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A. Proof of Theorem 1
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The first equality holds since the marginal distribution is
equivalent for D and D and we assume (5). Consequently,
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More simply, we have η(x) = −(K − 1)η(x) + 1. Finally,
we transform the classification risk,
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for the complementary loss, `(k, g) := −(K − 1)`(k, g) +
1>`(g), which concludes the proof.

B. Proof of Corollary 2
Proof.
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Table 3: Summary statistics of benchmark datasets. In the experi-
ments with validation dataset in Section 4.2, train data is further
splitted into train/validation with a ratio of 9:1. Fashion is Fashion-
MNIST and Kuzushi is Kuzushi-MNIST.

Name # Train # Test # Dim # Classes Model

MNIST 60k 10k 784 10 Linear, MLP

Fashion 60k 10k 784 10 Linear, MLP

Kuzushi 60k 10k 784 10 Linear, MLP

CIFAR-10 50k 10k 2,048 10 DenseNet, Resnet

The second equality holds because we use (10). The third
equality holds because we are using losses that satisfy∑
j `(j, g(x)) = M1 for all x and `(y, g(x))+`(y, g(x)) =

M2 for all x and y. The 4th equality rearranges terms. The
5th equality holds becauseM1−(K−1)M2 = −M1 +M2

for `OVA and `PC. This can be easily shown by using
M1 = K and M2 = 2 for `OVA, and M1 = K(K − 1)/2
and M2 = K − 1 for `PC.

C. Datasets
In the experiments in Section 4, we use 4 benchmark
datasets explained below. The summary statistics of the
four datasets are given in Table 3.

• MNIST4 (Lecun et al., 1998) is a 10 class dataset of
handwritten digits: 1, 2 . . . , 9 and 0. Each sample is a
28× 28 grayscale image.

• Fashion-MNIST5 (Xiao et al., 2017) is a 10 class
dataset of fashion items: T-shirt/top, Trouser, Pullover,
Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle
boot. Each sample is a 28× 28 grayscale image.

• Kuzushi-MNIST6 (Clanuwat et al., 2018) is a 10 class
dataset of cursive Japanese (“Kuzushiji”) characters.
Each sample is a 28× 28 grayscale image.

• CIFAR-107 is a 10 class dataset of various objects:
airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. Each sample is a colored image in
32 × 32 × 3 RGB format. It is a subset of the 80
million tiny images dataset (Torralba et al., 2008).

4http://yann.lecun.com/exdb/mnist/
5https://github.com/zalandoresearch/

fashion-mnist
6https://github.com/rois-codh/kmnist
7https://www.cs.toronto.edu/˜kriz/cifar.

html
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