features φ(x) = k(x, ·) and ψ(y) = `(y, ·) across
x ∈ X and y ∈ Y respectively, endowed with the inner
products 〈·, ·〉k ≡ 〈·, ·〉Hk

and 〈·, ·〉` ≡ 〈·, ·〉H`
.

The key object is the mean embedding of a distribution
µX := E[k(X, ·)] ∈ Hk. They encode function expecta-
tions in the sense that E[f(X)] = 〈µX , f〉k, due to the repro-
ducing property that 〈k(x, ·), f〉k = f(x) for all f ∈ Hk.

Higher ordered mean embeddings are vital components of
the framework. Specifically, second order mean embeddings
such asCY Y := E[`(Y, ·)⊗`(Y, ·)] ∈ H`⊗H` andCXY :=
E[k(X, ·)⊗ `(Y, ·)] ∈ Hk ⊗H` can be identified as cross-
covariance operators CY Y : H` → H` and CXY : H` →
Hk that serve as building blocks of CMEs and DMEs.

In practical scenarios where only iid samples {xi, yi}ni=1

that are realizations of (Xi, Yi) ∼ PXY for i ∈ {1, . . . , n}
are available, the KME framework becomes attractive
for nonparametric inference because core objects only
require expectations under distributions. Consequently,
they can be estimated via empirical means as µ̂X :=
1
n

∑n
i=1 k(xi, ·), ĈY Y := 1

n

∑n
i=1 `(yi, ·) ⊗ `(yi, ·), and

ĈXY := 1
n

∑n
i=1 k(xi, ·)⊗ `(yi, ·) (Muandet et al., 2017).

For feature matrices, we stack features by columns Φ :=[
φ(x1) · · · φ(xn)

]
and Ψ :=

[
ψ(y1) · · · ψ(yn)

]
.

We write gram matrices as K := ΦTΦ and L := ΨTΨ,
where the (i, j)-th element of ATB is the inner product
of the i-th column of A with the j-th column of B. That
is, Kij = φ(xi)

Tφ(xj) and Lij = ψ(yi)
Tψ(yj). When

columns are elements of RKHSs such as when φ(x) =
k(x, ·) in Φ and ψ(y) = `(y, ·) in Ψ, the notation (·)T (·)
is a shorthand for the corresponding RKHS inner product
〈·, ·〉H when it is clear from context whatH is. For example,
fTh is shorthand for 〈f, h〉k if f, h ∈ Hk. Another com-
mon usage is ΦT f = {φ(xi)

T f}ni=1 = {k(xi, ·)T f}ni=1 =
{〈k(xi, ·), f〉k}ni=1 = {f(xi)}ni=1 =: f . For summing
outer products, we write ĈY Y = 1

nΨΨT and ĈXY =
1
nΦΨT . Note that we use non-bold letters for single points
x and y, even though they are often multivariate in practice.

3. Conditional Kernel Mean Embeddings
We now present CMEs in a fashion that focuses on their
operator properties. By reviewing CMEs this way, parallels
and contrast with DMEs in the subsequent section 4 become
more apparent. Importantly, instead of defining CMEs via
an explicit form, we begin by forming problem statements.

Definition 3.1 (Conditional Mean Problem Statement).
Given a function f : X → R, infer the function g : Y → R
such that g(y) = E[f(X)|Y = y] ≡ EX|Y [f ](y). We call
g the conditional mean of f with respect to PX|Y and write
the shorthand g = EX|Y [f ] = E[f(X)|Y = ·].

This naturally leads to the notion of operators that map
functions f to their conditional means g = E[f(X)|Y = ·].
Definition 3.2 (Conditional Mean Operators). The condi-
tional mean operator (CMO) CX|Y : H` → Hk correspond-
ing to PX|Y is the operator that satisfies

(CX|Y )T f = E[f(X)|Y = ·], ∀f ∈ Hk, (3.1)

where (CX|Y )T : Hk → H` denotes the adjoint of CX|Y .

Depending on the nature of `, unique solutions exist.

Theorem 3.1 ((Fukumizu et al., 2004)). Assume that
`(y, ·) ∈ image(CY Y ) for all y ∈ Y . The conditional
mean operator (CMO) CX|Y is unique and given by

CX|Y = CXY C
−1
Y Y . (3.2)

The assumption that `(y, ·) ∈ image(CY Y ) for all y ∈ Y is
commonly relaxed by introducing a regularization hyperpa-
rameter λ > 0 to the inverse, so that the CMO is replaced
with CXY (CY Y + λI)−1 (Song et al., 2013).

Contrary to definition 3.2, it is more common in the litera-
ture to define the CMO as the operator CX|Y that satisfies

CX|Y `(y, ·) = E[k(X, ·)|Y = y], ∀y ∈ Y, (3.3)

while (3.1) is taken as an immediate property of CMOs
(Fukumizu et al., 2004). However, due to lemma 3.2, we
instead take definition 3.2 as the definition of CMOs, empha-
sizing CMOs as solutions to the conditional mean problem,
and treat (3.3) as an immediate property.

Lemma 3.2. Statements (3.1) and (3.3) are equivalent.

The CME of PX|Y=y is µX|Y=y := CX|Y `(y, ·), equiva-
lent to querying the CMO at a particular input y.

Consequently, 〈µX|Y=y, f〉k = 〈CX|Y `(y, ·), f〉k =
〈`(y, ·), (CX|Y )T f〉` = 〈`(y, ·),EX|Y [f ]〉` = EX|Y [f ](y).

Motivated by theorem 3.1, empirical CMOs and CMEs are
defined by estimating their constituents by empirical means.

Definition 3.3 (Empirical Conditional Mean Operator). The
empirical CMO is ĈX|Y := ĈXY (ĈY Y + λI)−1, λ > 0.
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Theorem 3.3 ((Song et al., 2009)). The nonparametric form
for ĈX|Y is

ĈX|Y = Φ(L+ nλI)−1ΨT . (3.4)

The empirical CME is then µ̂X|Y=y := ĈX|Y `(y, ·).

Consequently, with `(y) := {`(yi, y)}ni=1, an estimate
for EX|Y [f ](y) is 〈f, µ̂X|Y=y〉k = 〈f, ĈX|Y `(y, ·)〉k =
fTΦ(L+ nλI)−1ΨT `(y, ·) = fT (L+ nλI)−1`(y).

Critically, while empirical CMOs (3.4) are estimated from
joint samples from the joint distribution PXY , they only
encode the conditional distribution PX|Y . This means that
the empirical CMOs will encode the same conditional dis-
tribution even if the joint distribution PXY changes but
the conditional distribution PX|Y stays the same. That is,
the empirical CMO built from joint samples of p(x, y) =
p(x|y)p(y) and the empirical CMO built from joint samples
of q(x, y) := p(x|y)q(y) will encode the same conditional
distribution p(x|y) and converge to the same CMO.

4. Deconditional Kernel Mean Embeddings
We now present a novel class of KMEs referred to as de-
conditional mean embeddings (DMEs). They are natural
counterparts to CMEs. The presentation of definitions and
theorems in this section is mainly parallel to section 3. We
define the deconditional mean problem as the task of recov-
ering latent functions from their conditional means.

Definition 4.1 (Deconditional Mean Problem Statement).
Given a function g : Y → R, infer a function f : X → R
such that g(y) = E[f(X)|Y = y]. We call f a decondi-
tional mean of g with respect to PX|Y and write the short-
hand f = E†X|Y [g].

The deconditional mean of a function g infers the function
f whose conditional mean would be g with respect to PX|Y .
The corresponding operator that encodes this transformation
is the deconditional mean operator (DMO).

Definition 4.2 (Deconditional Mean Operators). The de-
conditional mean operator (DMO) C ′X|Y : Hk → H` corre-
sponding to PX|Y is the operator that satisfies

(C ′X|Y )TE[f(X)|Y = ·] = f, ∀f ∈ Hk. (4.1)

Depending on the nature of ` and k, unique solutions exist.

Theorem 4.1. Assume that `(y, ·) ∈ image(CY Y ) for all
y ∈ Y and k(x, ·) ∈ image(CX|Y CY Y (CX|Y )T ) for all
x ∈ X . The deconditional mean operator (DMO) C ′X|Y is
unique and given by

C ′X|Y = (CX|Y CY Y )T (CX|Y CY Y (CX|Y )T )−1. (4.2)

Similar to the case with CMOs (Song et al., 2013), the
assumption that k(x, ·) ∈ image(CX|Y CY Y (CX|Y )T ) for

all x ∈ X can be relaxed by introducing a regularization
hyperparameter ε > 0 to the inverse, so that the DMO is
replaced with (CX|Y CY Y )T (CX|Y CY Y (CX|Y )T + εI)−1.

Since DMOs invert the results of CMOs, they can also be
understood as pseudo-inverses of CMOs.

Theorem 4.2. If the assumptions in theorem 4.1 hold and
further ((CX|Y )TCX|Y )−1 exists such that the pseudo-
inverse C†X|Y := ((CX|Y )TCX|Y )−1(CX|Y )T is defined,

then DMOs are pseudo-inverses of CMOs C ′X|Y = C†X|Y .

The DME of PX=x|Y is µ′X=x|Y := C ′X|Y k(x, ·) ∈ H`,
equivalent to querying the DMO at a particular input x.

Consequently, 〈µ′X=x|Y , g〉` = 〈C ′X|Y k(x, ·), g〉` =

〈k(x, ·), (C ′X|Y )T g〉k = 〈k(x, ·), f〉k = f(x).

The form in (4.2) makes it evident that a DMO can be
fully specified once CX|Y and CY Y , encoding the measures
PX|Y and PY respectively, are known. If densities exist,
we write them as pX|Y ≡ pX|Y (·|·) and pY ≡ pY (·), and
drop the subscripts in density evaluations as p(x|y) and
p(y) whenever the context is clear. Note that PX=x|Y cor-
responds to pX|Y (x|·) which is evaluated at x and now a
function of y. This is in contrast with PX|Y=y correspond-
ing to pX|Y (·|y) evaluated at y and now a function of x.

Consider the case where X and Y play the roles of ob-
served and unobserved (latent) variables respectively. The
DMO considers the conditional pX|Y and the marginal pY
encoded as CX|Y and CY Y (theorem 4.1), and inverts the
CMO CX|Y (theorem 4.2) with the help of the encoded
marginal CY Y . This is analogous to the Bayes’ rule, where
the posterior pY |X(·|x) =

pX|Y (x|·)pY (·)∫
Y pX|Y (x|y)pY (y)dy

is fully spec-
ified by the likelihood pX|Y and prior pY . We can then
interpret DMEs as querying the rule at the observed quantity
x while leaving the rule as a function of y for inference.
Consequently, we also refer to CX|Y and CY Y as the likeli-
hood operator and the prior operator respectively.

The difference between the DMO (4.2) and CMO (3.2)
equations is akin to writing pY |X(·|x) using Bayes’ rule
against using the conditional density rule. Compare the
DMO decomposition (4.2) with the CMO decomposition
CY |X = CY XC

−1
XX = (CXY )TC−1XX in the other direction

by reversing the roles of X and Y in (3.2), which would
correspond to the posterior PY |X . The CMO is composed
of a joint operator CXY and an evidence operator CXX cor-
responding to the joint PXY and evidence PX distributions.
Similarly, the DMO is also composed of a joint operator
CXY = CX|Y CY Y : H` → Hk and an evidence opera-
tor C ′XX := CX|Y CY Y (CX|Y )T : Hk → Hk, but both
specified from the likelihood and prior operators.

Motivated by this, we propose to estimate the likelihood
and prior operators using separate and independently drawn
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samples. The likelihood operator CX|Y is estimated as
ĈX|Y (definition 3.3) using iid samples {xi, yi}ni=1, also
denoted as x := {xi}ni=1 and y := {yi}ni=1. Note that as
the likelihood operator is a CMO, these joint samples can
be from any joint distribution QXY 6= PXY as long as its
conditional distribution is also PX|Y . The prior operator
CY Y is estimated as C̃Y Y := 1

m

∑m
j=1 `(ỹj , ·) ⊗ `(ỹj , ·)

using another set of iid samples ỹ := {ỹj}mj=1 from PY .
Definition 4.3 (Empirical Deconditional Mean Operator).
Let ε > 0 be a regularization hyperparameter and define
ĈX|Y and C̃Y Y as above. The empirical DMO is

C̄ ′X|Y := (ĈX|Y C̃Y Y )T (ĈX|Y C̃Y Y (ĈX|Y )T + εI)−1.
(4.3)

The accents notate the set of samples used for estimation.
When both sets are used such as in the estimation of the
DMO C ′X|Y , we denote it with a bar such as C̄ ′X|Y .

Theorem 4.3. The nonparametric form for C̄ ′X|Y is

C̄ ′X|Y = Ψ̃
[
ATKA+mεI

]−1
ATΦT , (4.4)

where A := (L + nλI)−1L̃, L̃ := ΨT Ψ̃, and Ψ̃ :=[
ψ(ỹ1) · · · ψ(ỹm)

]
.

The empirical DME is then µ̄′X=x|Y := C̄ ′X|Y k(x, ·).

Consequently, with k(x) := {k(xi, x)}ni=1 and g̃ :=

{g(ỹj)}mj=1, an estimate for E†X|Y [g](x) is 〈g, µ̄′X=x|Y 〉` =

g̃T
[
ATKA+mεI

]−1
ATk(x). This motivates the follow-

ing definitions, where the notation g̃ is replaced with z̃, to
be interpreted as target observations of g at ỹ.
Definition 4.4 (Nonparametric DME Estimator). The non-
parametric DME estimator, also called the kernel DME
estimator or the DME estimator in function space view,
is f̄(x) = ᾱTk(x) =

∑n
i=1 ᾱik(xi, x), where ᾱ :=

A
[
ATKA + mεI

]−1
z̃ and A := (L + nλI)−1L̃. Equiva-

lently, f̄(x) = z̃T
[
ATKA+mεI

]−1
ATk(x). An alterna-

tive form is f̄(x) = z̃TAT
[
KAAT +mεI

]−1
k(x).

When features φ(x) ∈ Rp and ψ(y) ∈ Rq are finite dimen-
sional, we define the parametric DME estimator as follows
by rewriting definition 4.4 using the Woodbury identity
Definition 4.5 (Parametric DME Estimator). The para-
metric DME estimator, also called the feature DME es-
timator or the DME estimator in weight space view, is
f̄(x) = w̄Tφ(x), where w̄ = [ΦAATΦT + mεI]−1ΦAz̃
and A := ΨT (ΨΨT + nλI)−1Ψ̃. Equivalently, f̄(x) =
z̃TATΦT [ΦAATΦT +mεI]−1φ(x).

In definition 4.4 (resp. 4.5), computational complexity is
dominated by inversions for L + nλI and ATKA + mεI
(resp. ΨΨT + nλI and ΦAATΦT + mεI) at O(n3) and
O(m3) (resp. O(q3) and O(p3)). For the alternative form
in definition 4.4, both inversions are O(n3), allowing for
larger m at O(m) without compromising tractability.

LRR

KRR

BLR

TLRR

BKR

TKRR

TBLR

TBKR
→ Kernelize features (inputs)
→ Bayesian inference (latents)
→ Transform observations (outputs)

Figure 1. Three dimensions of model extensions (T: Transformed,
B: Bayesian, K/L: Kernel/Linear, (R)R: (Ridge) Regression). Ker-
nel extensions (blue) specify feature spaces implicitly through a
kernel. Bayesian extensions (green) introduce notions of uncer-
tainty on latent quantities (weights or functions). Finally, trans-
formed extensions (orange) capture indirect function observations.

5. Task Transformed Gaussian Processes
DMEs are constructed as solutions to the task of inferring
deconditional means, which are often real-valued functions.
Regression problems also address inference of real-valued
functions from data. This raises curiosity towards whether
DMEs can be formulated as solutions to a regression-like
problem, and what insights this connection would provide.

In this section, we formulate the task transformed regression
problem to provide regression views of DMEs. To do this,
we first briefly review transformed regression in section 5.1
before we present our contributions in section 5.2.

5.1. Transformed Regression

Standard regression models often assume a Gaussian full
data likelihood p(z|f) = N (z; f , σ2I) with targets z :=
{zi}ni=1 ∈ Rn. In the generalized setting when observations
of f at x are not available but observations of linear combi-
nations thereof are, we can use p(z̃|f) = N (z̃;MT f ,Σ) for
some transformation M ∈ Rn×m and noise covariance Σ,
where z̃ := {z̃j}mj=1 ∈ Rm are the available observations.

We refer to this setting as transformed regression. They can
be seen as another dimension of modeling with linear ridge
regression (LRR) as the base model (fig. 1). Kernel Ridge
Regression (KRR) is obtained from LRR via the kernel trick
and Woodbury identity, and they are maximum a posteriori
(MAP) solutions or predictive means of Gaussian process
regression (GPR) and Bayesian linear regression (BLR)
respectively (Rasmussen & Williams, 2006). Consequently,
we also refer to GPR as Bayesian kernel regression (BKR).
Analogous relationships hold between transformed models.

5.2. Task Transformed Regression

We define task transformed regression (TTR) as the problem
of learning to predict a target variable Z from features X
when no direct sample pairs of X and Z are available but
instead indirect samples {xi, yi}ni=1 and {ỹj , z̃j}mj=1 with a
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Figure 2. Graphical model (chain graph) for task transformed Gaus-
sian process regression (TTGPR). Circles are random variables.
Shaded circles are observed random variables. Undirected edges
indicate the GP field, where all the random variables on the field
are fully connected to each other (Rasmussen & Williams, 2006).
The goal is to infer f? to predict z? at x?, using only a task or orig-
inal dataset {ỹj , z̃j}mj=1 and a transformation dataset {xi, yi}ni=1.
To connect the two GPs, we posit that the unobserved targets z at
x and at y would have been the same if they were observed. Note
that like regular GPs, to TTGPs the inputs x and y are not modeled
as random variables but treated as index variables instead.

mediating variable Y are available. The name illustrates the
idea of transforming the task of regressing Z on Y to learn
g : Y → R, using the task or original dataset {ỹj , z̃j}mj=1,
to the task of regressing Z on X to learn f : X → R,
by mediating the task dataset through the transformation
dataset {xi, yi}ni=1. As the mediating variable Y links the
two sets together, y and ỹ control the task transformation.

DME as solution to chained loss We formulate losses for
TTR, and establish DMEs as solutions. We begin with the
parametric case with f(x) = wTφ(x) and g(y) = vTψ(y).

Theorem 5.1 (Task Transformed LRR (TTLRR)). The
weights of the parametric DME estimator f̄(x) = w̄Tφ(x)
(definition 4.5) solve chained regularized least square losses,

v̂[w] := argmin
v∈Rq

1

n

n∑
i=1

(wTφ(xi)− vTψ(yi)))
2 + λ‖v‖2,

w̄ := argmin
w∈Rp

1

m

m∑
j=1

(z̃j − v̂[w]Tψ(ỹj))
2 + ε‖w‖2.

(5.1)

The notation v̂[w] explicitly denotes that v̂ depends on w.
Conceptually, in function space view the first optimization
finds g so that f at x best matches with g at y, leading to a
solution ĝ[f ] that is dependent on f . The second finds f so
that ĝ[f ] at ỹ best matches targets z̃. Using the kernel trick
k(x, x′) = φ(x)Tφ(x′), we obtain the nonparametric case.

Lemma 5.2 (Task Transformed KRR (TTKRR)). The
weights of the nonparametric DME estimator f̄(x) =
ᾱTk(x) (definition 4.4) satisfies w̄ = Φᾱ (the kernel trick).

DME as posterior predictive mean of TTGP We extend
TTLRR and TTKRR to the Bayesian case. This connection
reveals that TTR models are transformed regression models
with transformations and noise covariances that are learned.

In the parametric case, we have task transformed BLR
(TTBLR). We place separate independent Gaussian pri-
ors p(v) = N (v; 0, β2I) and p(w) = N (w; 0, γ2I) for
g and f respectively. As z is not observed directly from
f but only for g, we include noise only for observing g
to arrive at likelihoods p(z|v) = N (z; vTψ(y), σ2) and
p(z|w) = N (z; wTφ(x), 0) for g and f respectively.

In the nonparametric case, we have task transformed BKR
(TTBKR). We place GP priors g ∼ GP(0, `) and f ∼
GP(0, k) on the functions directly. Consequently, TTBKR
is also referred to as task transformed Gaussian process
regression (TTGPR). Similar to TTBLR, the likelihoods are
p(z|g) = N (z; g(y), σ2) and p(z|f) = N (z; f(x), 0).

The graphical model for TTGPR is shown in fig. 2. The two
GPs for g and f are linked by constraining their targets to
be the same at y and x respectively. The GP for g is used to
infer the predictive distribution p(z̃|z), which in turn speci-
fies the overall likelihood p(z̃|f) used to infer f . Detailed
derivations are provided in the proof of theorem 5.3.
Theorem 5.3 (Task Transformed BLR (TTBLR) and Task
Transformed BKR (TTBKR)). (1) The TTBLR is a trans-
formed BLR (TBLR) with M = ΨT (ΨΨT + σ2

β2 I)−1Ψ̃ and

Σ = σ2Ψ̃T (ΨΨT + σ2

β2 I)−1Ψ̃ + σ2I as the transformation
and noise covariance. (2) The TTBKR is a transformed
BKR (TBKR) with transformation M = (L+ σ2I)−1L̃ and

noise covariance Σ = ˜̃L + σ2I − L̃T (L + σ2I)−1L̃. (3)
The TTBLR and TTBKR marginal likelihoods are p(z̃) =
N (z̃; 0, [Σ−1 − Σ−1ATΦTCΦAΣ−1]−1) where C =
[ΦAΣ−1ATΦT + 1

γ2 I]−1 and p(z̃) = N (z̃; 0, ATKA+Σ)
respectively. (4) For both models, when the posterior for g is
approximated via MAP, the covariance becomes Σ = σ2I .
In this case, the parametric (resp. nonparametric) DME
estimator (definitions 4.4 and 4.5) is the predictive mean of
a TTBLR (resp. TTBKR) with λ = σ2

nβ2 and ε = σ2

mγ2

(resp. λ = σ2

n and ε = σ2

m ). An alternative TTBKR
marginal likelihood is p(z̃) = N (z̃; 0, σ2[I−AT (KAAT +
σ2I)−1KA]−1). (5) When both posteriors for g and f
are approximated via MAP, TTBLR and TTBKR becomes
TTLRR and TTKRR respectively with λ and ε from (4).

Importantly, our end goal is to infer f . While this involves
inferring g, g is not of direct interest. A simpler alternative
is to only perform Bayesian inference on f and approximate
g with its MAP solution, simplifying the noise covariance
via (4) of theorem 5.3. This establishes a Bayesian interpre-
tation for DMEs as MAP estimates of TTGPs. Critically,
by maximizing the TTGP marginal likelihood, we can learn
DME hyperparameters of kernels k and `, and also λ and
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Figure 3. Illustration of latent function recovery with a task transformed Gaussian process (TTGP) on non-trivial simulation and observation
processes p(x|y) and p(z|y). (Left) The simulation process p(x|y). (Center) The observation process p(z|y). (Right) The true latent
function f , the naive solutions using cascaded regressors and imputed data, and the mean and uncertainty bounds of the TTGP, also the
Bayesian DME, with initial and learned hyperparameters. All bounds are 2 standard deviations from the mean.

ε. Furthermore, the computational complexity for alterna-
tive marginal likelihood is dominated by inversions that are
O(n3) only, again allowing for larger m at O(m).

In summary, we first establish the DME as a nonparametric
solution to the TTR problem under chained regularized least
squares losses that make learning f dependent on learning g.
While λ and ε are previously seen as numerical adjustments
to relax RKHS assumptions and stabilize matrix inversions
in the KME framework, they can now be seen as control-
ling the amount of function regularization under this loss.
Secondly, we present TTGPs as nonparametric Bayesian
solutions to this regression problem and show that DMEs
are their posterior predictive means. Again, inference of f is
dependent on the inference of g, allowing GP uncertainties
to propagate through. This connection provides Bayesian
interpretations of DMEs and enable uncertainty estimation
in inferring deconditional means. Critically, we use this to
derive marginal likelihoods for hyperparameter learning.

6. Nonparametric Bayes’ Rule
While DMOs were constructed as solutions to the decondi-
tional mean problem, they also resemble Bayes’ rule when
we focus solely on considering the encoded relationship be-
tween X and Y . This was motivated by theorem 4.1, which
revealed that the DMO can be fully specified by the CMO
CX|Y and the second order mean embedding CY Y that en-
coded the likelihood PY |X and prior PY respectively. To
establish this view, we investigate the conditions for which
the DMO C ′X|Y coincide with the CMO CY |X that encodes
the posterior PY |X , leading to a nonparametric Bayes’ rule.

While first class citizens of probability rules are density
evaluations, first class citizens of the KME framework are
expectations. Consequently, instead of relating density eval-
uations, rules under the KME framework relate mean em-
beddings of distributions at various orders. Importantly,
while a distribution Y ∼ PY has one simple density evalua-
tion pY (y), it can have different RKHS representations at
different orders such as µY and CY Y or higher.

A nonparametric Bayes’ rule is a rule which translates
Bayes’ rule into the RKHS, where distributions are rep-
resented as RKHS operators, alleviating limitations from
parametric assumptions such as Gaussian posteriors. It com-
putes a posterior operator CY |X when given only likelihood
operators (e.g. CX|Y ) and prior operators (e.g. CY Y ). The
DMO is appealing as all operators involved are of second or-
der and the same second order likelihood and prior operators
are used for both the joint and evidence operator.

However, becauseC ′XX is not necessarily the same asCXX ,
the DMO C ′X|Y = (CXY )T (C ′XX)−1 is not necessarily the
posterior operator CY |X = (CXY )T (CXX)−1. Neverthe-
less, under certain conditions they coincide with each other.
Theorem 6.1. If CX|Y CY |XCXX = CXX , then C ′XX =
CXX and C ′X|Y = CY |X .

A special instance where the assumptions are met is when
X = r(Y ) where r is not necessarily invertible. Impor-
tantly, for empirical DMOs, having xi = xj for any yi = yj
suffices, which can be achieved if all yi are unique. Further-
more, empirical DMOs C̄ ′X|Y can be seen as generalizations

of empirical CMOs ĈY |X in the other direction.
Theorem 6.2. If m = n and ỹi = yi for all i ∈ {1, . . . , n},
then the empirical DMO corresponding to PX|Y becomes
the empirical CMO corresponding to PY |X for λ→ 0+,

lim
λ→0+

C̄ ′X|Y = Ψ
[
K + nεI

]−1
ΦT = ĈY |X . (6.1)

Intuitively, suppose {xi, yi}ni=1 are from p(x, y) :=
p(x|y)p(y) and {ỹj}mj=1 = {yi}ni=1 is from p(y), then the
DMO of p(x|y) is equivalent to the CMO of p(y|x) =
p(x|y)p(y)/

∫
Y p(x|y)p(y)dy in the other direction, as per

theorem 6.2. In general, however, if {xi, yi}ni=1 are from
q(x, y) := p(x|y)q(y) and {ỹj}mj=1 is from p(y), then using
the joint samples from q(x, y) only to build the CMO will
yield the CMO of q(y|x) = p(x|y)q(y)/

∫
Y p(x|y)q(y)dy,

while using both the joint samples from q(x, y) and marginal
samples from p(y) to build the DMO will yield the CMO
corresponding to p(y|x) = p(x|y)p(y)/

∫
Y p(x|y)p(y)dy.

Appendix E details further parallels with probabilistic rules.
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7. Related Work
DMOs have strong connections to KBR. Both provide a
nonparametric Bayes’ rule under the KME framework. In
contrast to DMOs where both likelihood and prior operators
are of second order, both KBR(a) and KBR(b) (Song et al.,
2013; Fukumizu et al., 2013) use a third order likelihood
operator CXX|Y and a first order prior embedding µY for
the evidence operator CXX = CXX|Y µY . KBR(b) further
uses a different third order likelihood operator CXY |Y for
the joint operator CXY = CXY |Y µY . Consequently, KBR
becomes sensitive to inverse regularizations and effects of
prior samples ỹ can vanish. For instance, when ε → 0+,
KBR(b) degenerate to C̄Y |X = ΨK−1ΦT , which is a CMO
that no longer depend on ỹ. Instead, DMOs degenerate to
C̄ ′X|Y = Ψ̃AT

[
AAT

]−1
K−1ΦT , retaining their original

structure. Detailed comparisons are provided in appendix F.

Viewing KMEs as regressors provides valuable insights and
interpretations to the framework. CMOs can be established
as regressors where the vector-valued targets are also kernel
induced features (Grünewälder et al., 2012). In contrast,
we establish DMOs as solutions to task transformed regres-
sors which recover latent functions that, together with a
likelihood, governs interactions between three variables.

The TTR problem describes the setting of learning from
conditional distributions in the extreme case where only
one sample of xi is available for each yi to describe p(x|y).
Dual KMEs (Dai et al., 2017) formulate this setting as a sad-
dle point problem, and employ stochastic approximations
to efficiently optimize over the function space. However,
without connections to Bayesian models such as TTGPs that
admit a marginal likelihood, hyperparameter selection often
require inefficient grid search.

Hyperparameter learning of marginal embeddings have been
investigated by placing GP priors on the embedding itself to
yield a marginal likelihood objective (Flaxman et al., 2016).
However, it is unclear how this can be extended to CMEs.
Our marginal likelihoods (theorem 5.3 and theorem G.1)
provide such objective for DMEs and, due to theorem 6.2,
it can also be applied to CMEs as a special case.

8. Applications and Experiments
While DMEs are developed to complement the theoretical
framework of KMEs, in this section we describe and demon-
strate some of their practical applications with experiments.

8.1. Hyperparameter Learning for TTR

We first illustrate in fig. 3 the TTR problem, the primary
application of TTGPs and DMEs. While X and Y are
multivariate in general, we use 1D examples to enable visu-
alizations. Although this is a 1D problem, the simulation
process p(x|y) and observation process p(z|y) are governed
by non-trivial relationships where successful recovery of f
requires dealing with difficult multi-modalities in p(y|x).
To generate the data, we choose non-trivial functions r and f
and generateXi = r(Yi)+ηi and Z̃j = f(r(Ỹj)+ η̃j)+ ξ̃j ,
where Yi, Ỹj ∼ U(−6, 6) and ηi, η̃j , ξ̃j ∼ N (0, 0.252)
for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. In this way,
p(x|y) = N (x; r(y), 0.252), p(z|x) = N (z; f(x), 0.252),
and E[Z|Y = y] = E[f(r(y) + η̃) + ξ̃] = E[f(X)|Y = y].

By optimizing the marginal likelihood in theorem 5.3 (3),
we see that the DME is able to adapt from its initial hyper-
parameters to learn the latent function accurately.

We compare this to two naive solutions that one may propose
when faced with a TTR problem. The cascade method trains
separate regressors from X to Y , with the transformation
set, and from Y to Z, with the task set. They use the former
to predict y? from x? and the latter to predict z? from y?.
The impute method trains a regressor from Y to Z with
the task set and predicts zfake at locations y, and trains a
regressor on the dataset (x, zfake) to predict z? from a new
x?. We use GPR means (KRR) for all such regressors. Both
methods suffer because uncertainty propagation is lost by
training regressors separately. The cascade method suffers
further because p(y|x) is usually highly multi-modal such
as in this example, so unimodal regressors like GPR from
X to Y are unsuitable. This also highlights that while
DMEs provides unimodal Gaussian uncertainty on function
evaluations and thus Z, they capture multi-modality as a
nonparametric Bayes’ rule between X and Y .
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8.2. Sparse Representation Learning with TTGP

A special case of the TTR problem is to learn sparse repre-
sentations for big data with trainable inducing points. Con-
tinuing with the notations used so far, we are given a large
original dataset (ỹ, z̃) of size m, with inputs Y and target
Z. We let the transformation dataset be a set of n inducing
points x = y = u for Y where n << m. That is, we degen-
erate to X = Y and X = Y . We maximize the alternative
marginal likelihood in theorem 5.3 (4) with respect to the
inducing points and learn the TTGP hyperparameters jointly.
For predictive mean we use the alternative computational
form in definition 4.4. Similar form exists for the covariance.
These alternative forms are suitable for this application be-
cause n is small for its O(n3) inversions and dependence
on m is only O(m). We illustrate this process in fig. 4.

8.3. Likelihood-Free Inference with DME

As a nonparametric Bayes’ rule, DMEs can be used for
likelihood-free inference (LFI) (Marin et al., 2012) where
likelihood evaluations are intractable but sampling from
a simulator x ∼ p(x|θ) is possible. The simulator takes
parameters θ and stochastically generates simulated data
that are often summarized into statistics x. Observed data
are also summarized into statistics y, and discrepancies with
x are often measured by an ε-kernel κε(y,x) = pε(y|x)
such that pε(y|θ) =

∫
pε(y|x)p(x|θ)dθ. This ε is not to

be confused with the regularization used for C ′XX , which
we denote as δ for this section only. After selecting a prior
p(θ), the goal is to approximate the posterior pε(θ|y).

Translating notations into the LFI setting, we have xi → xi,
yi → θi, ỹj → θ̃j , and x → y. We first simulate
xi ∼ p(x|θi) on parameters {θi}ni=1 ∼ π(θ) not neces-
sarily from the prior to get {θi,xi}ni=1 for the likelihood,
and sample {θ̃j}mj=1 ∼ p(θ) for the prior. We then build
the DME µ̄Θ|X=y and sample it with kernel herding (Chen
et al., 2010) for posterior super-samples. This is described
in algorithm 8.1. We also provide the approximate marginal
likelihood objective q̄ to maximize for hyperparameter learn-
ing of the DME. Derivations are detailed in appendix G.

Algorithm 8.1 Deconditional Mean Embeddings for LFI
1: Input: Data y, simulations {θi,xi}ni=1 ∼ p(x|θ)π(θ),

prior samples {θ̃j}mj=1 ∼ p(θ), query points {θ?r}Rr=1,
kernels k, κε, `, and `′, regularization λ and δ

2: L← {`(θi,θj)}n,ni,j=1, L̃← {`θi, θ̃j)}n,mi,j=1

3: A← (L+ nλI)−1L̃, L̃? ← {`(θ̃j ,θ?r )}m,Rj,r=1,
4: K ← {k(xi,xj)}n,ni,j=1, k(y)← {k(xi,y)}ni=1

5: DME: µ← (L̃?)TAT
[
KAAT +mδI

]−1
k(y) ∈ RR

6: for s ∈ {1, . . . , S} with a← 0 ∈ RR initialized do
7: θ̂s ← θ?r? where r? ← argmaxr µr − (ar/s)

8: a← a + {`′(θ?r , θ̂s)}Rr=1

9: end for
10: Output: Posterior super-samples {θ̂s}Ss=1

11: Learning: q̄ ← mean(ATκε), κε ← {κε(y,xi)}ni=1

Figure 5 demonstrates algorithm 8.1 on two standard bench-
marks. For the toy exponential-gamma problem we compare
directly with other kernel approaches. As simulations are
usually very expensive, we show the case with very limited
simulations (n = 100), leading to most methods producing
posteriors wider than the ground truth. Nevertheless, by
optimizing q̄ in line 11, DMEs can adapt their kernel length
scales accordingly. For Lotka-Volterra, the ABC methods
used more than 100000 simulations, while MDN used 10000
simulations. To achieve competitive accuracy, kernel ap-
proaches such as DMEs, KELFI (Hsu & Ramos, 2019), and
KBR used 2000, 2500, and 2500 simulations. Acronyms
and experimental details are described in appendix G.

9. Conclusion
The connections of DMEs with CMEs and GPs produce use-
ful insights towards the KME framework, and are important
steps towards establishing Bayesian views of KMEs. DMEs
provide novel solutions to a class of nonparametric Bayesian
regression problems and enable applications such as sparse
representation learning and LFI. For future work, relaxing
assumptions required for DMOs as a nonparametric Bayes’
rule can have fruitful theoretical and practical implications.
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A. Supporting Proofs for Section 3
Proof of Theorem 3.1. Let f ∈ Hk and g(y) := E[f(X)|Y = y]. Assuming g ∈ H`, then CY Y g = CY Xf (Fukumizu
et al., 2004), so that

g = C−1Y Y CY Xf

= ((CY X)TC−1Y Y )T f

= (CXY C
−1
Y Y )T f,

(A.1)

where the inverse C−1Y Y exists because `(y, ·) is assumed to be in the image of CY Y so that any g ∈ H` is also in the image.
Hence, CXY C−1Y Y satisfies the definition of a CMO.

Proof of Lemma 3.2. Each of the following statements are equivalent to each other.

(CX|Y )T f = E[f(X)|Y = ·], ∀f ∈ Hk
⇐⇒ 〈`(y, ·), (CX|Y )T f〉H`

= 〈`(y, ·),E[f(X)|Y = ·]〉H`
, ∀f ∈ Hk, ∀y ∈ Y

⇐⇒ 〈CX|Y `(y, ·), f〉Hk
= E[f(X)|Y = y] = 〈E[k(X, ·)|Y = y], f〉Hk

, ∀f ∈ Hk, ∀y ∈ Y
⇐⇒ CX|Y `(y, ·) = E[k(X, ·)|Y = y], ∀y ∈ Y.

(A.2)

Consequently, the first and last statements are equivalent.

Proof of Theorem 3.3. We show that the empirical CMO can be written as (3.4). We use a special case of the Woodbury
identity (Higham, 2002), B(CB + λI)−1 = (BC + λI)−1B, where B and C are appropriately defined operators, such
matrices with the correct shapes. Using the empirical forms for the cross-covariance operators, we have

ĈX|Y := ĈXY (ĈY Y + λI)−1

=
1

n
ΦΨT (

1

n
ΨΨT + λI)−1

= ΦΨT (ΨΨT + nλI)−1

= Φ(ΨTΨ + nλI)−1ΨT

= Φ(L+ nλI)−1ΨT .

(A.3)
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B. Supporting Proofs for Section 4
Proof of Theorem 4.1. Let f ∈ Hk and g(y) := E[f(X)|Y = y], then from definition 3.2 we have

g = (CX|Y )T f

CXY g = CXY (CX|Y )T f

CX|Y CY Y g = CX|Y CY Y (CX|Y )T f

(CX|Y CY Y (CX|Y )T )−1CX|Y CY Y g = f

((CX|Y CY Y )T (CX|Y CY Y (CX|Y )T )−1)T g = f,

(B.1)

where the inverse (CX|Y CY Y (CX|Y )T )−1 exists because CXY g ∈ Hk and k(x, ·) ∈ image(CX|Y CY Y (CX|Y )T ) so
that CXY g for any g ∈ H` is also in the image. In the last line we also used the fact that (CX|Y CY Y (CX|Y )T )T =
CX|Y CY Y (CX|Y )T is symmetric since (CY Y )T = CY Y . Hence, (CX|Y CY Y )T (CX|Y CY Y (CX|Y )T )−1 satisfies the
definition of a DMO. The assumption `(y, ·) ∈ image(CY Y ) is required so that the original CMO exists and is unique.

Proof of Theorem 4.2. Since `(y, ·) ∈ image(CY Y ) for all y ∈ Y and k(x, ·) ∈ image(CX|Y CY Y (CX|Y )T ) for all
x ∈ X , we have that C−1Y Y exists so that CX|Y is unique and (CX|Y CY Y (CX|Y )T )−1 exists so that C ′X|Y is unique. Due
to theorem 4.1 we have C ′X|Y = (CX|Y CY Y )T (CX|Y CY Y (CX|Y )T )−1. Since CX|Y CY Y (CX|Y )T is at least positive
semi-definite and invertible we can write (CX|Y CY Y (CX|Y )T )−1 = limε→0+(CX|Y CY Y (CX|Y )T + εI)−1,

C ′X|Y = lim
ε→0+

(CX|Y CY Y )T (CX|Y CY Y (CX|Y )T + εI)−1

= lim
ε→0+

(CX|Y CY Y )T (CX|Y (CX|Y CY Y )T + εI)−1

= lim
ε→0+

(CXY )T (CX|Y (CXY )T + εI)−1

= lim
ε→0+

CY X(CX|Y CY X + εI)−1

= lim
ε→0+

(CY XCX|Y + εI)−1CY X

= lim
ε→0+

(CY Y C
−1
Y Y CY XCX|Y + εCY Y C

−1
Y Y )−1CY X

= lim
ε→0+

(C−1Y Y CY XCX|Y + εC−1Y Y )−1C−1Y Y CY X

= lim
ε→0+

(C−1Y Y CY XCX|Y + εC−1Y Y )−1C−1Y Y CY X

= lim
ε→0+

((CXY C
−1
Y Y )TCX|Y + εC−1Y Y )−1(CXY C

−1
Y Y )T

= lim
ε→0+

((CX|Y )TCX|Y + εC−1Y Y )−1(CX|Y )T

= ((CX|Y )TCX|Y )−1(CX|Y )T =: C†X|Y .

(B.2)

In line 6 we used the Woodbury identity (Higham, 2002). In the last line, the limit exists as ((CX|Y )TCX|Y )−1 exists.

Proof of Theorem 4.3. We show that the empirical DMO can be written as (4.4). From definition 3.3 and theorem 3.3, the
likelihood operator is estimated from {xi, yi}ni=1 as

ĈX|Y := ĈXY (ĈXX + λI)−1 = Φ(L+ nλI)−1ΨT . (B.3)

The prior operator corresponding to the marginal PY is estimated from {ỹj}mj=1 as

C̃Y Y =
1

m
Ψ̃Ψ̃T . (B.4)

Let A := (L+ nλI)−1L̃, the joint operator is estimated as

ĈX|Y C̃Y Y =
1

m
Φ(L+ nλI)−1ΨT Ψ̃Ψ̃T =

1

m
Φ(L+ nλI)−1L̃Ψ̃T =

1

m
ΦAΨ̃T . (B.5)
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The evidence operator is estimated as

ĈX|Y C̃Y Y (ĈX|Y )T =
1

m
Φ(L+ nλI)−1L̃Ψ̃TΨ(L+ nλI)−1ΦT

=
1

m
Φ(L+ nλI)−1L̃L̃T (L+ nλI)−1ΦT

=
1

m
ΦAATΦT .

(B.6)

Finally, by definition 4.3, the DMO is estimated as

C̄ ′X|Y = (ĈX|Y C̃Y Y )T (ĈX|Y C̃Y Y (ĈX|Y )T + εI)−1

=

[
1

m
ΦAΨ̃T

]T[
1

m
ΦAATΦT + εI

]−1
=
[
ΦAΨ̃T

]T [
ΦAATΦT +mεI

]−1
= Ψ̃ATΦT

[
ΦAATΦT +mεI

]−1
= Ψ̃

[
ATΦTΦA+mεI

]−1
ATΦT

= Ψ̃
[
ATKA+mεI

]−1
ATΦT .

(B.7)
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C. Supporting Proofs for Section 5
Proof of Theorem 5.1. Each optimization is a standard regularized least squares problem. The first optimization over v can
be written as

v̂[w] = argmin
v∈Rq

‖ΦTw −ΨTv‖2 + nλ‖v‖2, (C.1)

where f = ΦTw is the target and Ψ is the feature matrix. This gives the solution v̂[w] = (ΨΨT + nλI)−1Ψ(ΦTw).
Therefore, The second optimization over w can be written as

w̄ = argmin
w∈Rp

‖z̃− Ψ̃T v̂[w]‖2 +mε‖w‖2

= argmin
w∈Rp

‖z̃− Ψ̃T (ΨΨT + nλI)−1ΨΦTw‖2 +mε‖w‖2

= argmin
w∈Rp

‖z̃−ATΦTw‖2 +mε‖w‖2

= argmin
w∈Rp

‖z̃−ΘTw‖2 +mε‖w‖2,

(C.2)

where we used A := ΨT (ΨΨT + nλI)−1Ψ̃ as per definition 4.5 and we define Θ := ΦA. This is now a regularized least
squares problem with z̃ as the target and Θ := ΦA as the feature matrix. This gives the solution w̄ = (ΘΘT +mεI)−1Θz̃ =
(ΦAATΦT +mεI)−1ΦAz̃, which yields the parametric DME estimator in definition 4.5.

Proof of Lemma 5.2. We first establish that the transformation matrix in definition 4.4 A = (L + nλI)−1L̃ is the same
as the transformation matrix in definition 4.5 A = ΨT (ΨΨT + nλI)−1Ψ̃ via a special case of the Woodbury identity
B(CB + δI)−1 = (BC + δI)−1B for appropriately sized matrices or operators B and C (Higham, 2002). Consequently,
(L+ nλI)−1L̃ = (ΨTΨ + nλI)−1ΨT Ψ̃ = ΨT (ΨΨT + nλI)−1Ψ̃.

From definition 4.4 we have ᾱ := A
[
ATKA+mεI

]−1
z̃ so that

Φᾱ = ΦA
[
ATKA+mεI

]−1
z̃

= ΦA
[
ATΦTΦA+mεI

]−1
z̃

=
[
ΦAATΦT +mεI

]−1
ΦAz̃

= w̄.

(C.3)

This relationship is a direct consequence of the kernel trick, where we used k(x, x′) = φ(x)Tφ(x′) such thatK = ΦTΦ.

Proof of Theorem 5.3 Part 1 – Task Transformed BLR (TTBLR). In this proof we provide the derivations for task trans-
formed BLR (TTBLR). We first reiterate the priors and likelihoods used.

Priors We first place priors on the weights of our linear models g(y) = vTψ(y) and f(x) = wTψ(x),

p(v) ∼ N (v; 0, β2I),

p(w) ∼ N (w; 0, γ2I).
(C.4)

Likelihoods As we only observe from g and never from f directly, there is no need to add noise from f(x) to z and we
degenerate the likelihood to z = f(x). The likelihood for g is the regular Gaussian likelihood due to observational noise.
Together, we have

p(z|v) = N (z; vTψ(y), σ2),

p(z|w) = N (z; wTφ(x), 0).
(C.5)

Prior for g The prior on the weights of g is

p(v) = N (v; 0, β2I). (C.6)
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Likelihood for g In task transformed learning, the pairs (y, z) are used to learn g, and (ỹ, z̃) are the query points for g.
Although z is not directly available, they are propagated through from f . We also refer to z as the pseudo-training targets.
This leads to the following likelihood,

p(z|v) = N (z; ΨTv, σ2I),

p(z̃|v) = N (z̃; Ψ̃Tv, σ2I).
(C.7)

Marginal Likelihood for g The marginal likelihood of observing the pseudo-training targets z is

p(z) =

∫
Rq

p(z|v)p(v)dv

= N (z; 0, β2ΨTΨ + σ2I).

(C.8)

Posterior for g The posterior of the weights given the pseudo-training targets z is

p(v|z) =
p(z|v)p(v)

p(z)

= N

(
v;

(
ΨΨT +

σ2

β2
I

)−1
Ψz, σ2

(
ΨΨT +

σ2

β2
I

)−1)
.

(C.9)

Predictive distribution for g The posterior predictive distribution of z̃ given the pseudo-training targets z is

p(z̃|z) =

∫
Rq

p(z̃|v)p(v|z)dv

= N

(
z̃; Ψ̃T

(
ΨΨT +

σ2

β2
I

)−1
Ψz, σ2Ψ̃T

(
ΨΨT +

σ2

β2
I

)−1
Ψ̃ + σ2I

)
= N (z̃;AT z,Σ),

(C.10)

where A = ΨT (ΨΨT + σ2

β2 I)−1Ψ̃ and Σ = σ2Ψ̃T (ΨΨT + σ2

β2 I)−1Ψ̃ + σ2I .

Importantly, the MAP solution for learning g amount to just taking the posterior mean v̂ = (ΨΨT + σ2

β2 I)−1Ψz as a point
estimate. In this case, the predictive covariance would simplify to Σ = σ2I .

Prior for f The prior on the weights of f is

p(w) = N (w; 0, γ2I). (C.11)

Likelihood for f As targets z are never directly observed from f , the likelihood is a noiseless Gaussian likelihood,

p(z|w) = N (z; ΦTw, 0I),

p(z?|w) = N (z?; (Φ?)Tw, 0I).
(C.12)

Propagating this likelihood through the predictive distribution of g, we have

p(z̃|w) =

∫
Rn

p(z̃|z)p(z|w)dz

= N (z̃;ATΦTw,Σ).

(C.13)

The above prior-likelihood pair describes a TBLR with M = A = ΨT (ΨΨT + σ2

β2 I)−1Ψ̃ as the transformation matrix and

Σ = σ2Ψ̃T (ΨΨT + σ2

β2 I)−1Ψ̃ + σ2I as the noise covariance. As such, the remaining distributions exhibit the same forms
as shown in table C.1.
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Table C.1. Summary of TBLR and TBKR, where C := [ΦMΣ−1MTΦT + 1
γ2
I]−1, m := CΦMΣ−1z̃, and S := MTKM + Σ.

Density Transformed Bayesian Linear Regression Transformed Bayesian Kernel Regression

Prior p(w) = N (w; 0, γ2) p(f) = N (f ; 0,K)
Likelihood p(z̃|w) = N (z̃;MTΦTw,Σ) p(z̃|f) = N (z̃;MT f ,Σ)
Evidence p(z̃) = N (z̃; 0, [Σ−1 − Σ−1MTΦTCΦMΣ−1]−1) p(z̃) = N (z̃; 0,MTKM + Σ)
Posterior p(w|z̃) = N (w; m, C) p(f |z̃) = N (f ;KMS−1z̃,K −KMS−1MTK)

Predictive p(z?|z̃) = N (z?; Φ?Tm,Φ?TCΦ?) p(z?|z̃) = N (z?;K?TMS−1z̃,K?? −K?TMS−1MTK?)

Marginal Likelihood for f The marginal likelihood for the observed targets z̃ is

p(z̃) =

∫
Rp

p(z̃|w)p(w)dw

= N (z̃; 0, γ2ATΦTΦA+ Σ)

= N (z̃; 0, [Σ−1 − Σ−1ATΦTCΦAΣ−1]−1),

(C.14)

where C = [ΦAΣ−1ATΦT + 1
γ2 I]−1. The last line is an alternative form that is more computationally efficient when the

number of features is less than p < m where p is the dimensionality of the feature φ(x) for f .

Posterior for f The posterior of the weights w given the observed targets z̃ is

p(w|z̃) =
p(z̃|w)p(w)

p(z̃)

= N (w; m, C),

(C.15)

where m := CΦAΣ−1z̃.

Predictive distribution for f Finally, the overall predictive distribution of query targets z? given the observed targets z̃ is

p(z?|z̃) =

∫
Rp

p(z?|w)p(w|z̃)dw

= N (z?; Φ?Tm,Φ?TCΦ?).

(C.16)

Consider the posterior mean m := CΦAΣ−1z̃ = [ΦAΣ−1ATΦT + 1
γ2 I]−1ΦMΣ−1z̃, which would also be the MAP

solution for f . Using the MAP solution for learning g such that Σ = σ2I , we have m := [ΦAATΦT + σ2

γ2 I]−1ΦAz̃. This

is the same form as the weights w̃ of the parametric DME estimator (definition 4.5) with λ = σ2

nβ2 and ε = σ2

mγ2 .

Proof of Theorem 5.3 Part 2 – Task Transformed BKR (TTBKR). In this proof we provide the derivations for task trans-
formed BKR (TTBKR), also named task transformed Gaussian process regression (TTGPR), whose graphical model is
provided in fig. 2. We first reiterate the priors and likelihoods used.

Priors We place GP priors on the functions g and f directly,

g ∼ GP(0, `),

f ∼ GP(0, k).
(C.17)

Likelihoods As we only observe from g and never from f directly, there is no need to add noise from f(x) to z and we
degenerate the likelihood to z = f(x). The likelihood for g is the regular Gaussian likelihood due to observational noise.
Together, we have

p(z|g) = N (z; g(y), σ2),

p(z|f) = N (z; f(x), 0).
(C.18)
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Prior for g The prior of g at y is
p(g) = N (g; 0, L). (C.19)

Likelihood for g In task transformed learning, the pairs (y, z) are used to learn g, and (ỹ, z̃) are the query points for g.
Although z is not directly available, they are propagated through from f . We also refer to z as the pseudo-training targets.
The likelihood of observing z at y is,

p(z|g) = N (z; g, σ2I). (C.20)

Marginal Likelihood for g The marginal likelihood of observing the psuedo-training targets z is:

p(z) =

∫
Rn

p(z|g)p(g)dg

= N (z; 0, L+ σ2I).

(C.21)

Posterior for g The posterior of the latent function evaluations g at y given the pseudo-training targets z is

p(g|z) =
p(z|g)p(g)

p(z)

= N (g;L(L+ σ2I)−1z, L− L(L+ σ2I)−1L).

(C.22)

Predictive distribution for g To obtain the predictive distribution, we first condition the GP field for on the latent function
evaluations g at y and to obtain the conditional distribution for g̃ at ỹ given g at y,

p(g̃|g) = N (g̃; L̃TL−1g, ˜̃L− L̃TL−1L̃). (C.23)

where ˜̃L := Ψ̃T Ψ̃. Now, marginalize the conditional field against the posterior,

p(g̃|z) =

∫
Rn

p(g̃|g)p(g|z)dg

= N (g̃; L̃T (L+ σ2I)−1z, ˜̃L− L̃T (L+ σ2I)−1L̃)

(C.24)

Finally, marginalize the likelihood p(g̃|z) with the predictive distribution of the latent evaluations g̃ to get the final predictive
distribution of the observations z̃,

p(z̃|z) =

∫
Rm

p(z̃|g̃)p(g̃|z)dg̃

= N (z̃; L̃T (L+ σ2I)−1z, ˜̃L+ σ2I − L̃T (L+ σ2I)−1L̃)

= N (z̃;AT z,Σ),

(C.25)

where A = (L+ σ2I)−1L̃ and Σ = ˜̃L+ σ2I − L̃T (L+ σ2I)−1L̃.

Importantly, the MAP solution for learning g amount to just taking the posterior mean g̃ = L̃T (L+ σ2I)−1z as a point
estimate. In this case, the predictive covariance would simplify to Σ = σ2I .

Prior for f The prior of f at x is
p(f) = N (f ; 0,K). (C.26)

Likelihood for f As targets z are never directly observed from f , the likelihood is a noiseless Gaussian likelihood,

p(z|f) = N (z; f , 0I). (C.27)

Propagating this likelihood through the predictive distribution of g, we have

p(z̃|f) =

∫
Rn

p(z̃|z)p(z|f)dz

= N (z̃;AT f ,Σ).

(C.28)
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The above prior-likelihood pair describes a TBKR with M = A = (L + σ2I)−1L̃ as the transformation matrix and

Σ = ˜̃L+ σ2I − L̃T (L+ σ2I)−1L̃ as the noise covariance. As such, the remaining distribution exhibit the same forms as
shown in table C.1.

Marginal Likelihood for f The marginal likelihood for the observed targets z̃ is

p(z̃) =

∫
Rn

p(z̃|f)p(f)df

= N (z̃; 0, ATKA+ Σ).

(C.29)

Posterior for f The posterior of the function evaluations f at x given the observed targets z̃ is

p(f |z̃) =
p(z̃|f)p(f)

p(z̃)

= N (f ;KA(ATKA+ Σ)−1z̃,K −KA(ATKA+ Σ)−1ATK).

(C.30)

Predictive distribution for f Finally, to obtain the predictive distribution we first condition the GP field on the latent
function evaluations f to obtain the conditional distribution for f? at x? given f at x.

p(f?|f) = N (f?; (K?)TK−1f ,K?? − (K?)TK−1K?). (C.31)

Now, marginalize the conditional field against the posterior,

p(f?|z̃) =

∫
Rn

p(f?|f)p(f |z̃)df

= N (f?; (K?)TA(ATKA+ Σ)−1z̃,K?? − (K?)TA(ATKA+ Σ)−1ATK?).

(C.32)

Finally, the overall predictive distribution of query targets z? given the observed targets z̃ is

p(z?|z̃) =

∫
Rn

p(z?|f?)p(f?|z̃)df?

= N (z?; (K?)TA(ATKA+ Σ)−1z̃,K?? − (K?)TA(ATKA+ Σ)−1ATK?).

(C.33)

Consider the posterior predictive mean at a particular query point x, f̄(x) = (k(x))TA(ATKA+ Σ)−1z̃ = z̃T (ATKA+
Σ)−1ATk(x). Using the MAP solution for learning g such that Σ = σ2I , we have f̄(x) = z̃T (ATKA+ σ2I)−1ATk(x).
This is the same form as the nonparametric DME estimator (definition 4.5) with λ = σ2

n and ε = σ2

m .
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D. Supporting Proofs for Section 6
Proof of Theorem 6.1. We first factorize the joint operator CY X = (CXY )T in both directions,

CY |XCXX = CY X = (CXY )T = (CX|Y CY Y )T = CY Y (CX|Y )T . (D.1)

This is analogous to the equation p(y|x)p(x) = p(y, x) = p(x, y) = p(x|y)p(y) = p(y)p(x|y).

Since CX|Y CY |XCXX = CXX , we then apply CX|Y on both sides to cancel out CY |X and obtain the equation for CXX ,

CXX = (CX|Y CY |X)CXX = CX|Y (CY |XCXX) = CX|Y CY Y (CX|Y )T . (D.2)

This is analogous to the equation p(x) =
∫
Y p(y|x)dyp(x) =

∫
Y p(y|x)p(x)dy =

∫
Y p(y)p(x|y)dy.

Hence,
C ′XX := CX|Y CY Y (CX|Y )T = CXX . (D.3)

Finally, from theorem 4.1 we have

C ′X|Y = (CX|Y CY Y )T (CX|Y CY Y (CX|Y )T )−1 = CY XC
−1
XX = CY |X . (D.4)

Proof of Theorem 6.2. Since m = n and ỹ = y, we have that L̃ = L, Ψ̃ = Ψ. Consequently, limλ→0+ A = limλ→0+(L+
nλI)−1L = I . Substituting this into (3.4) we have

lim
λ→0+

C̄ ′X|Y = lim
λ→0+

Ψ̃
[
ATKA+mεI

]−1
ATΦT = Ψ

[
ITKI + nεI

]−1
ITΦT = Ψ

[
K + nεI

]−1
ΦT . (D.5)

Reversing the roles of X and Y in (3.4) and replacing the notation λ with ε, we have that ĈY |X = Ψ
[
K + nεI

]−1
ΦT . This

concludes the proof.
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Table E.1. Mean embeddings and their encoded expectations. Switch X ↔ Y for all combinations. Since the bottom two rows do
not apply for the first column, additional equivalences for the last column are provided instead. The kernels k : X × X → R and
` : Y ×Y → R are positive definite and characteristic on their respective spaces X and Y . They define the RKHSHk andH` respectively.
We defineH`` := H` ⊗H` andHk` := Hk ⊗H` and let g, g′ ∈ H` and f ∈ Hk be generic example functions within each RKHS.

Random Y (Y, Y ) (X,Y ) X|Y = y
Variable : Ω→ Y : Ω→ Y × Y : Ω→ X × Y : Ω→ X
Density pY ∈ PY pY Y ∈ PY×Y pXY ∈ PX×Y pX|Y=y ∈ PX
Function pY (y) ∈ R+ pY Y (y, y′) ∈ R+ pXY (x, y) ∈ R+ pX|Y=y(x) ∈ R+

Mean Map µY := µY Y := µXY := µX|Y=y =
Definition E[`(Y, ·)] E[`(Y, ·)`(Y, ·)T ] E[k(X, ·)`(Y, ·)T ] E[k(X, ·)|Y = y]

Mean µY ∈ H` µY Y ∈ H`` µXY ∈ Hk` µX|Y=Y ∈ Hk
Embedding µY (y) ∈ R µY Y (y, y′) ∈ R µXY (x, y) ∈ R µX|Y=y(x) ∈ R

Encoded 〈µY , g〉H`
〈µY Y , g′gT 〉H``

〈µXY , fgT 〉Hk`
〈µX|Y=y, f〉Hk

Expectation = E[g(Y )] = E[g′(Y )g(Y )] = E[f(X)g(Y )] = E[f(X)|Y = y]

Operator CX|Y CY Y CY Y := µY Y CXY := µXY CX|Y `(y, ·) :=
Definition = CXY (CY Y )T = CY Y (CXY )T = CY X µX|Y=y

Encoded fTCXY = 〈g′, CY Y g〉H`
〈f, CXY g〉Hk

(CX|Y )T f = g :=
Expectation gTCY Y = E[g′(Y )g(Y )] = E[f(X)g(Y )] E[f(X)|Y = ·]

E. Parallels between Probabilistic Rules and Mean Operators for Section 6
Both the usual and nonparametric Bayes’ rule are derived to reverse the relationship specified by the likelihood (density or
operator, resp.) by matching the joint. In both cases, the prior (density or operator, resp.) is inevitably required to perform
this computation.

Consider the derivation for Bayes’ rule. When given a forward density p(x|y) and a marginal density on its conditioned
variable p(y) which specifies a joint p(x, y) = p(x|y)p(y), we seek a backward density q(y|x) and a marginal density
q(x) that would yield the same joint q(y|x)q(x) = p(x, y) = p(x|y)p(y). It is only when applying

∫
Y ·dy on both sides,

requiring that q(y|x) is a density, that we have q(x) =
∫
Y p(x|y)p(y)dy and thus Bayes’ rule.

Similarly, when given a forward CMO CX|Y : H` → Hk and a symmetric operator CY Y : H` → H` on its conditioned
variable which specifies a joint CXY = CX|Y CY Y , we seek a backward operator DY |X : Hk → H` and a symmetric
operator DXX : Hk → Hk that would yield the same joint DY |XDXX = CY X = (CXY )T = (CX|Y CY Y )T . Without
further requirement we see that DY |X = C ′X|Y (4.2) and DXX = C ′XX is one solution. It is only when applying CX|Y
on both sides, requiring the assumption of theorem 6.1, that we have DY |X = CY |X and DXX = CXX and thus a
nonparametric Bayes’ rule.

Importantly, it is only when DMOs and KBR are viewed as a statement for relationship between X and Y that they are
seen as nonparametric versions of the Bayes’ rule. However, DMOs and KBR are not Bayesian models with respect to the
task of inferring deconditional mean or conditional means. This is because both models only infer point estimates for the
deconditional or conditional mean, and no measure of uncertainty in the inferred function is provided.

Table E.1 review mean embeddings and their encoded expectations, providing probabilistic interpretations to RKHS
embeddings and operators (Song et al., 2013).
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Table F.1. Empirical estimators for DMO and KBR. We use the shorthand A := (L+ nλI)−1L̃ and D := diag(A1).
Method Joint Operator Evidence Operator Posterior Operator Computational Form

C̄XY C̄XX or C̄ ′XX C̄Y |X or C̄ ′X|Y C̄Y |X or C̄ ′X|Y

DMO ĈX|Y C̃Y Y ĈX|Y C̃Y Y (ĈX|Y )T (C̄XY )T (C̄ ′XX + εI)−1 Ψ̃
[
ATKA+mεI

]−1
ATΦT

DMO(W) ĈX|Y C̃Y Y ĈX|Y C̃Y Y (ĈX|Y )T (C̄XY )T (C̄ ′XX + εI)−1 Ψ̃AT
[
KAAT +mεI

]−1
ΦT

KBR(a)-I ĈX|Y C̃Y Y ĈXX|Y µ̃Y (C̄XY )T (C̄XX + εI)−1 Ψ̃AT
[
KD +mεI

]−1
ΦT

KBR(a)-II ĈX|Y C̃Y Y ĈXX|Y µ̃Y (C̄XY )T (C̄2
XX + εI)−1C̄XX Ψ̃AT

[
(KD)2 +m2εI

]−1
KDΦT

KBR(b)-I ĈXY |Y µ̃Y ĈXX|Y µ̃Y (C̄XY )T (C̄XX + εI)−1 ΨD
[
KD +mεI

]−1
ΦT

KBR(b)-II ĈXY |Y µ̃Y ĈXX|Y µ̃Y (C̄XY )T (C̄2
XX + εI)−1C̄XX ΨD

[
(KD)2 +m2εI

]−1
KDΦT

F. Connections between the Deconditional Mean Operator and Kernel Bayes’ Rule for Section 7
Bayesian inference often requires computation of the posterior PY |X when given the likelihood PX|Y and the prior PY .

When density evaluations exist, the Bayes’ rule provides their relationship as pY |X(·|x) =
pX|Y (x|·)pY (·)∫

Y pX|Y (x|y)pY (y)dy
.

Nevertheless, several levels of intractability may arise. The first is when both likelihood and prior density evaluations are
tractable but the evidence integral

∫
Y pX|Y (x|y)pY (y)dy is intractable, leading to literatures such as variational inference

(VI) (Blei et al., 2017) and Markov chain Monte Carlo (MCMC) (Hastings, 1970). The next is when only likelihood
evaluations are intractable but sampling is possible, leading literatures such as LFI and approximate Bayesian computation
(ABC) (Marin et al., 2012). More rarely, only prior evaluations are intractable but available via sampling, leading to
literatures in implicit priors. The last is when both the likelihood and prior evaluations are intractable but available via
sampling, leading to newer literatures such as implicit generative models.

While there are many approaches that addresses each of these scenarios, the underlying limitation is that Bayes’ rule requires
density evaluations that are difficult to approximate in high dimensions from samples. Instead, if relationships between the
posterior, likelihood, and prior can be captured without using density evaluations, but directly by using samples, this issue
could be more naturally sidestepped. Both DMOs and KBR provide such a nonparametric Bayes’ rule.

Table F.1 compares all four forms of KBR (Song et al., 2013) with DMO. This table illustrates the different ways each
method estimates the joint and evidence operators from likelihood and prior operators, the type of regularization used for
inverting the evidence operator, and the final computational form. For KBR, (a) and (b) differ in the joint operator, and I and
II differ in the type of regularization used for inverting the evidence operator. Via the Woodbury identity, for DMO we also
show an alternative computational form DMO(W) that better illustrate its contrast with KBR(a)-I and KBR(b)-I. Note that
unlike the four types of KBR, DMO(W) is the same model as DMO, just with a different computational form.

In particular, the diagonal matrix D := diag(A1) arises from the use of third order operators. This can make estimators
sensitive to regularizations on inverse operators. This is best seen in the degenerate case of ε → 0+, shown in table F.2,
where for KBR(b) the effect of ỹ vanishes, even though ε does not correspond to regularizations from the prior.

Furthermore, the original computational form of DMOs involves the inverse of a positive definite matrix. This however
is not true for KBR(a) and KBR(b) since KD is not symmetric and thus the resulting matrix to be inverted cannot be
positive definite. For KBR(b), by using D = D

1
2D

1
2 and the Woodbury identity, KBR(b)-I and KBR(b)-II can be written in

forms with symmetric matrix inverses as C̄Y |X = ΨD
1
2

[
D

1
2KD

1
2 +mεI

]−1
D

1
2 ΦT and C̄Y |X = ΨD

1
2

[
D

1
2KDKD

1
2 +

m2εI
]−1

D
1
2KDΦT respectively. However, it is difficult to interpret this form.

Finally, similar to theorem 6.2, for the other degenerate case where m = n, ỹ = y, and λ→ 0+, all estimators revert to a
CME ĈY |X = Ψ(K + nεI)−1ΦT .

Table F.2. Degenerate case for empirical estimators when ε = 0

DMO(W) KBR(a) KBR(b)

Ψ̃AT
[
AAT

]−1
K−1ΦT Ψ̃ATD−1K−1ΦT ΨK−1ΦT
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G. Theorems and Experiment Details for Section 8
G.1. Hyperparameter Learning of Deconditional Kernel Mean Embeddings for Likelihood Free Inference

To learn hyperparameters, we maximize the following objective function which approximate the marginal likelihood of the
inference problem.
Theorem G.1 (Approximate Marginal Likelihood for LFI). Assume κε(y, ·) ∈ Hk and that ĈX|Θ is a bounded operator
for all n. Denote κε(y) = {κε(y,xi)}ni=1 and 1m = {1}mj=1, then q̄(y) := 〈κε(y, ·), ĈX|Θµ̃Θ〉Hk

= 1
mκ

T
ε A1m is an

estimator to the marginal likelihood pε(y) and converge at Op(m−
1
2 + (nλ)−

1
2 + λ

1
2 ).

Proof of Theorem G.1. Consider the absolute difference between q̄(y) and pε(y),

|q̄(y)− pε(y)| ≤ |q̄(y)− q(y)|+ |q(y)− pε(y)|. (G.1)

where q(y) := 〈κε(y, ·), ĈX|ΘµΘ〉Hk
= E[〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk

]. The first term is

|q̄(y)− q(y)| = |〈κε(y, ·), ĈX|Θ(µ̃Θ − µΘ)〉Hk
| = |〈(ĈX|Θ)Tκε(y, ·), (µ̃Θ − µΘ)〉H`

|
≤ ‖(ĈX|Θ)Tκε(y, ·)‖H`

‖(µ̃Θ − µΘ)‖H`

≤ c‖(µ̃Θ − µΘ)‖H`
.

(G.2)

for some constant c since ĈX|Θ is a bounded operator for all n. Hence, |q̄(y)− q(y)| decays at O(m−
1
2 ).

For the second term, we have pε(y) = E[pε(y|Θ)] = E[〈κε(y, ·), µX|Θ=Θ〉Hk
] = E[〈κε(y, ·), CX|Θ`(Θ, ·)〉Hk

],
similar to q(y) = E[〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk

]. Since we use bounded kernels, define ¯̀ := supθ ‖`(θ, ·)‖H`
and

κ̄ε := supy ‖κε(y, ·)‖Hk
. The second term becomes

|q(y)− pε(y)| = |E[〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk
]− E[〈κε(y, ·), CX|Θ`(Θ, ·)〉Hk

]|
≤ E[|〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk

]− E[〈κε(y, ·), CX|Θ`(Θ, ·)〉Hk
|]

= E[|〈κε(y, ·), (ĈX|Θ − CX|Θ)`(Θ, ·)〉Hk
|]

≤ E[‖κε(y, ·)‖Hk
‖(ĈX|Θ − CX|Θ)`(Θ, ·)‖Hk

]

= ‖κε(y, ·)‖Hk
E[‖(ĈX|Θ − CX|Θ)`(Θ, ·)‖Hk

]

= κ̄εE[‖(ĈX|Θ − CX|Θ)`(Θ, ·)‖Hk
]

≤ κ̄εE[‖ĈX|Θ − CX|Θ‖HS‖`(Θ, ·)‖H`
]

= κ̄εE[‖ĈX|Θ − CX|Θ‖HS
√
`(Θ,Θ)]

= κ̄εE[
√
`(Θ,Θ)]‖ĈX|Θ − CX|Θ‖HS

≤ κ̄εE[¯̀]‖ĈX|Θ − CX|Θ‖HS
= κ̄ε ¯̀‖ĈX|Θ − CX|Θ‖HS .

(G.3)

Hence, in the worst case |q(y)−pε(y)| decays at the rate ‖ĈX|Θ−CX|Θ‖HS decays, which isOp((nλ)−
1
2 +λ

1
2 ). Together

with the first term, we have the claimed convergence rate.

Finally, the empirical form is obtained from substituting the empirical forms for the likelihood CMO and prior embedding,
q̄(y) := 〈κε(y, ·), ĈX|Θµ̃Θ〉Hk

= 〈κε(y, ·), (Φ(L+ nλI)−1ΨT )( 1
m Ψ̃1m)〉Hk

= 1
mκ

T
ε A1m.

To satisfy κε(y, ·) ∈ Hk, we use κε(y,x) = pε(y|x) = N (y; x, ε2I) and Gaussian kernel for k with length scale ε, so that
κε is just the normalized version of the reproducing kernel k.

Importantly, while the approximate marginal likelihood q̄(y) depends on the hyperparameters of the kernels k and ` and the
regularization λ, it does not depend on ε. At first, it seems that this objective cannot help us learn ε. Nevertheless, due to
points (4) and (5) of theorem 5.3, we have that a good proxy for setting ε once λ is learned is ε = n

mλ.

Nevertheless, for simplicity in our experiments we optimize all kernel hyperparameters and keep the regularization
hyperparameters fixed, which has already achieved sufficiently accurate results.
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G.2. Exponential-Gamma Experiment

The toy exponential-gamma problem is a standard benchmark for likelihood-free inference, where the true posterior pε(θ|y)
is known and tractable even for ε = 0. We follow the experimental setup of Meeds & Welling (2014).

Of the kernel based methods that we have benchmarked against, kernel ABC (K-ABC) (Nakagome et al., 2013), double
kernel ABC (K2-ABC) (Park et al., 2016), KBR (Fukumizu et al., 2013), and kernel embedding likelihood-free inference
(KELFI) (Hsu & Ramos, 2019) are also LFI methods based on the KME framework. Consequently, they are very suitable for
comparisons towards DME. For all these methods, we apply kernel herding on their posterior embeddings to get posterior
samples, and plot the approximate posterior density in fig. 5 (left) using kernel density estimation (KDE) on the posterior
samples. In contrast, Gaussian process surrogate ABC (GPS-ABC) (Meeds & Welling, 2014) has its own adaptive MCMC
based sampling algorithm. We set a simulation budget of 200 simulations and run it until either 10000 posterior samples
are generated or the simulation budget is reached. For hyperparameters, we used standard median heuristic for K-ABC,
K2-ABC, and KBR. In contrast, DME and KELFI have their own marginal likelihoods for hyperparameter learning. For
both cases, we find global and local optimums of the marginal likelihood for the hyperparameters and show their results,
emphasizing that maximizing the marginal likelihood objective produces better inference results. The hyperparameters of
the GP surrogate itself used in GPS-ABC are learned by maximizing the marginal likelihood of the GPR (Rasmussen &
Williams, 2006). However, for hyperparameters of GPS-ABC that are not part of the surrogate, we select them based on the
original paper (Meeds & Welling, 2014). We then report its best two results.

G.3. Lotka-Volterra Experiment

The Lotka-Volterra simulator describes the population dynamics of a well known predator-prey system. For most parameters,
the simulation produces chaotic behavior. Realistic scenarios with oscillatory behavior appears only for a small set of
parameters. Consequently, inference on the Lotka-Volterra simulator is extremely challenging.

We follow the setup of Papamakarios & Murray (2016) and Tran et al. (2017). There are 4 parameters and 9 normalized
summary statistics. We place the same uniform prior on the log parameters and use the same ground truth parameters. After
performing inference on all four parameters, we similarly show in fig. 5 (right) the marginal posterior distribution for log θ1
in the same format as Papamakarios & Murray (2016) and Tran et al. (2017).

For KBR (Fukumizu et al., 2013), KELFI (Hsu & Ramos, 2019), and DME, we again sample their posterior mean
embeddings with kernel herding to get 10000 posterior samples. Finally, to compute the 95% interval, we compute the
empirical 2.5% quantile and 97.5% quantiles on marginal samples of log θ1 from the 10000 posterior samples. For mixture
density network (MDN) (Papamakarios & Murray, 2016) and the two likelihood-free variational inference (LFVI) methods
(Tran et al., 2017), we report the results from the original source, as well as their results for rejection ABC (REJ-ABC),
Markov chain Monte carlo ABC (MCMC-ABC), and sequential Monte carlo ABC (SMC-ABC).


