A. Proof of Lemma 3.5

Proof. Given a differentiable function $F : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$, we define the Bregman divergence by

$$d_F(f, f') = F(f) - F(f') - \langle f - f', \nabla F(f') \rangle, \, \forall f, f' \in \mathcal{F}.$$

Define $R: \mathcal{F} \to \mathbb{R}$ by

$$R(f) := \frac{1}{N} \sum_{i \in [N]} L(f, s_i) + \lambda \|f\|_k^2, \ \forall f \in \mathcal{F}$$

Also define $R^i: \mathcal{F} \to \mathbb{R}$ by

$$R^{i}(f) := \frac{1}{N} \left(\sum_{j \neq i} L(f, s_{j}) + L(f, s_{i}') \right) + \lambda \|f\|_{k}^{2}, \forall f \in \mathcal{F}.$$

By definition of g and g^i , we have

$$d_R(g^i,g) = R(g^i) - R(g) - \langle g^i - g, \nabla R(g) \rangle$$

$$\leq R(g^i) - R(g),$$
(5)

and

$$d_{R^{i}}(g,g^{i}) = R^{i}(g) - R^{i}(g^{i}) - \langle g - g^{i}, \nabla R^{i}(g^{i}) \rangle$$

$$\leq R^{i}(g) - R^{i}(g^{i}).$$
(6)

By Inequalities (5) and (6), we have

$$d_{R}(g^{i},g) + d_{R^{i}}(g,g^{i})$$

$$\leq R(g^{i}) - R(g) + R^{i}(g) - R^{i}(g^{i})$$

$$= \frac{1}{N} \left(L(g^{i},s_{i}) - L(g,s_{i}) + L(g,s_{i}') - L(g^{i},s_{i}') \right).$$
(7)

Since $d_{A+B} = d_A + d_B$, we have

$$\begin{split} & 2\lambda \|g - g^{i}\|_{k}^{2} \\ & = \lambda d_{\|\cdot\|_{k}^{2}}(g,g^{i}) + \lambda d_{\|\cdot\|_{k}^{2}}(g^{i},g) \\ & (\text{Defn. of } \|\cdot\|_{k}^{2}) \\ & = d_{R^{i}}(g,g^{i}) - d_{\sum_{j \neq i} L(\cdot,s_{j})}(g,g^{i}) \\ & + d_{R}(g^{i},g) - d_{\sum_{i \in [N]} L(\cdot,s_{i})}(g^{i},g) \\ & (d_{A+B} = d_{A} + d_{B}) \\ & \leq d_{R^{i}}(g,g^{i}) + d_{R}(g^{i},g) \\ & (\text{nonnegativity of } d_{F}) \\ & \leq \frac{1}{N} \left(L(g^{i},s_{i}) - L(g,s_{i}) + L(g,s'_{i}) - L(g^{i},s'_{i}) \right) \\ & \leq \frac{\sigma}{N} \left(|g(x_{i}) - g^{i}(x_{i})| + |g(x'_{i}) - g^{i}(x'_{i})| \right) . \\ & (L(\cdot,\cdot) \text{ is } \sigma\text{-admissible}) \end{split}$$
(8)

This completes the proof.

B. Proof of Theorem 3.7

Proof. By Inequality (8) in the proof of Lemma 3.5, we have

$$2\lambda \|v - v^{i}\|_{2}^{2} \leq \frac{1}{N} \left(L(g^{i}, s_{i}) - L(g, s_{i}) + L(g, s_{i}') - L(g^{i}, s_{i}') \right).$$
⁽⁹⁾

Moreover, we have for any $f = \alpha \cdot \phi(\cdot), f' = \alpha' \cdot \phi(\cdot) \in \mathcal{F}$ and $s \in \mathcal{D}$,

$$L(f,s) - L(f',s) \leq \langle \nabla_{\alpha} L(f,s), \alpha - \alpha' \rangle$$
(Convexity of $L(\cdot,s)$)
$$\leq \|\nabla_{\alpha} L(\alpha,s)\|_{2} \cdot \|\alpha - \alpha'\|_{2}$$
(10)
$$\leq G \|\alpha - \alpha'\|_{2}$$
(Defn. of G).

Combining with Inequalities (9) and (6), we have

$$\begin{split} \|v - v^{i}\|_{2}^{2} \\ \leq & \frac{1}{2\lambda N} \left(L(g^{i}, s_{i}) - L(g, s_{i}) + L(g, s_{i}') - L(g^{i}, s_{i}') \right) \\ \text{(Ineq. (9))} \\ \leq & \frac{1}{2\lambda N} \left(G \|v - v^{i}\|_{2} + G \|v - v^{i}\|_{2} \right) \\ \text{(Ineq. (10))} \\ = & \frac{G}{\lambda N} \|v - v^{i}\|_{2}. \end{split}$$

It implies that $||v - v^i||_2 \leq \frac{G}{\lambda N}$. Combining with Inequality (6), we have for any $s \in D$,

$$L(g,s) - L(g^{i},s) \le G ||v - v^{i}||_{2} \le \frac{G^{2}}{\lambda N}.$$

This completes the proof for the stability guarantee. For the sacrifice in the empirical risk, the argument is the same as that of Theorem 3.2. \Box

C. Details of Remark 3.3

• Prediction error: $f(x) \in \{-1, 1\}$ for any pair (f, x)and $L(f(x), y) = I[f(x) \neq y]$ ⁵, then we have that

$$\begin{aligned} &|L(f(x), y) - L(f(x'), y)| \\ &= |I[f(x) \neq y] - I[f(x') \neq y]| \\ &= I[f(x) \neq f(x')] = \frac{1}{2} |f(x) - f(x')|, \end{aligned}$$

which is $\frac{1}{2}$ -admissible.

⁵Here, I $[\cdot]$ is the indicator function.

• Soft margin SVM: $L(f, s) = (1 - yf(x))_+$,⁶ then we have that

$$|L(f(x), y) - L(f(x'), y)|$$

$$= |(1 - yf(x))_{+} - (1 - yf(x'))_{+}|$$

$$\leq |yf(x) - yf(x')|$$

$$= |f(x) - f(x')|,$$

which is 1-admissible.

• Least Squares regression: $L(f,s) = (f(x) - y)^2$. Suppose $f(x) \in [-1,1]$ for any $x \in \mathcal{X}$, then we have that

$$|L(f(x), y) - L(f(x'), y)|$$

= $|(f(x) - y)^2 - (f(x') - y)^2|$
= $|(f(x) + f(x') - 2y)(f(x) - f(x'))|$
 $\leq 4 |f(x) - f(x')|,$

which is 4-admissible.

Logistic regression: L(f, s) = ln(1 + e^{-yf(x)}). Note that we have for any x ∈ X and y ∈ {−1, 1},

$$\left| \nabla_{f(x)} \ln(1 + e^{-yf(x)}) \right|$$

$$= \left| \frac{-ye^{-yf(x)}}{1 + e^{-yf(x)}} \right| = \left| \frac{e^{-yf(x)}}{1 + e^{-yf(x)}} \right| \le 1.$$

Hence, the loss function $L(f, s) = \ln(1 + e^{-yf(x)})$ is 1-admissible.

D. Analysis of Our Framework in Specified Settings

Next, we show the stability guarantee of our framework in several specified models. We mainly analyze three commonly-used models: soft margin SVMs, least squares regression, and logistic regression.

Soft margin SVMs. Recall that $S = \{s_i = (x_i, z_i, y_i)\}_{i \in [N]}$ is the given training set. We first have a kernel function $k(\cdot, \cdot)$ that defines values $k(x_i, x_j)$. Then each classifier f is a linear combination of $k(x_i, \cdot)$, i.e.,

$$f(\cdot) = \sum_{i \in [N]} \alpha_i k(x_i, \cdot)$$

for some $\alpha \in \mathbb{R}^N$ In the soft margin SVM model, we consider the following loss function

$$L(f,s) = (1 - yf(x))_+$$

which is 1-admissible. Then Program (Stable-Fair) can be rewritten as follows.

$$\min_{\alpha \in \mathbb{R}^{N}} \sum_{i \in [N]} \left(1 - y_{i} \sum_{j \in [N]} \alpha_{j} k(x_{j}, x_{i}) \right)_{+} + \lambda \| \sum_{i,j \in [N]} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) \|_{k}^{2} \quad s.t. \quad (SVM)$$

$$\Omega(f) \leq 0.$$

This model has been considered in (Zafar et al., 2017b;a) that aims to avoid disparate impact/disparate mistreatment. Applying Theorems 3.2 and 3.7, and the fact that $L(\cdot, \cdot)$ is 1-admissible (Remark 3.3), we directly have the following corollary.

Corollary D.1. Suppose the learning algorithm A computes a minimizer A_S of Program (SVM).

- If $k(x_i, x_i) \leq \kappa^2 < \infty$ for each $i \in [N]$, then \mathcal{A} is $\frac{\kappa^2}{\lambda N}$ -uniformly stable.
- Let $G = \sup_{f=\alpha^{\top}\phi(\cdot)\in\mathcal{F}:\Omega(f)\leq 0} \sup_{s\in\mathcal{D}} \|\nabla_{\alpha}L(f,s)\|_2$. Then \mathcal{A} is $\frac{G^2}{\lambda N}$ -uniformly stable.

Least square regression. The only difference from soft margin SVM is the loss function, which is defined as follows.

$$L(f,s) = (f(x) - y)^2.$$

Then Program (Stable-Fair) can be rewritten as follows.

$$\min_{\alpha \in \mathbb{R}^{N}} \sum_{i \in [N]} \left(y_{i} - \sum_{j \in [N]} \alpha_{j} k(x_{j}, x_{i}) \right)^{2} \\
+ \lambda \| \sum_{i, j \in [N]} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) \|_{k}^{2} \quad s.t.$$

$$\Omega(f) \leq 0.$$
(LS)

Applying Theorems 3.2 and 3.7, we have the following corollary.

Corollary D.2. Suppose the learning algorithm A computes a minimizer A_S of Program (LS).

- If $B = \max_{x \in \mathcal{X}} |f(x)|$ and $k(x_i, x_i) \le \kappa^2 < \infty$ for each $i \in [N]$, then \mathcal{A} is $\frac{(2B+2)^2 \kappa^2}{\lambda N}$ -uniformly stable.
- Let $G = \sup_{f=\alpha^{\top}\phi(\cdot)\in\mathcal{F}:\Omega(f)\leq 0} \sup_{s\in\mathcal{D}} \|\nabla_{\alpha}L(f,s)\|_2$. Then \mathcal{A} is $\frac{G^2}{\lambda N}$ -uniformly stable.

Proof. We only need to verify that $L(\cdot, \cdot)$ is (2B + 2)-

 $^{{}^{6}(}a)_{+} = a$ if $a \ge 0$ and otherwise $(a)_{+} = 0$.

admissible. For any $x, x' \in \mathcal{X}$ and $y \in \{-1, 1\}$, we have

$$\begin{aligned} & \left| (f(x) - y)^2 - (f(x') - y)^2 \right| \\ &= \left| (f(x) - f(x')) \cdot (f(x) + f(x') - 2y) \right| \\ &\leq (|f(x)| + |f(x')| + 2) \cdot |(f(x) - f(x'))| \\ &\leq (2B + 2) \left| (f(x) - f(x')) \right|. \end{aligned}$$

This completes the proof.

Logistic regression. Again, the only difference from soft margin SVM is the loss function, which is defined as follows.

$$L(f,s) = \ln(1 + e^{-yf(x)})$$

This model has been widely used in the literature (Zafar et al., 2017b;a; Goel et al., 2018). Then Program (Stable-Fair) can be rewritten as follows.

$$\min_{\alpha \in \mathbb{R}^{N}} \sum_{i \in [N]} \ln \left(1 + y_{i} \cdot e^{-\sum_{j \in [N]} \alpha_{j} k(x_{j}, x_{i})} \right) \\
+ \lambda \| \sum_{i,j \in [N]} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) \|_{k}^{2} \quad s.t. \quad (LR)$$

$$\Omega(f) \leq 0.$$

Applying Theorem 3.2 and 3.7, and the fact that $L(\cdot, \cdot)$ is 1-admissible (Remark 3.3), we have the following corollary.

Corollary D.3. Suppose the learning algorithm \mathcal{A} computes a minimizer \mathcal{A}_S of Program (LR).

- If $k(x_i, x_i) \leq \kappa^2 < \infty$ for each $i \in [N]$, then \mathcal{A} is $\frac{\kappa^2}{\lambda N}$ -uniformly stable.
- Let $G = \sup_{f=\alpha^{\top}\phi(\cdot)\in\mathcal{F}:\Omega(f)\leq 0} \sup_{s\in\mathcal{D}} \|\nabla_{\alpha}L(f,s)\|_{2}$. Then \mathcal{A} is $\frac{G^{2}}{\lambda N}$ -uniformly stable.