A. Proof of Lemma 1

Using the Bellman evaluation equation, we have

\[Q^\pi_{\text{soft}}(s, a) = r_2(s, a) + \gamma \mathbb{E}_{s', a'} [Q^\pi_{\text{soft}}(s', a') - \alpha \ln \pi(a'|s')] , \tag{1} \]

\[\Leftrightarrow Q^\pi_{\text{soft}}(s, a) + g(s) = r_2(s, a) + g(s) - \gamma \mathbb{E}_{a'} [g(s')] + \mathbb{E}_{s', a'} \left[Q^\pi_{\text{soft}}(s', a') + g(s') - \alpha \ln \pi(a'|s') \right] \]

\[\Leftrightarrow Q^\pi_{\text{soft}}(s, a) = r_1(s, a) + \gamma \mathbb{E}_{s', a'} [Q^\pi_{\text{soft}}(s', a') - \alpha \ln \pi(a'|s')] . \tag{3} \]

This proves the stated result.

B. Proof of Theorem 1

Let \(\pi' = \text{SPI}_{r_1} \{ \pi \} \). We have, for any state-action couple,

\[\pi'(a|s) = \frac{\exp\{Q^\pi_{\text{soft}}(s, a)\}}{Z(s)} \]

\[= \frac{\exp\{Q^\pi_{\text{soft}}(s, a) + g(s)\}}{Z(s) \exp g(s)} \]

\[= \frac{\exp\{Q^\pi_{\text{soft}}(s, a)\}}{Z'(s)}. \tag{6} \]

The last equations means that \(\pi' = \text{SPI}_{r_2} \{ \pi \} \), and so \(\text{SPI}_{r_1} \{ \pi \} = \text{SPI}_{r_2} \{ \pi \} \). To see that both rewards provide the same optimal policy, it is sufficient to notice that an optimal policy is the unique policy being greedy respectively to itself, that is \(\pi_* = \text{SPI}_r \{ \pi_* \} \). So, \(\text{SPI}_{r_1} \{ \pi \} \) and \(\text{SPI}_{r_2} \{ \pi \} \) have necessarily the same fixed point.

C. Proof of Theorem 2

Let \(\pi_1 \) and \(\pi_2 \) be two successive policies such that \(\pi_2 = \text{SPI}_r \{ \pi_1 \} \). This means that, for any state \(s \) and action \(a \), we have:

\[\pi_2(a|s) = \frac{\exp\{Q^\pi_{\text{soft}}(s, a)\}}{Z_1(s)} \]

where \(Z_1(s) \) is a normalization factor. Taking the logarithm of this expression, we get:

\[\alpha \ln \pi_2(a|s) = Q^\pi_{\text{soft}}(s, a) - \ln Z_1(s) = Q^\pi_{\text{soft}}(s, a) + f(s). \]

According to Lemma 1, this means that \(\alpha \ln \pi_2(a|s) \) is the Q-function associated to the shaped reward function \(\bar{r}(s, a) = r(s, a) + f(s) - \gamma \mathbb{E}_{s', a'}[f(s')] \) for the policy \(\pi_1 \). Using the fact that this Q-function satisfies the Bellman equation, we have

\[\alpha \ln \pi_2(a|s) = \bar{r}(s, a) + \gamma \mathbb{E}_{s', a'} [\alpha \ln \pi_2(a'|s') - \alpha \ln \pi_1(a'|s')] \]

\[= \bar{r}(s, a) - \alpha \gamma \mathbb{E}_{a'} [\text{KL}(\pi_1(\cdot|s')||\pi_2(\cdot|s'))] \]

\[\Leftrightarrow \bar{r}(s, a) = \alpha \ln \pi_2(a|s) + \alpha \gamma \mathbb{E}_{a'\sim \bar{\pi}_1(\cdot|a, s)} [\text{KL}(\pi_1(\cdot|s')||\pi_2(\cdot|s'))] . \]

The fact that both \(r \) and \(\bar{r} \) have the same optimal policy is due to theorem 1. This proves the stated result.