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A. Proof of Lemma 3.5
Proof. Given a differentiable function F : F ×F → R, we
define the Bregman divergence by

dF (f, f ′) = F (f)−F (f ′)−〈f−f ′,∇F (f ′)〉, ∀f, f ′ ∈ F .

Define R : F → R by

R(f) :=
1

N

∑
i∈[N ]

L(f, si) + λ‖f‖2k, ∀f ∈ F .

Also define Ri : F → R by

Ri(f) :=
1

N

∑
j 6=i

L(f, sj) + L(f, s′i)

+λ‖f‖2k, ∀f ∈ F .

By definition of g and gi, we have

dR(gi, g) =R(gi)−R(g)− 〈gi − g,∇R(g)〉
≤R(gi)−R(g),

(5)

and

dRi(g, gi) =Ri(g)−Ri(gi)− 〈g − gi,∇Ri(gi)〉
≤Ri(g)−Ri(gi).

(6)

By Inequalities (5) and (6), we have

dR(gi, g) + dRi(g, gi)

≤R(gi)−R(g) +Ri(g)−Ri(gi)

=
1

N

(
L(gi, si)− L(g, si) + L(g, s′i)− L(gi, s′i)

)
.

(7)

Since dA+B = dA + dB , we have

2λ‖g − gi‖2k
=λd‖·‖2k(g, gi) + λd‖·‖2k(gi, g)

(Defn. of ‖ · ‖2k)

=dRi(g, gi)− d∑
j 6=i L(·,sj)(g, g

i)

+ dR(gi, g)− d∑
i∈[N] L(·,si)(g

i, g)

(dA+B = dA + dB)

≤dRi(g, gi) + dR(gi, g)

(nonnegativity of dF )

≤ 1

N

(
L(gi, si)− L(g, si) + L(g, s′i)− L(gi, s′i)

)
≤ σ
N

(
|g(xi)− gi(xi)|+ |g(x′i)− gi(x′i)|

)
.

(L(·, ·) is σ-admissible)

(8)

This completes the proof.

B. Proof of Theorem 3.7
Proof. By Inequality (8) in the proof of Lemma 3.5, we
have

2λ‖v − vi‖22

≤ 1

N

(
L(gi, si)− L(g, si) + L(g, s′i)− L(gi, s′i)

)
.

(9)

Moreover, we have for any f = α ·φ(·), f ′ = α′ ·φ(·) ∈ F
and s ∈ D,

L(f, s)− L(f ′, s) ≤〈∇αL(f, s), α− α′〉
(Convexity of L(·, s))
≤‖∇αL(α, s)‖2 · ‖α− α′‖2
≤G‖α− α′‖2

(Defn. of G).

(10)

Combining with Inequalities (9) and (6), we have

‖v − vi‖22

≤ 1

2λN

(
L(gi, si)− L(g, si) + L(g, s′i)− L(gi, s′i)

)
(Ineq. (9))

≤ 1

2λN

(
G‖v − vi‖2 +G‖v − vi‖2

)
(Ineq. (10))

=
G

λN
‖v − vi‖2.

It implies that ‖v − vi‖2 ≤ G
λN . Combining with Inequali-

ty (6), we have for any s ∈ D,

L(g, s)− L(gi, s) ≤ G‖v − vi‖2 ≤
G2

λN
.

This completes the proof for the stability guarantee. For the
sacrifice in the empirical risk, the argument is the same as
that of Theorem 3.2.

C. Details of Remark 3.3
• Prediction error: f(x) ∈ {−1, 1} for any pair (f, x)

and L(f(x), y) = I [f(x) 6= y],5 then we have that

|L(f(x), y)− L(f(x′), y)|
= |I [f(x) 6= y]− I [f(x′) 6= y]|

= I [f(x) 6= f(x′)] =
1

2
|f(x)− f(x′)| ,

which is 1
2 -admissible.

5Here, I [·] is the indicator function.
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• Soft margin SVM: L(f, s) = (1− yf(x))+,6 then we
have that

|L(f(x), y)− L(f(x′), y)|
= |(1− yf(x))+ − (1− yf(x′))+|
≤ |yf(x)− yf(x′)|
= |f(x)− f(x′)| ,

which is 1-admissible.

• Least Squares regression: L(f, s) = (f(x)−y)2. Sup-
pose f(x) ∈ [−1, 1] for any x ∈ X , then we have
that

|L(f(x), y)− L(f(x′), y)|
=

∣∣(f(x)− y)2 − (f(x′)− y)2
∣∣

= |(f(x) + f(x′)− 2y)(f(x)− f(x′))|
≤ 4 |f(x)− f(x′)| ,

which is 4-admissible.

• Logistic regression: L(f, s) = ln(1 + e−yf(x)). Note
that we have for any x ∈ X and y ∈ {−1, 1},∣∣∣∇f(x) ln(1 + e−yf(x))

∣∣∣
=

∣∣∣∣ −ye−yf(x)

1 + e−yf(x)

∣∣∣∣ =

∣∣∣∣ e−yf(x)

1 + e−yf(x)

∣∣∣∣ ≤ 1.

Hence, the loss function L(f, s) = ln(1 + e−yf(x)) is
1-admissible.

D. Analysis of Our Framework in Specified
Settings

Next, we show the stability guarantee of our framework
in several specified models. We mainly analyze three
commonly-used models: soft margin SVMs, least squares
regression, and logistic regression.

Soft margin SVMs. Recall that S =
{si = (xi, zi, yi)}i∈[N ] is the given training set. We
first have a kernel function k(·, ·) that defines values
k(xi, xj). Then each classifier f is a linear combination of
k(xi, ·), i.e.,

f(·) =
∑
i∈[N ]

αik(xi, ·)

for some α ∈ RN In the soft margin SVM model, we
consider the following loss function

L(f, s) = (1− yf(x))+

6(a)+ = a if a ≥ 0 and otherwise (a)+ = 0.

which is 1-admissible. Then Program (Stable-Fair) can be
rewritten as follows.

min
α∈RN

∑
i∈[N ]

1− yi
∑
j∈[N ]

αjk(xj , xi)


+

+ λ‖
∑

i,j∈[N ]

αiαjk(xi, xj)‖2k s.t.

Ω(f) ≤ 0.

(SVM)

This model has been considered in (Zafar et al., 2017b;a)
that aims to avoid disparate impact/disparate mistreatment.
Applying Theorems 3.2 and 3.7, and the fact that L(·, ·) is
1-admissible (Remark 3.3), we directly have the following
corollary.

Corollary D.1. Suppose the learning algorithm A com-
putes a minimizer AS of Program (SVM).

• If k(xi, xi) ≤ κ2 < ∞ for each i ∈ [N ], then A is
κ2

λN -uniformly stable.

• LetG = supf=α>φ(·)∈F :Ω(f)≤0 sups∈D ‖∇αL(f, s)‖2.

Then A is G2

λN -uniformly stable.

Least square regression. The only difference from soft
margin SVM is the loss function, which is defined as fol-
lows.

L(f, s) = (f(x)− y)2.

Then Program (Stable-Fair) can be rewritten as follows.

min
α∈RN

∑
i∈[N ]

yi − ∑
j∈[N ]

αjk(xj , xi)

2

+ λ‖
∑

i,j∈[N ]

αiαjk(xi, xj)‖2k s.t.

Ω(f) ≤ 0.

(LS)

Applying Theorems 3.2 and 3.7, we have the following
corollary.

Corollary D.2. Suppose the learning algorithm A com-
putes a minimizer AS of Program (LS).

• If B = maxx∈X |f(x)| and k(xi, xi) ≤ κ2 < ∞ for
each i ∈ [N ], then A is (2B+2)2κ2

λN -uniformly stable.

• LetG = supf=α>φ(·)∈F :Ω(f)≤0 sups∈D ‖∇αL(f, s)‖2.

Then A is G2

λN -uniformly stable.

Proof. We only need to verify that L(·, ·) is (2B + 2)-
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admissible. For any x, x′ ∈ X and y ∈ {−1, 1}, we have∣∣(f(x)− y)2 − (f(x′)− y)2
∣∣

= |(f(x)− f(x′)) · (f(x) + f(x′)− 2y)|
≤(|f(x)|+ |f(x′)|+ 2) · |(f(x)− f(x′))|
≤(2B + 2) |(f(x)− f(x′))| .

This completes the proof.

Logistic regression. Again, the only difference from soft
margin SVM is the loss function, which is defined as fol-
lows.

L(f, s) = ln(1 + e−yf(x)).

This model has been widely used in the literature (Za-
far et al., 2017b;a; Goel et al., 2018). Then Pro-
gram (Stable-Fair) can be rewritten as follows.

min
α∈RN

∑
i∈[N ]

ln
(

1 + yi · e−
∑

j∈[N] αjk(xj ,xi)
)

+ λ‖
∑

i,j∈[N ]

αiαjk(xi, xj)‖2k s.t.

Ω(f) ≤ 0.

(LR)

Applying Theorem 3.2 and 3.7, and the fact that L(·, ·) is
1-admissible (Remark 3.3), we have the following corollary.

Corollary D.3. Suppose the learning algorithm A com-
putes a minimizer AS of Program (LR).

• If k(xi, xi) ≤ κ2 < ∞ for each i ∈ [N ], then A is
κ2

λN -uniformly stable.

• LetG = supf=α>φ(·)∈F :Ω(f)≤0 sups∈D ‖∇αL(f, s)‖2.

Then A is G2

λN -uniformly stable.


