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Abstract

Deep convolutional neural networks (CNNs) have
demonstrated remarkable success in computer vi-
sion by supervisedly learning strong visual feature
representations. However, training CNNs relies
heavily on the availability of exhaustive training
data annotations, limiting significantly their de-
ployment and scalability in many application sce-
narios. In this work, we introduce a generic unsu-
pervised deep learning approach to training deep
models without the need for any manual label su-
pervision. Specifically, we progressively discover
sample anchored/centred neighbourhoods to rea-
son and learn the underlying class decision bound-
aries iteratively and accumulatively. Every single
neighbourhood is specially formulated so that all
the member samples can share the same unseen
class labels at high probability for facilitating the
extraction of class discriminative feature repre-
sentations during training. Experiments on image
classification show the performance advantages
of the proposed method over the state-of-the-art
unsupervised learning models on six benchmarks
including both coarse-grained and fine-grained
object image categorisation.

1. Introduction
Deep neural networks, particularly convolutional neural net-
works (CNNs), have significantly advanced the progress of
computer vision problems (Goodfellow et al., 2016; LeCun
et al., 2015). However, such achievements are largely es-
tablished upon supervised learning of network models on a
massive collection of exhaustively labelled training imagery
data (Krizhevsky et al., 2012a; Dong et al., 2019; 2018).
This dramatically restricts their scalability and usability to
many practical applications with limited labelling budgets.
A natural solution is unsupervised learning of deep fea-

1Queen Mary University of London 2Vision Semantics Limited.
Correspondence to: Xiatian Zhu <eddy.zhuxt@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ture representations, which has recently drawn increasing
attention (Wu et al., 2018; Caron et al., 2018).

In the literature, representative unsupervised deep learning
methods include clustering (Caron et al., 2018; Xie et al.,
2016; Yang et al., 2017) and sample specificity analysis (Wu
et al., 2018; Bojanowski & Joulin, 2017). The objective of
clustering is to identify a set of clusters and each repre-
sents an underlying class concept. This strategy has great
potential with the best case reaching to the performance
of supervised learning, but is error-prone due to the enor-
mous combinatorial space and complex class boundaries.
In contrast, sample specificity learning avoids the cluster
notion by treating every single sample as an independent
class. The hypothesis is that the model can reveal the under-
lying class-to-class semantic similarity structure, e.g. the
manifold geometry. Whilst collecting such instance labels
requires no manual annotation cost, the resulting supervi-
sion is ambiguous therefore weak to class discrimination.
Other contemporary self-supervised learning methods (Do-
ersch et al., 2015; Zhang et al., 2016; Noroozi & Favaro,
2016; Noroozi et al., 2017; Zhang et al., 2017) share a simi-
lar limitation due to the insufficient correlation between the
auxiliary supervision and the underlying class target.

In this work, we present a generic unsupervised deep
learning method called Anchor Neighbourhood Discovery
(AND). The AND model combines the advantages of both
clustering and sample specificity learning whilst mitigating
their disadvantages in a principled formulation. Specifi-
cally, with a divide-and-conquer principle, the AND dis-
covers class consistent neighbourhoods anchored to indi-
vidual training samples (divide) and propagates the local
inter-sample class relationships within such neighbourhoods
(conquer) for more reliably extracting the latent discrimi-
nation information during model training. Neighbourhoods
can be considered as tiny sample anchored clusters with
higher compactness and class consistency. They are spe-
cially designed for minimising the clustering errors whilst
retaining the exploration of inter-sample class information
that is entirely neglected in sample specificity learning. To
enhance the neighbourhood quality (class consistency), we
introduce a progressive discovery curriculum for incremen-

Code is available at https://github.com/raymond-sci/AND.
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tally deriving more accurate neighbourhood supervision.

We make three contributions: (1) We propose the idea
of exploiting local neighbourhoods for unsupervised deep
learning. This strategy preserves the capability of clustering
for class boundary inference whilst minimising the neg-
ative impact of class inconsistency typically encountered
in clusters. To our best knowledge, it is the first attempt
at exploring the concept of neighbourhood for end-to-end
deep learning of feature representations without class label
annotations. (2) We formulate an Anchor Neighbourhood
Discovery (AND) approach to progressive unsupervised
deep learning. The AND model not only generalises the
idea of sample specificity learning, but also additionally con-
siders the originally missing sample-to-sample correlation
during model learning by a novel neighbourhood supervi-
sion design. (3) We further introduce a curriculum learning
algorithm to gradually perform neighbourhood discovery
for maximising the class consistency of neighbourhoods
therefore enhancing the unsupervised learning capability.

Extensive experiments are conducted on four coarse-grained
(CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009),
SVHN (Netzer et al., 2011), ImageNet (Russakovsky et al.,
2015)) and two fine-grained (CUB200-2011 (Wah et al.,
2011) and Stanford Dogs (Khosla et al., 2011)) object image
classification datasets. The results show the advantages of
our AND method over a wide variety of existing state-of-
the-art unsupervised deep learning models.

2. Related Work
Existing unsupervised deep learning methods generally fall
into four different categories: (1) Clustering analysis (Caron
et al., 2018; Xie et al., 2016; Yang et al., 2017), (2) Sample
specificity learning (Wu et al., 2018; Bojanowski & Joulin,
2017), (3) Self-supervised learning (Doersch et al., 2015;
Zhang et al., 2016; Noroozi & Favaro, 2016; Noroozi et al.,
2017; Zhang et al., 2017), and (4) Generative models (Good-
fellow et al., 2014; Vincent et al., 2010).

Clustering analysis is a long-standing approach to unsuper-
vised machine learning (Aggarwal & Reddy, 2013). With
the surge of deep learning techniques, recent studies have
attempted to optimise clustering analysis and representa-
tion learning jointly for maximising their complementary
benefits (Caron et al., 2018; Xie et al., 2016; Yang et al.,
2017; Dizaji et al., 2017). Regardless, the key remains the
discovery of multiple class consistent clusters (or groups)
on the entire training data. This is a difficult task with the
complexity and solution space exponentially proportional
to both the data and cluster size. It is particularly so for
clustering the data in complex structures and distributions
such as images and videos. In contrast, the proposed AND
model replaces the clustering operation with local neigh-

bourhood identification in a divide-and-conquer principle.
This enables the control and mitigation of the clustering
errors and their negative propagation, potentially yielding
more accurate inference of latent class decision boundaries.

Sample specificity learning goes to the other extreme by
considering every single sample as an independent class
(Wu et al., 2018; Bojanowski & Joulin, 2017). The key idea
is that supervised deep learning of neural networks auto-
matically reveals the visual similarity correlation between
different classes from end-to-end optimisation. However,
this sort of supervision does not explicitly model the class
decision boundaries as clustering analysis and the AND
model. It is therefore likely to yield more ambiguous class
structures and less discriminative feature representations.

Self-supervised learning has recently gained increasing
research efforts (Doersch et al., 2015; Zhang et al., 2016;
Noroozi & Favaro, 2016; Noroozi et al., 2017; Zhang et al.,
2017). Existing methods vary essentially in the design of
unsupervised auxiliary supervision. Typically, such auxil-
iary supervision is hand-crafted to exploit some information
intrinsically available in the unlabelled training data, such
as spatial context (Doersch et al., 2015; Noroozi & Favaro,
2016), spatio-temporal continuity (Wang & Gupta, 2015;
Wang et al., 2017), and colour patterns (Zhang et al., 2016;
Larsson et al., 2016). Due to the weak correlation with the
underlying class targets, such learning methods mostly yield
less discriminative models than clustering analysis and our
AND method. How to design more target related auxiliary
supervision remains an open problem.

Generative model is a principled way of learning the true
data distribution of the training set in an unsupervised man-
ner. The most commonly used and efficient generative mod-
els include Restricted Boltzmann Machines (Lee et al., 2009;
Hinton et al., 2006; Tang et al., 2012), Autoencoders (Ng,
2011; Vincent et al., 2010), and Generative Adversarial Net-
works (Radford et al., 2016; Goodfellow et al., 2014). The
proposed AND model does not belong to this family, but
potentially generates complementary feature representations
due to a distinct modelling strategy.

Broadly, AND relates to constrained clustering (Wagstaff
et al., 2001; Kamvar et al., 2003; Zhu et al., 2013; 2016)
if considering our neighbourhood constraint as a form of
pairwise supervision including must-link and cannot-link.
However, our method is totally unsupervised without the
need for pairwise links therefore more scalable.

3. Unsupervised Neighbourhood Discovery
Suppose we have N training images I = {I1, I2, ..., IN}.
In unsupervised learning, no class labels are annotated on
images. The objective is to derive a deep CNN model θ from
the imagery data I that allows to extract class discriminative



Unsupervised Deep Learning by Neighbourhood Discovery

feature representations x, fθ : I → x. Without the access
to class labels, it is unsupervised how the feature points x
should be distributed in training so that they can correctly
represent the desired class memberships. It is therefore
necessary for an unsupervised learning algorithm to reveal
such discriminative information directly from the visual
data. This is challenging due to the arbitrarily complex
appearance patterns and variations typically exhibited in the
image collections both within and across classes, implying
a high complexity of class decision boundaries.

(a) (b) (c)
Figure 1. Illustration of three unsupervised learning strategies. (a)
Clustering analysis aims for discovering the global class deci-
sion boundary (Caron et al., 2018; Xie et al., 2016); (b) Sample
specificity learning discards the concept of clusters by treating
every training sample as an independent class (Wu et al., 2018;
Bojanowski & Joulin, 2017); (c) Our Anchor Neighbourhood Dis-
covery searches local neighbourhoods with high class consistency.

To overcome the aforementioned problem, we formulate
an Anchor Neighbourhood Discovery (AND) method. It
takes a divide-and-conquer strategy from the local sample
anchored neighbourhood perspective. The key idea is that,
whilst it is difficult and error-prone to directly reason the
global class decision boundaries at the absence of class
labels on the training data (Fig 1(a)), it would be easier and
more reliable to estimate local class relationship in small
neighbourhoods (Fig 1(c)). Although such information is
incomplete and provides less learning supervision than the
conventional clustering strategy (Caron et al., 2018; Xie
et al., 2016) that operates at the coarse group level and
mines the clusters of data samples, it favourably mitigates
the misleading effect of noisy supervision. Besides, the
proposed AND model differs dramatically from the sample
specificity learning strategy (Wu et al., 2018; Bojanowski
& Joulin, 2017) that lacks a fundamental ability to mine
the inter-sample class relationships primitive to the global
class boundaries (Fig 1(b)). Therefore, the proposed method
represents a conceptual trade-off between the two existing
strategies and a principled integration of them.

As shown in our evaluations, the proposed training strategy
yields superior models. This indicates the significance of

both minimising the erroneous self-mined supervision and
exploiting the inter-sample class relations spontaneously
during unsupervised learning. An overview of the proposed
AND model is depicted in Fig 2.

3.1. Neighbourhood Discovery

We start with how to identify neighbourhoods. An intuitive
method is using k nearest neighbours (kNN) given a feature
space X and a similarity metric s, e.g. the cosine similarity
(Fig 2(b)). A neighbourhood Nk(x) determined by kNN is
sample-wise, i.e. anchored to a specific training sample x:

Nk(x) = {xi | s(xi,x) is top-k in X} ∪ {x}, (1)

where X denotes the feature space. We call such structures
as Anchor Neighbourhoods (AN).

To enable class discriminative learning, we want all samples
in a single neighbourhood AN to share the same class label,
i.e. class consistent. As such, we can facilitate the design
of learning supervision by assigning the same label to these
samples. This requirement, however, is non-trivial to fulfil
in unsupervised learning since we have no reasonably good
sample features, even though a neighbourhood AN can be
much smaller and more local (therefore likely more class
consistent) than a typical cluster when using small k values.
Moreover, we begin with the training images but no learned
features. This even prevents the formation of Nk and gives
rise to an extreme case – each individual sample represents
a distinct anchor neighbourhood.

Neighbourhood Initialisation. Interestingly, such initial
ANs are in a similar spirit of sample specificity learning
(Wu et al., 2018; Bojanowski & Joulin, 2017) where each
data instance is assumed to represent a distinct class (Fig
2(a)). With this conceptual linkage, we exploit the instance
loss (Wu et al., 2018) to commence the model learning.
Specifically, it is a non-parametric variant of the softmax
cross-entropy loss written as:

Linit = −
nbs∑
i=1

log(pi,i), pi,j =
exp(x>

i xj/τ)∑N
k=1 exp(x>

i xk/τ)
(2)

where nbs denotes the training mini-batch size, and the tem-
perature parameter τ is for controlling the distribution con-
centration degree (Hinton et al., 2014).

Neighbourhood Supervision. In the feature space derived
by Eq (2), we build a neighbourhood Nk(x) for each indi-
vidual sample x. Considering the high appearance similarity
among the samples of each Nk(x), we assume they share a
single class label for model discriminative learning.

Formally, we formulate an unsupervised neighbourhood
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Figure 2. Overview of the proposed Anchor Neighbourhood Discovery (AND) method for unsupervised deep learning. (a) The AND
model starts with per-sample neighbourhoods for model initialisation. (b) The resulting feature representations are then used to discover
the local neighbourhoods anchored to every single training sample, i.e. anchor neighbourhoods. (c) To incorporate the neighbourhood
structure information into model learning, we propose a differentiable neighbourhood supervision loss function for enabling end-to-end
model optimisation. (d) For enhancing model discriminative learning, we further derive a curriculum learning algorithm for selecting
class consistent neighbourhoods in a progressive manner. This is based on a novel similarity distribution entropy measurement.

supervision signal as:

LAN = −
nbs∑
i=1

log
( ∑

j∈Nk(xi)

pi,j

)
(3)

The rationale behind Eq (3) is to encourage label consis-
tency for anchor neighbourhoods (Fig 2(c)). Specifically,
the probability pi,j (Eq (2)), obtained using a softmax func-
tion, represents visual similarity between xi and xj in a
stochastic manner. This takes the spirit of stochastic near-
est neighbour (Goldberger et al., 2005), as it considers the
entire training set. In this scheme, the probability p(x) of
correctly classifying a sample xi can be then represented as:

p(xi) =
∑
j∈C

pi,j (4)

where C denotes the set of samples in the same class as
xi. However, C is unavailable to unsupervised learning. To
overcome this problem, we approximate C by the neigh-
bourhoods ANs, each of which is likely to be class consistent.
Together with the cross-entropy function, this finally leads
to the formulation of the proposed LAN loss (Eq (3)).

Remarks. The proposed neighbourhood supervision for-
mulation LAN aims at exploring the local class informa-
tion, under the assumption that anchor neighbourhoods are

class consistent. This is because each neighbourhood AN is
treated as a different learning concept (e.g. class), although
some ANs may share the same unknown class label. Such
information is also partial due to that a specific AN may
represent only a small proportion of the corresponding class,
and multiple ANs with the same underlying class can repre-
sent different aspects of the same concept collectively (not
the whole view due to no AN-to-AN relationships). It is the
set of these distributed anchor neighbourhoods as a whole
that brings about the class discrimination capability during
model training. It is in a divide-and-conquer principle.

Fundamentally, the proposed design differs dramatically
from both (1) the clustering strategy that seeks for the com-
plete class boundary information – a highly risky and error-
prone process (Caron et al., 2018; Xie et al., 2016), and (2)
the sample specificity learning that instead totally ignores
the class level information therefore less discriminative (Wu
et al., 2018; Bojanowski & Joulin, 2017). Moreover, cluster-
ing often requires the prior knowledge of the cluster number
therefore limiting their usability and scalability due to the
lack of it in many applications. On the contrary, this kind
of information is not needed for forming the proposed ANs,
therefore more application generic and scalable. To max-
imise the class consistency degree in ANs, we simply need
to use the smallest neighbourhood size, i.e. k=1.
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Neighbourhood Selection. As discussed above, the pro-
posed method requires the neighbourhoods ANs to be class
consistent. This condition, nonetheless, is difficult to meet.
Specifically, the instance loss function Linit (Eq (2)) encour-
ages the feature representation learning towards that each
sample’s specificity degree can be maximised as possible
on the training data. Considering a sample xi, other sam-
ples either share the class label (positive) with xi or not
(negative). Hence, this formulation may yield a model with
certain discrimination ability, e.g. when a subset of (un-
known) positive samples are associated with similar visual
specificity. But this entirely depends on the intrinsic data
properties without stable guarantee. It means that typically
not all neighbourhoods ANs are reliable and class consis-
tent. This inevitably leads to the necessity of conducting
neighbourhood selection for more reliable model learning.

To this end, we go beyond by taking advantages of the
curriculum learning idea (Bengio et al., 2009; Dong et al.,
2017). Instead of taking a one-off neighbourhood selec-
tion, we introduce a progressive selection process (Fig 2(d))
which distributes evenly the neighbourhood selection across
R rounds. This realises an easy-to-hard learning procedure
through a curriculum.

Selecting Curriculum. To enable automated neighbourhood
selection for making a scalable curriculum, it is necessary
for us to derive a selecting criterion. This is achieved by
exploiting the intrinsic nature of the probability pi,j (Eq (2))
defined between two samples xi and xj . More specifically,
we utilise the entropy measurement of the probability vector
pi = [pi,1, pi,2, · · · , pi,N ] as the class consistency indicator
of the corresponding neighbourhood AN as:

H(xi) = −
N∑
j=1

pi,j log(pi,j). (5)

We consider that smaller H(xi) values correspond to more
consistent neighbourhoods. In particular, when H(xi) is
small, it means xi resides in a low-density area with sparse
visual similar neighbours surrounding. In the definition of
sample specificity learning (Eq (2)), the model training tends
to converge to some local optimum that all samples of a
neighbourhood Nk(xi) with small H(xi) share some easy-
to-locate visual appearance, and simultaneously the same
underlying class label statistically since positive samples
are more likely to present such appearance commonness
including the context than negative ones. On the contrary, a
large H(xi) implies a neighbourhood Nk(xi) residing in a
dense area, a case that the model fails to identify the sample
specificity. This is considered hard cases, and requires more
information for the model to interpret them.

In light of the observations above, we formulate a linear
curriculum according to the class consistency entropy mea-
surement. Specifically, for the r-th round (among a total of

R rounds), we select the top-S (Eq (6)) of ANs according
to their corresponding entropy for model learning by the
proposed neighbourhood supervision loss LAN (Eq (3)).

S =
r

R
∗ 100% (6)

Since the remaining training samples are still not sufficiently
interpreted by the model at the current round, they are pre-
served as individuals (i.e. single-sample neighbourhoods)
as in sample specificity learning (Eq (2)).

Objective Loss Function. With the progressive neighbour-
hood discovery as above, we obtain the model objective loss
function for the r-th round as:

Lr = −
∑

i∈Br
inst

log(pi,i)−
∑

i∈Br
AN

log
( ∑

j∈Nk(xi)

pi,j

)
(7)

where Br
inst and Br

AN denote the set of instances and the set
of ANs in a mini-batch at the r-th round, respectively.

As each round of training is supposed to improve the model,
we update the neighbourhoods ANs for all training samples
before performing neighbourhood selection per round. To
facilitate this process, we maintain an offline memory to
store the feature vectors. We update the memory features of
mini-batch samples by exponential moving average (Lucas
& Saccucci, 1990) over the training iterations as:

x̃i = (1− η) · x̃i + η · xi (8)

where η denotes the update momentum, xi and x̃i the up-
to-date and memory feature vector respectively.

3.2. Model Optimisation

The proposed loss function (Eq (7)) is differentiable there-
fore enabling the stochastic gradient descent algorithm for
model training. In particular, when xi comes as an individ-
ual instance, the gradients for Lr w.r.t. xi and xj (j 6= i) are
written as:

∂Lr

∂xi
=

1

τ
[

N∑
k=1

(pi,k·xk)+(pi,i−2)·xi],
∂Lr

∂xj
=

1

τ
pi,j ·xi (9)

When xi corresponds to an AN, the gradients are then:

∂Lr

∂xi
=

1

τ
[

N∑
k=1

(pi,k ·xi)−
∑

k∈Nk(xi)

p̃i,k+(pi,i−p̃i,i)·xi] (10)

∂Lr

∂xj
=

{
1
τ
[pi,j · xi − p̃i,j · xi], j ∈ Nk(xi)

1
τ
[pi,j · xi], j /∈ Nk(xi)

(11)

where p̃i,j = pi,j/
∑

k∈Nk(xi)
pi,k is the normalised dis-

tribution over the neighbours. The whole model training
procedure is summarised in Algorithm 1.
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Algorithm 1 Neighbourhood discovery.
Input: Training data I, rounds R, iterations per round T .
Output: A deep CNN feature model.
Initialisation: Instance specificity learning (Eq (2)).
Unsupervised learning:
for r = 1 to R do

Form neighbourhoods with the current features (Eq (1));
Curriculum selection of neighbourhoods (Eq (6));
for t = 1 to T do

Network forward propagation (batch feed-forward);
Objective loss computation (Eq (7));
Network back-propagation (Eq (9),(10),(11));
Memory feature update (Eq (8)).

end for
end for

(b) SVHN (c) ImageNet(a) CIFAR

(d) CUB200 (e) Dogs

Figure 3. Dataset example images.

4. Experiments
Datasets. We used 6 image classification benchmarks for
evaluating our model (Fig 3). CIFAR10(/100) (Krizhevsky
& Hinton, 2009): An image dataset with 50,000/10,000
train/test images from 10 (/100) object classes. Each class
has 6,000 (/600) images with size 32×32. SVHN (Netzer
et al., 2011): A Street View House Numbers dataset includ-
ing 10 classes of digit images. ImageNet (Russakovsky
et al., 2015): A large 1,000 classes object dataset with 1.2
million images for training and 50,000 for test. CUB200-
2011 (Wah et al., 2011): A fine-grained dataset containing
5,994/5,794 train/test images of 200 bird species. Stanford
Dogs (Khosla et al., 2011): A fine-grained dataset with
12,000/8,580 train/test images of 120 dog breeds.

Experimental setup. For learning any unsupervised rep-
resentation model, we assumed and used only the training
image data but no class labels. Unless stated otherwise, we
adopted the AlexNet (Krizhevsky et al., 2012b) as the neural
network architecture for fair comparisons with the state-of-
the-art methods. To assess the quality of a learned model for
classification at test time, we utilised the ground-truth class
labels of the training images merely for enabling image cate-
gorisation. This does not change the feature representations
derived in unsupervised learning.

Following Wu et al. (2018), we considered two classifica-
tion models, Linear Classifier (LC), and Weighted kNN,

as well as the feature representations extracted from dif-
ferent network layers respectively. LC was realised by a
fully connected (FC) layer optimised by the cross-entropy
loss function. The non-parametric classifier kNN predicts
the class label by weighted voting of top-k neighbours Nk

as sc =
∑

i∈Nk
δ(c, ci) · wi where δ(c, ci) is the Dirac

delta function which returns 1 if c = ci, and 0 otherwise.
The weight wi is computed from the cosine similarity si as
wi = exp(si/τ) with τ = 0.07 the temperature parameter.
Without an extra classifier learning post-process involved,
kNN reflects directly the discriminative capability of the
learned feature representations.

Performance metric. We adopted the top-1 classification
accuracy for the model performance measurement.

Competitors. We compared the proposed AND model with
four types of state-of-the-art unsupervised learning meth-
ods: (1) Generative model: BiGAN (Donahue et al., 2016);
(2) Clustering method: DeepCluster (Caron et al., 2018);
(3) Self-supervised learning methods: Context (Doersch
et al., 2015), Colour (Zhang et al., 2016), Jigsaw (Noroozi
& Favaro, 2016), Counting (Noroozi et al., 2017), and Split-
Brain (Zhang et al., 2017); (4) Sample specificity learning
methods: Instance (Wu et al., 2018) and Noise As Targets
(NAT) (Bojanowski & Joulin, 2017); in total 9 methods.

Implementation details. For fair comparisons, we used the
same experimental setting as (Wu et al., 2018; Bojanowski
& Joulin, 2017). To train AND models, we set the learning
rate to 0.03 which was further scaled down by 0.1 every
40 epochs after the first 80 epochs. We used the batch size
of 256 for ImageNet and 128 for others. We set the epoch
to 200 per round. We fixed the feature length to 128. We
applied the SGD with Nesterov momentum at 0.9. Our
model usually converges with R=4 rounds. We set η=0.5
in Eq (8) for feature update. We set k = 1 (Eq (1)) for
exploring the most local neighbourhoods.

4.1. Comparisons to the State-of-the-Art Methods

Small scale evaluation. Table 1 compares the object image
classification results on three benchmarks between AND
and four unsupervised learning methods. We tested two
classification models, weighted kNN using FC features and
linear regression using conv5 features. We have these obser-
vations: (1) The AND method performs best often by large
margins over all competitors, except linear regression on
CIFAR10 with DeepCluster outperforms marginally. This
suggests the performance superiority of our neighbourhood
discovery over alternative methods for unsupervised repre-
sentation learning. (2) The margins obtained by kNN tend
to be larger than those by linear regression. This indicates
that AND features are favourably more ready for direct use
without extra classifier training as post-processing.
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Dataset CIFAR10 CIFAR100 SVHN
Classifier/Feature Weighted kNN / FC
Split-Brain 11.7 1.3 19.7
Counting 41.7 15.9 43.4
DeepCluster 62.3 22.7 84.9
Instance 60.3 32.7 79.8
AND 74.8 41.5 90.9
Classifier/Feature Linear Classifier / conv5
Split-Brain 67.1 39.0 77.3
Counting 50.9 18.2 63.4
DeepCluster 77.9 41.9 92.0
Instance 70.1 39.4 89.3
AND 77.6 47.9 93.7

Table 1. Evaluation on small scale image datasets.

Large scale evaluation. We evaluated the scalability of our
AND model using ImageNet. Table 2 compares AND with
nine alternative methods. Following the previous studies, we
tested all conv layers. The results show that: (1) All unsuper-
vised learning methods clearly surpass the random features,
suggesting their modelling effectiveness consistently. (2)
AND outperforms all competitors but by smaller margins.
This is likely due to using over tiny neighbourhoods (sized 2)
for being consistent with small scale datasets. The amount
of inter-sample relationships is quadratic to the data size, so
bigger neighbourhoods may be beneficial for large datasets
in capturing structural information. (3) Most unsupervised
learning methods yield the respective best representation at
intermediate layers when using linear classifier. The plausi-
ble reason is that their supervision singles are less correlated
with the ground-truth targets.

Classifier Linear Classifier kNN
Feature conv1 conv2 conv3 conv4 conv5 FC FC
Random 11.6 17.1 16.9 16.3 14.1 12.0 3.5
Supervised 19.3 36.3 44.2 48.3 50.5 - -
Context 17.5 23.0 24.5 23.2 20.6 30.4 -
BiGAN 17.7 24.5 31.0 29.9 28.0 32.2 -
Colour 13.1 24.8 31.0 32.6 31.8 35.2 -
Jigsaw 19.2 30.1 34.7 33.9 28.3 38.1 -
NAT - - - - - 36.0 -
Counting 18.0 30.6 34.3 32.5 25.7 - -
Split-Brain 17.7 29.3 35.4 35.2 32.8 - 11.8
DeepCluster 13.4 32.3 41.0 39.6 38.2 - 26.8
Instance 16.8 26.5 31.8 34.1 35.6 - 31.3
AND 15.6 27.0 35.9 39.7 37.9 36.7 31.3

Table 2. Evaluation on ImageNet. The results of existing methods
are adopted from (Wu et al., 2018; Bojanowski & Joulin, 2017).

Fine-grained evaluation. We evaluated AND with more
challenging fine-grained recognition tasks which are sig-
nificantly under-studied in unsupervised learning context.
Consistent with the results discussed above, Table 3 demon-
strates again the performance superiority of our neighbour-
hood discovery idea over the best competitor Instance.

Dataset CUB200 Dogs
Instance 11.6 27.0
AND 14.4 32.3

Table 3. Evaluation on fine-grained datasets. Network: ResNet18.

4.2. Component Analysis and Discussions

We conducted detailed component analysis with the
weighted kNN classifier and FC features.

Backbone network. We tested the generalisation of AND
with varying-capacity networks. We further evaluated
ResNet18 and ResNet101 (He et al., 2016) on CIFAR10.
Table 4 shows that AND benefits from stronger net architec-
tures. A similar observation was made on ImageNet: 41.2%
(ResNet18) vs. 31.3% (AlexNet).

Network AlexNet ResNet18 ResNet101
Accuracy 74.8 86.3 88.4

Table 4. Network generalisation analysis on CIFAR10.

Model initialisation. We tested the impact of initial fea-
tures for neighbourhood discovery by comparing random
and Instance networks. Table 5 shows that AND can bene-
fit from stronger initialisation whilst being robust to weak
initial representations.

Initialisation Random Model Instance Model
Accuracy 85.7 86.3

Table 5. Effect of model initialisation on CIFAR10.

Neighbourhood size. Neighbourhood size is an important
parameter since it controls label consistency of ANs and
finally the model performance. We evaluated its effect using
ResNet18 on CIFAR10 by varying k from 1 (the default
value) to 100. Figure 4 shows that the smallest neighbour-
hoods (i.e. k = 1) are the best choice. This implies high
variety of imagery data, so smaller ANs are preferred for
unsupervised learning.

Curriculum round. We tested the effect of the curriculum
round (R in Eq (6)) of progressive neighbourhood discovery.
More rounds consume higher training costs. Figure 5 shows
that using 4 rounds gives a good trade-off between model
training efficiency and feature performance. Often, per-
round epoch number Nep affects the training efficiency and
performance. We investigated its effect and found that AND
achieves 83.3% by Nep=50 vs. 84.8% by Nep=100.

One-off vs. curriculum neighbourhood discovery. We
evaluated the benefit of AND’s curriculum. To this end,
we compared with the one-off discovery counterpart where
all anchor neighbourhoods are exploited one time. Table 6
shows that the proposed multi-round progressive discovery
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Figure 4. Effect of the neighbourhood size on CIFAR10.
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Figure 5. Effect of the curriculum round on CIFAR10.

via a curriculum is effective to discover more reliable anchor
neighbourhoods for superior unsupervised learning.

Discovery One-off Curriculum
Accuracy 84.2 86.3

Table 6. One-off vs. curriculum discovery on CIFAR10.

Neighbourhood quality. We examined the class consis-
tency of anchor neighbourhood discovered throughout the
curriculum rounds. Figure 6 shows that the numbers of both
class consistent and inconsistent anchor neighbourhoods
increase along with the training rounds, and more impor-
tantly the consistent ones raise much more rapidly. This
explains the performance advantages of the AND model and
the benefit of exploring progressive curriculum learning.

Learning attention dynamics. To further understand how
the AND benefits the feature representation learning, we
tracked the modelling attention by Grad-Cam (Selvaraju
et al., 2017) to visualise which parts of training images the
model is focusing on throughout the curriculum rounds. We
have the following observations from Fig 7: (1) Often the
model initially looks at class irrelevant image regions. This
suggests that sample specificity is a less effective supervi-
sion signal for guiding model discriminative training. (2) In
cases, the AND model is able to gradually shift the learning
attention towards the class relevant parts therefore yielding
a more discriminative model. (3) The AND may fail to cap-
ture the object attention, e.g. due to cluttered background
and poor lighting condition.

5. Conclusion
In this work, we presented a novel Anchor Neighbourhood
Discovery (AND) approach for unsupervised learning of dis-
criminative deep network models through class consistent
neighbourhood discovery and supervision in a progressive

1 2 3 4
Training Round

0
5

10
15
20
25
30
35
40
45

#
N

ei
gh

b
ou

rh
oo

d
s

(x
10

00
)

Consistent

Inconsistent

Figure 6. Neighbourhood quality over rounds on CIFAR10.

Border
Terrier

Black
Stork

Tiger
Beetle

Coker
Spaniel

Gibbon

Ladle

raw r=0 r=1 r=2 r=3 r=4

Border
Terrier

Black
Stork

Tiger
Beetle

Coker
Spaniel

Gibon

Ladle

Image Initial Round 1 Round 2 Round 3 Round 4

Figure 7. The evolving dynamics of model learning attention
throughout the training rounds on six ImageNet classes. Red
bounding box indicates a failure case.

manner. With the AND model, we avoid the notorious
grouping noises whilst still preserving the intrinsic merits of
clustering for effective inference of the latent class decision
boundaries. Our method is also superior to the existing sam-
ple specificity learning strategy, due to the unique capability
of propagating the self-discovered sample-to-sample class
relationship information in end-to-end model optimisation.
Extensive experiments on four image classification bench-
marks show the modelling and performance superiority of
the proposed AND method over a wide range of state-of-the-
art unsupervised deep learning models. We also provided
in-depth component analysis to give insights on the model
advantages of the AND formulation.

Acknowledgements
This work was partly supported by the China Scholarship
Council, Vision Semantics Limited, the Royal Society New-
ton Advanced Fellowship Programme (NA150459), and
Innovate UK Industrial Challenge Project on Developing
and Commercialising Intelligent Video Analytics Solutions
for Public Safety (98111-571149).



Unsupervised Deep Learning by Neighbourhood Discovery

References
Aggarwal, C. C. and Reddy, C. K. Data clustering: algo-

rithms and applications. CRC press, 2013.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In International Conference on
machine learning (ICML), pp. 41–48, 2009.

Bojanowski, P. and Joulin, A. Unsupervised learning by
predicting noise. In International Conference on machine
learning (ICML), pp. 1–10, 2017.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep
clustering for unsupervised learning of visual features. In
European Conference on Computer Vision (ECCV), pp.
1–18, 2018.

Dizaji, K. G., Herandi, A., Deng, C., Cai, W., and Huang,
H. Deep clustering via joint convolutional autoencoder
embedding and relative entropy minimization. In IEEE
International Conference on Computer Vision (ICCV), pp.
5747–5756, 2017.

Doersch, C., Gupta, A., and Efros, A. A. Unsuper-
vised visual representation learning by context prediction.
In IEEE International Conference on Computer Vision
(ICCV), pp. 1422–1430, 2015.
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