Supplement for Differentially Private Fair Learning

1. Details for Model and Preliminaries

Suppose we are given a data set of *m* individuals drawn *i.i.d.* from an unknown distribution \mathcal{P} where each individual is described by a tuple (X, A, Y). $X \in \mathcal{X}$ forms a vector of *unprotected attributes*, $A \in \mathcal{A}$ is the *protected attribute* where $|\mathcal{A}| < \infty$, and $Y \in \mathcal{Y}$ is a binary label. Without loss of generality, we write $\mathcal{A} = \{0, 1, \dots, |\mathcal{A}| - 1\}$ and let $\mathcal{Y} = \{0, 1\}$. Let $\hat{\mathcal{P}}$ denote the empirical distribution of the observed data. Our primary goal is to develop an algorithm to learn a (possibly randomized) *fair* classifier \hat{Y} , with an algorithm that guarantees the *privacy* of the sensitive attributes A. By privacy, we mean differential privacy, and by fairness, we mean (approximate versions of) the *Equalized Odds* condition of (Hardt et al., 2016). Both of these notions are parameterized: differential privacy has a parameter ϵ , and the approximate fairness constraint is parameterized by γ . Our main interest is in characterizing the tradeoff between ϵ , γ , and classification error.

1.1. Fairness

Definition 1.1 (γ -Equalized Odds Fairness). We say a classifier \hat{Y} satisfies the γ -Equalized Odds condition with respect to the attribute A, if for all $a, a' \in A$, the false and true positive rates of \hat{Y} in the subpopulations $\{A = a\}$ and $\{A = a'\}$ are within γ of one another. In other words, for all $a, a' \in A$,

$$\begin{split} \left| \mathbb{P}\left[\hat{Y} = 1 \, | \, A = a, Y = 0 \right] - \mathbb{P}\left[\hat{Y} = 1 \, | \, A = a', Y = 0 \right] \right| &\leqslant \gamma \\ \left| \mathbb{P}\left[\hat{Y} = 1 \, | \, A = a, Y = 1 \right] - \mathbb{P}\left[\hat{Y} = 1 \, | \, A = a', Y = 1 \right] \right| &\leqslant \gamma \end{split}$$

where probabilities are taken with respect to \mathcal{P} . The above constraint involves quadratically many inequalities in $|\mathcal{A}|$. It will be more convenient to instead work with a slightly different formulation of γ -Equalized Odds in which we constrain the difference between false and true positive rates in the subpopulation $\{A = a\}$ and the corresponding rates for $\{A = 0\}$ to be at most γ for all $a \neq 0$. The choice of group 0 as an anchor is arbitrary and without loss of generality. The result is a set of only linearly many constraints. For all $a \in \mathcal{A}$:

$$\begin{split} \left| \mathbb{P}\left[\hat{Y} = 1 \, | \, A = a, Y = 0 \right] - \mathbb{P}\left[\hat{Y} = 1 \, | \, A = 0, Y = 0 \right] \right| &\leqslant \gamma \\ \left| \mathbb{P}\left[\hat{Y} = 1 \, | \, A = a, Y = 1 \right] - \mathbb{P}\left[\hat{Y} = 1 \, | \, A = 0, Y = 1 \right] \right| &\leqslant \gamma \end{split}$$

Since the underlying distribution \mathcal{P} is not known, we will work with empirical versions of the above quantities, in which all the probabilities appearing above will be taken with respect to the empirical distribution of the observed data $\hat{\mathcal{P}}$. Since we will generally be dealing with this definition of fairness, we will use the shortened term " γ -fair" throughout the paper to refer to " γ -Equalized Odds fair". We now introduce some notation that will appear throughout the paper.

Remark 1.1. We will use notation $FP_a(\hat{Y})$ and $TP_a(\hat{Y})$ to refer to the false and true positive rates of \hat{Y} on the subpopulation $\{A = a\}$. $\widehat{FP}_a(\hat{Y})$ and $\widehat{TP}_a(\hat{Y})$ are used to refer to the empirical false and true positive rates which are calculated based on the empirical distribution of the data.

Remark 1.2. Let $\hat{q}_{\hat{y}ay} := \widehat{\mathbb{P}} [\widehat{Y} = \hat{y}, A = a, Y = y]$ be the empirical fraction of the data with $\widehat{Y} = \hat{y}, A = a$, and Y = y. With slight abuse of notation, we will use $\hat{q}_{ay} := \widehat{\mathbb{P}} [A = a, Y = y] = \hat{q}_{1ay} + \hat{q}_{0ay}$ to denote the empirical fraction of the

[.] Correspondence to: Saeed Sharifi-Malvajerdi <saeedsh@wharton.upenn.edu>.

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

data with A = a and Y = y. We will see that $\min_{a,y} \hat{q}_{ay}$ shows up in our analyses and plays a role in the performance of our algorithms.

Remark 1.3. Observe that using the introduced notation, given a classifier \hat{Y}

$$\widehat{FP}_{a}\left(\widehat{Y}\right) = \frac{\widehat{q}_{1a0}}{\widehat{q}_{a0}} \quad , \quad \widehat{TP}_{a}\left(\widehat{Y}\right) = \frac{\widehat{q}_{1a1}}{\widehat{q}_{a1}}$$

1.2. Differential Privacy

Let \mathcal{D} be a *data universe* from which a database D of size m is drawn and let M be an algorithm that takes the database D as input and outputs $M(D) \in \mathcal{O}$. Informally speaking, differential privacy requires that the addition or removal of a single data entry should have little (distributional) effect on the output of the mechanism. In other words, for every pair of *neighboring* databases $D \sim D' \in \mathcal{D}^m$ that differ in at most one entry, differential privacy requires that the distribution of M(D) and M(D') are "close" to each other where closeness are measured by the privacy parameters ϵ and δ .

Definition 1.2 ((ϵ, δ) -Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm $M : \mathcal{D}^m \to \mathcal{O}$ is said to be (ϵ, δ) -differentially private if for all pairs of neighboring databases $D, D' \in \mathcal{D}^m$ and all $O \subseteq \mathcal{O}$,

$$\mathbb{P}[M(D) \in O] \leq e^{\epsilon} \mathbb{P}[M(D') \in O] + \delta$$

if $\delta = 0$, M is said to be ϵ -differentially private.

Recall that our data universe is $\mathcal{D} = (\mathcal{X}, \mathcal{A}, \mathcal{Y})$, which will be convenient to partition as $(\mathcal{X}, \mathcal{Y}) \times \mathcal{A}$. Given a dataset D of size m, we will write it as a pair $D = (D_I, D_S)$ where $D_I \in (\mathcal{X}, \mathcal{Y})^m$ represent the insensitive attributes and $D_S \in \mathcal{A}^m$ represent the sensitive attributes. We will sometimes incidentally guarantee differential privacy over the entire data universe \mathcal{D} (see the table in the introduction), but our main goal will be to promise differential privacy only with respect to the sensitive attributes. Write $D_S \sim D'_S$ to denote that D_S and D'_S differ in exactly one coordinate (i.e. in one person's group membership). An algorithm is (ϵ, δ) -differentially private in the sensitive attributes if for all $D_I \in (\mathcal{X}, \mathcal{Y})^m$ and for all $D_S \sim D'_S \in \mathcal{A}^m$, we have:

$$\mathbb{P}\left[M(D_I, D_S) \in O\right] \leq e^{\epsilon} \mathbb{P}\left[M(D_I, D'_S) \in O\right] + \delta$$

Differentially private mechanisms usually work by deliberately injecting perturbations into quantities computed from the sensitive data set, and used as part of the computation. The injected perturbation is sometimes "explicitly" in the form of a (zero-mean) noise sampled from a known distribution, say Laplace or Gaussian, where the scale of noise is calibrated to the sensitivity of the query function to the input data. However, in some other cases, the noise is "implicitly" injected by maintaining a distribution over a set of possible outcomes for the algorithm and outputting a sample from that distribution. The *Laplace* or *Gaussian* mechanisms which are two standard techniques to achieve differential privacy follow the former approach by adding Laplace or Gaussian noise of appropriate scale to the outcome of computation, respectively. The *Exponential* mechanism instead falls into the latter case and is often used when an object, say a classifier, with optimal utility is to be chosen privately. In the setting of this paper, to guarantee the privacy of the sensitive attribute A in our algorithms, we will be using the Laplace and the Exponential Mechanisms which are briefly reviewed below. See (Dwork & Roth, 2014) for a more detailed discussion and analysis.

Let's start with the Laplace mechanism which, as stated before, perturbs the given query function f with zero-mean Laplace noise calibrated to the ℓ_1 -sensitivity of the query function. The ℓ_1 -sensitivity of a function is essentially how much a function would change in ℓ_1 norm if one changed at most one entry of the database.

Definition 1.3 (ℓ_1 -sensitivity of a function). The ℓ_1 -sensitivity of $f : \mathcal{D}^m \to \mathbb{R}^k$ is

$$\Delta f = \max_{\substack{D,D' \in \mathcal{D}^m \\ D \sim D'}} \left\| f(D) - f(D') \right\|_1$$

Definition 1.4 (Laplace Mechanism (Dwork et al., 2006)). *Given a query function* $f : \mathcal{D}^m \to \mathbb{R}^k$, a database $D \in \mathcal{D}^m$, and a privacy parameter ϵ , the Laplace mechanism outputs:

$$\overline{f_{\epsilon}}(D) = f(D) + (W_1, \dots, W_k)$$

where W_i 's are *i.i.d.* random variables drawn from Lap $(\Delta f/\epsilon)$.

Keep in mind that besides having privacy, we would like the privately computed query $\tilde{f}_{\epsilon}(D)$ to have some reasonable accuracy. The following theorem which uses standard tail bounds for a Laplace random variable formalizes the trade-off between privacy and accuracy for the Laplace mechanism.

Theorem 1.1 (Privacy vs. Accuracy of the Laplace Mechanism (Dwork et al., 2006)). *The Laplace mechanism guarantees* ϵ *-differential privacy and that with probability at least* $1 - \delta$,

$$\|\widetilde{f}_{\epsilon}(D) - f(D)\|_{\infty} \leq \ln\left(\frac{k}{\delta}\right) \cdot \left(\frac{\Delta f}{\epsilon}\right)$$

While the Laplace mechanism is often used when the task at hand is to calculate a bounded numeric query (e.g. mean, median), the Exponential mechanism is used when the goal is to output an object (e.g. a classifier) with maximum utility (i.e. minimum loss). To formalize the exponential mechanism, let $\ell : \mathcal{D}^m \times \mathcal{H} \to \mathbb{R}$ be a loss function that given an input database $D \in \mathcal{D}^m$ and $h \in \mathcal{H}$, specifies the loss of h on D by $\ell(D, h)$. Without a privacy constraint, the goal would be to output $\arg \min_{h \in \mathcal{H}} \ell(D, h)$ for the given database D, but when privacy is required, the private algorithm must output $\arg \min_{h \in \mathcal{H}} \ell(D, h)$ with some "perturbation" which is formalized in the following definition. Let $\Delta \ell$ be the sensitivity of the loss function ℓ with respect to the database argument D. In other words,

$$\Delta \ell = \max_{h \in \mathcal{H}} \max_{\substack{D, D' \in \mathcal{D}^m \\ D \sim D'}} \left| \ell \left(D, h \right) - \ell \left(D', h \right) \right|$$

Definition 1.5 (Exponential Mechansim (McSherry & Talwar, 2007)). *Given a database* $D \in \mathcal{D}^m$ and a privacy parameter ϵ , output $h \in \mathcal{H}$ with probability proportional to $\exp(-\epsilon \ell(D, h)/2\Delta \ell)$.

Theorem 1.2 (Privacy vs. Accuracy of the Exponential Mechanism (McSherry & Talwar, 2007)). Let $h^* = \arg \min_{h \in \mathcal{H}} \ell(D, h)$ and $\tilde{h}_{\epsilon} \in \mathcal{H}$ be the output of the Exponential mechanism. We have that \tilde{h}_{ϵ} is ϵ -DP and that with probability at least $1 - \delta$,

$$|\ell(D, \tilde{h}_{\epsilon}) - \ell(D, h^{\star})| \leq \ln\left(\frac{|\mathcal{H}|}{\delta}\right) \cdot \left(\frac{2\Delta\ell}{\epsilon}\right)$$

An important property of differential privacy is that it is robust to *post-processing*. The post-processing of an (ϵ, δ) -DP algorithm output remains (ϵ, δ) -DP.

Lemma 1.3 (Post-Processing (Dwork et al., 2006)). Let $M : \mathcal{D}^m \to \mathcal{O}$ be a (ϵ, δ) -DP algorithm and let $f : \mathcal{O} \to \mathcal{R}$ be any randomized function. We have that the algorithm $f \circ M : \mathcal{D}^m \to \mathcal{R}$ is (ϵ, δ) -DP.

Another important property of differential privacy is that DP algorithms can be composed adaptively with a graceful degradation in their privacy parameters.

Theorem 1.4 (Composition (Dwork et al., 2010)). Let M_t be an (ϵ_t, δ_t) -DP algorithm for $t \in [T]$. We have that the composition $M = (M_1, \ldots, M_T)$ is (ϵ, δ) -DP where $\epsilon = \sum_t \epsilon_t$ and $\delta = \sum_t \delta_t$.

Following the Composition Theorem 1.4, if for instance, an iterative algorithm that runs in T iterations is to be made private with target privacy parameters ϵ and $\delta = 0$, each iteration must be made ϵ/T -DP. This may lead to a huge amount of per iteration noise if T is too large. The Advanced Composition Theorem 1.5 instead allows the privacy parameter at each step to scale with $O(\epsilon/\sqrt{T})$.

Theorem 1.5 (Advanced Composition (Dwork et al., 2010)). Suppose $0 < \epsilon < 1$ and $\delta > 0$ are target privacy parameters. Let M_t be a (ϵ', δ') -DP algorithm for all $t \in [T]$. We have that the composition $M = (M_1, \ldots, M_T)$ is $(\epsilon, T\delta' + \delta)$ -DP where $\epsilon = 2\epsilon' \sqrt{2T \ln(1/\delta)}$.

2. Details for Differentially Private Fair Learning: Post-processing

In this section we will present and analyze our first differentially private fair learning algorithm which will be called **DP-postprocessing**. The **DP-postprocessing** algorithm is based on the fair learning model introduced in (Hardt et al., 2016) where decisions made by an arbitrary base classifier have their false and true positive rates equalized across different groups $\{A = a\}$ in a post-processing step. Due to the desire for privacy of the sensitive attribute A, we assume the base classifier is trained only on the unprotected attributes X and that A is used only for the post-processing step. We will see the

Figure 1: The post-processing technique. In the training phase, training examples are used to train the base classifier and find the optimal p^* by solving LP (1).

fair learning problem can be written as a linear program whose coefficients depend only on the $\hat{q}_{\hat{y}ay}$ introduced in Remark 1.2, and thus privacy will be achieved if these quantities are calculated privately using the Laplace mechanism. While the approach is straightforward and simply implementable, the privately learned classifier will need to take as input the sensitive attribute A at test time which is not feasible (or legal) in all applications.

We will first review the basic approach of (Hardt et al., 2016) in Subsection 2.1. We will then introduce the **DP-postprocessing** algorithm in Subsection 2.2 which is followed by its analysis including the tradeoffs between accuracy, fairness, and privacy.

2.1. Fair Learning

Following the model presented in (Hardt et al., 2016), suppose there is an arbitrary base classifier \hat{Y} which is trained on the set of training examples $\{(X_i, Y_i)\}_{i=1}^m$. Notice the protected attribute A is excluded from the training set, and so \hat{Y} is trivially 0-DP in the protected attribute. The goal for now is to make the classifications of the base classifier γ -fair with respect to the sensitive attribute A by post-processing the predictions given by \hat{Y} . With slight abuse of notation, let \hat{Y}_p denote the derived optimal γ -fair randomized classifier where $p = (p_{\hat{y}a})_{\hat{y},a}$ is a vector of probabilities describing \hat{Y}_p and that $p_{\hat{y}a} := \mathbb{P}[\hat{Y}_p = 1 | \hat{Y} = \hat{y}, A = a]$. Define p^* to be the solution to the optimization problem LP (1) where,

$$\Delta FP_{a}\left(\hat{Y}_{p}\right) = \left|FP_{a}\left(\hat{Y}_{p}\right) - FP_{0}\left(\hat{Y}_{p}\right)\right|$$
$$\Delta TP_{a}\left(\hat{Y}_{p}\right) = \left|TP_{a}\left(\hat{Y}_{p}\right) - TP_{0}\left(\hat{Y}_{p}\right)\right|$$

and err (\hat{Y}_p) is the expected loss of \hat{Y}_p , i.e.,

$$\operatorname{err}\left(\widehat{Y}_{p}\right) = \mathbb{P}_{(X,A,Y)\sim\mathcal{P}}\left[\widehat{Y}_{p}\neq Y\right]$$

Once p^* is found by solving LP (1), one would then use this vector of probabilities, along with the estimate \hat{Y} given by the base classifier and the sensitive attribute A, to make further predictions. See Fig. 1 for a visual presentation of the adopted model in this section.

LP: Linear Program

$\operatorname*{argmin}_{p}$	$\operatorname{err}\left(\widehat{Y}_{p} ight)$	
s.t. $\forall a \in \mathcal{A}_{a \neq 0}$	$\Delta \mathrm{FP}_{a}\left(\widehat{Y}_{p}\right) \leqslant \gamma$	(1)
	$\Delta \mathrm{TP}_{a}\left(\widehat{Y}_{p}\right) \leqslant \gamma$	
	$0 \leqslant p_{\hat{y}a} \leqslant 1 \forall \hat{y}, a$	

Since the true underlying distribution \mathcal{P} is not known, in practice the empirical distribution $\hat{\mathcal{P}}$ is used to estimate the quantities appearing in LP (1). Using simple probability techniques, one can expand the empirical quantities $\widehat{\operatorname{err}}(\hat{Y}_p)$, $\Delta \widehat{\operatorname{FP}}_a(\hat{Y}_p)$, and $\Delta \widehat{\operatorname{TP}}_a(\hat{Y}_p)$ in a linear form in p with coefficients being a function of $\hat{q}_{\hat{y}ay}$ and \hat{q}_{ay} quantities introduced in Remark 1.2. We have the expanded empirical version of LP (1) written in $\widehat{\operatorname{LP}}$ (2).

$$\widehat{\text{LP: Empirical Linear Program}}$$

$$\arg\min_{p} \quad \widehat{\text{err}} \left(\widehat{Y}_{p} \right) = \sum_{\hat{y},a} (\widehat{q}_{\hat{y}a0} - \widehat{q}_{\hat{y}a1}) \cdot p_{\hat{y}a} + \sum_{\hat{y},a} \widehat{q}_{\hat{y}a1}$$

$$\text{s.t. } \forall a \in \mathcal{A} \quad \Delta \widehat{\text{FP}}_{a} \left(\widehat{Y}_{p} \right) = \left| \widehat{\text{FP}}_{a} \left(\widehat{Y} \right) \cdot p_{1a} + \left(1 - \widehat{\text{FP}}_{a} \left(\widehat{Y} \right) \right) \cdot p_{0a} - \widehat{\text{FP}}_{0} \left(\widehat{Y} \right) \cdot p_{10} - \left(1 - \widehat{\text{FP}}_{0} \left(\widehat{Y} \right) \right) \cdot p_{00} \right| \leq \gamma$$

$$\Delta \widehat{\text{TP}}_{a} \left(\widehat{Y}_{p} \right) = \left| \widehat{\text{TP}}_{a} \left(\widehat{Y} \right) \cdot p_{1a} + \left(1 - \widehat{\text{TP}}_{1} \left(\widehat{Y} \right) \right) \cdot p_{0a} - \widehat{\text{TP}}_{0} \left(\widehat{Y} \right) \cdot p_{1a} + \left(1 - \widehat{\text{TP}}_{1} \left(\widehat{Y} \right) \right) \cdot p_{0a} - \widehat{\text{TP}}_{0} \left(\widehat{Y} \right) \cdot p_{10} - \left(1 - \widehat{\text{TP}}_{0} \left(\widehat{Y} \right) \right) \cdot p_{00} \right| \leq \gamma$$

$$0 \leq p_{\hat{y}a} \leq 1 \quad \forall \hat{y}, a$$

$$(2)$$

2.2. A Differentially Private Algorithm: Design and Analysis

In order to guarantee privacy of the protected attribute A, we simply need to compute the empirical quantities appearing in $\widehat{LP}(2)$ in a differentially private manner: once we do this, the differential privacy guarantees of the algorithm will follow from the post-processing property. In particular, we need to compute a private estimate of $\hat{q} = [\hat{q}_{\hat{y}ay}]_{\hat{y},a,y} \in \mathbb{R}^{4|\mathcal{A}|}$. The first thing to do is to find the ℓ_1 -sensitivity of \hat{q} to the sensitive attribute $A \in \mathcal{A}$.

Lemma 2.1 (ℓ_1 -Sensitivity of the Empirical Distribution \hat{q} to A). We have that

$$\Delta \hat{\boldsymbol{q}} = \max_{\substack{A,A' \in \mathcal{A}^m \\ A \sim A'}} \left\| \hat{\boldsymbol{q}} \left(A \right) - \hat{\boldsymbol{q}} \left(A' \right) \right\|_1 = \frac{2}{m}$$

Following Definition 1.4 and Theorem 1.1, to achieve privacy with target parameter ϵ , let

$$\tilde{\boldsymbol{q}} = [\tilde{q}_{\hat{y}ay}]_{\hat{y},a,y} := \hat{\boldsymbol{q}} + [W_{\hat{y}ay}]_{\hat{y},a,y}$$

be the perturbed version of \hat{q} where $W_{\hat{y}ay}$'s are *i.i.d.* draws from Lap $(2/m\epsilon)$ distribution. Once \hat{q} is computed privately with privacy guarantee of ϵ , any post-processing of the private \tilde{q} would still be ϵ -differentially private by the Post-processing Lemma 1.3. As a consequence, one may instead feed the privately computed empirical distribution \tilde{q} to the linear program $\widehat{LP}(2)$ to ensure privacy of the sensitive attribute A. With an inevitable modification to the constraints of the linear program $\widehat{LP}(2)$, we now introduce the ϵ -differentially private linear program $\widehat{LP}(3)$ which is used in the **DP-postprocessing** Algorithm 1 to obtain an optimal ϵ -DP γ -fair classifier. Note that in $\widehat{LP}(3)$, β is the confidence parameter, m is the training sample size, $\widehat{FP}_a(\hat{Y})$ and $\widehat{TP}_a(\hat{Y})$ are the false and true positive rates of the classifier \hat{Y} in $\{A = a\}$ calculated using the private \tilde{q} , and \tilde{q}_{ay} refers to the noisy version of \hat{q}_{ay} , or in other words, $\tilde{q}_{ay} := \tilde{q}_{1ay} + \tilde{q}_{0ay}$. We will provide high probability guarantees on the accuracy and fairness violation of the classifier given by the **DP-postprocessing** Algorithm 1 in Theorem 2.2. The proof of Theorem 2.2 relies on some facts which are stated in Lemma A.1. All the proofs are given in Appendix A.

Algorithm 1 ϵ -differentially private fair classification: DP-postprocessing

Input: privacy parameter ϵ , confidence parameter β , fairness violation γ , training examples $\{(X_i, A_i, Y_i)\}_{i=1}^m$

Train the base classifier \hat{Y} on $\{(X_i, Y_i)\}_{i=1}^m$ and get the estimates $\{\hat{Y}_i\}_{i=1}^m$. Calculate the empirical joint distribution of $\{\hat{Y}, A, Y\}$: $\hat{q}_{\hat{y}ay} = \hat{\mathbb{P}}[\hat{Y} = \hat{y}, A = a, Y = y]$. Sample $W_{\hat{y}ay} \stackrel{i.i.d.}{\sim}$ Lap $(2/m\epsilon)$ for all \hat{y}, a, y . Perturb each $\hat{q}_{\hat{y}ay}$ with noise: $\tilde{q}_{\hat{y}ay} = \hat{q}_{\hat{y}ay} + W_{\hat{y}ay}$. Solve $\widetilde{\text{LP}}$ (3) to get the minimizer \tilde{p}^* .

Output: \tilde{p}^{\star} , the trained classifier \hat{Y}

\widetilde{LP} : ϵ -Differentially Private Linear Program

$$\underset{p}{\operatorname{arg\,min}} \quad \widetilde{\operatorname{err}} \left(\widehat{Y}_{p} \right) := {}^{1} \sum_{\hat{y},a} (\widetilde{q}_{\hat{y}a0} - \widetilde{q}_{\hat{y}a1}) \cdot p_{\hat{y}a} + \sum_{\hat{y},a} \widetilde{q}_{\hat{y}a1}$$
s.t. $\forall a \in \mathcal{A} \quad \Delta \widetilde{\operatorname{FP}}_{a} \left(\widehat{Y}_{p} \right) := \left| \widetilde{\operatorname{FP}}_{a} \left(\widehat{Y} \right) \cdot p_{1a} + \left(1 - \widetilde{\operatorname{FP}}_{a} \left(\widehat{Y} \right) \right) \cdot p_{0a}$

$$- \widetilde{\operatorname{FP}}_{0} \left(\widehat{Y} \right) \cdot p_{10} - \left(1 - \widetilde{\operatorname{FP}}_{0} \left(\widehat{Y} \right) \right) \cdot p_{00} \right| \leq \gamma + \frac{4 \ln \left(4|\mathcal{A}|/\beta \right)}{\min\{\widetilde{q}_{a0}, \widetilde{q}_{00}\} \, m\epsilon}$$

$$\Delta \widetilde{\operatorname{TP}}_{a} \left(\widehat{Y}_{p} \right) := \left| \widetilde{\operatorname{TP}}_{a} \left(\widehat{Y} \right) \cdot p_{1a} + \left(1 - \widetilde{\operatorname{TP}}_{a} \left(\widehat{Y} \right) \right) \cdot p_{0a}$$

$$- \widetilde{\operatorname{TP}}_{0} \left(\widehat{Y} \right) \cdot p_{10} - \left(1 - \widetilde{\operatorname{TP}}_{a} \left(\widehat{Y} \right) \right) \cdot p_{00} \right| \leq \gamma + \frac{4 \ln \left(4|\mathcal{A}|/\beta \right)}{\min\{\widetilde{q}_{a1}, \widetilde{q}_{01}\} \, m\epsilon}$$

$$0 \leq p_{\hat{y}a} \leq 1 \quad \forall \hat{y}, a$$

$$(3)$$

Theorem 2.2 (Error-Privacy, Fairness-Privacy Tradeoffs). Suppose $\min_{a,y}{\{\hat{q}_{ay}\}} > 4 \ln (4|\mathcal{A}|/\beta) / (m \epsilon)$. Let \hat{p}^* be the optimal solution of $\widehat{LP}(2)$ and let \tilde{p}^* be the output of Algorithm 1 which is the optimal solution of $\widetilde{LP}(3)$. With probability at least $1 - \beta$,

$$\widehat{err}\left(\widehat{Y}_{\widetilde{p}^{\star}}\right) \leqslant \widehat{err}\left(\widehat{Y}_{\widetilde{p}^{\star}}\right) + \frac{24|\mathcal{A}|\ln\left(4|\mathcal{A}|/\beta\right)}{m\epsilon}$$

and for all $a \neq 0$,

$$\begin{aligned} \Delta \widehat{FP}_a\left(\widehat{Y}_{\widetilde{p}^\star}\right) &\leqslant \gamma + \frac{8\ln\left(4|\mathcal{A}|/\beta\right)}{\min\{\widehat{q}_{a0}, \widehat{q}_{00}\}\,m\epsilon - 4\ln\left(4|\mathcal{A}|/\beta\right)}\\ \Delta \widehat{TP}_a\left(\widehat{Y}_{\widetilde{p}^\star}\right) &\leqslant \gamma + \frac{8\ln\left(4|\mathcal{A}|/\beta\right)}{\min\{\widehat{q}_{a1}, \widehat{q}_{01}\}\,m\epsilon - 4\ln\left(4|\mathcal{A}|/\beta\right)}\end{aligned}$$

We emphasize that the accuracy guarantee stated in Theorem 2.2 is relative to the non-private post-processing algorithm, *not* relative to the optimal fair classifier. This is because the non-private post-processing algorithm itself has no such optimality guarantees: its main virtue is simplicity. In the next section, we analyze a more complicated algorithm that is competitive with the optimal fair classifier.

3. Details for Differentially Private Fair Learning: In-processing

In this section we will introduce our second differentially private fair learning algorithm which will be called **DP-oraclelearner** and is based on the algorithm presented in (Agarwal et al., 2018). The method developed by (Agarwal et al., 2018), in the language of (Kearns et al., 2018) gives a reduction from finding an optimal fair classifier to finding the equilibrium of a two-player zero-sum game played between a "Learner" who needs to solve an unconstrained learning problem (given access to an efficient cost-sensitive classification oracle which will be described later in Assumption 3.1) and an "Auditor" who finds fairness violations. Having the learner play its best response and the auditor play a no-regret learning algorithm (we use exponentiated gradient descent, or "multiplicative weights") guarantees convergence of the average plays to the equilibrium. Our differentially private extension achieves privacy by having the learner play its best response using the exponential mechanism. This is the differentially private equivalent of assuming access to a perfect oracle, as is done in (Agarwal et al., 2018; Kearns et al., 2018). In practice, the exponential mechanism would be substituted for a computationally efficient private learner with heuristic accuracy guarantees. The auditor is made private by the Laplace mechanism where the Laplace perturbations are added to the gradients.

We will first review the fair learning problem in section 3.1 and briefly give the reduction discussed above. The **DP-oraclelearner** algorithm and its analysis come afterwards in section 3.2 where tradeoffs among accuracy, fairness, and privacy of the learned classifier output by the **DP-oracle-learner** algorithm are studied. In section 3.3 we consider a scenario where only equalized false positive rates are required and improve the tradeoffs assuming that access to the sensitive attribute *A* at test time is allowed. Finally, in section 3.4, we consider the sensitivity of computing the error of the optimal classifier subject to fairness constraints. We show that this sensitivity can be substantially higher when the classifier cannot use protected attributes at test time, which shows that higher error must be introduced to estimate this error privately. This demonstrates an interesting interaction between the *error* achievable in the equalized odds fairness constraints, and the ability to use protected attributes explicitly in classification (i.e. requiring "disparate treatment") which does not arise without the constraint of differential privacy.

3.1. Fair Learning

Suppose given a class of binary classifiers \mathcal{H} , the task is to find the optimal γ -fair classifier in $\Delta(\mathcal{H})$, where $\Delta(\mathcal{H})$ is the set of all randomized classifiers that can be obtained by functions in \mathcal{H} . In our main analysis, we will not necessarily assume that the protected attribute A is available to the classifiers \mathcal{H} — i.e. we will allow them to be "A-blind" at test time. We will discuss in subsection 3.3 how we can get better accuracy/fairness guarantees if we allow classifiers in \mathcal{H} to have access to the protected attribute A. (Agarwal et al., 2018) provided a reduction of the learning problem with only the fairness constraint to a two-player zero-sum game and introduced an algorithm that achieves the lowest empirical error. In this section we mainly discuss their reduction approach which forms the basis of our differentially private fair learning algorithm that will be introduced later on in subsection 3.2. Although (Agarwal et al., 2018) considers a general form of a constraint that captures many existing notions of fairness, in this paper, we focus on the Equalized Odds notion of fairness described in Definition 1.1. Our techniques, however, generalize beyond this.

To begin with, the γ -fair classification task can be modeled as the constrained optimization problem 4, where

$$\Delta FP_a(Q) := \begin{bmatrix} FP_a(Q) - FP_0(Q) \\ FP_0(Q) - FP_a(Q) \end{bmatrix} \quad \Delta TP_a(Q) := \begin{bmatrix} TP_a(Q) - TP_0(Q) \\ TP_0(Q) - TP_a(Q) \end{bmatrix}$$

form the difference of the false and true positive rates of the classifier Q given A = a with those of the subpopulation with A = 0, and err (Q) is the expected error over the distribution Q on \mathcal{H} .

$$\operatorname{err}(Q) = \mathbb{E}_{h \sim Q}\left[\operatorname{err}(h)\right] = \mathbb{E}_{h \sim Q}\left[\mathbb{P}_{(X,A,Y) \sim \mathcal{P}}\left[h(X) \neq Y\right]\right]$$

Fair Learning Problem

$$\begin{array}{ll} \min_{\substack{Q \in \Delta(\mathcal{H}) \\ a \neq 0}} & \operatorname{err}(Q) \\ \text{s.t.} \ \forall a \in \mathcal{A}: & \Delta \operatorname{FP}_{a}(Q) \leq {}^{1}\gamma \\ & \Delta \operatorname{TP}_{a}(Q) \leq \gamma \end{array} \tag{4}$$

 $^{1} \leq$: element-wise inequality

Once again, as the data generating distribution \mathcal{P} is unknown, we will be dealing with the Fair Empirical Risk Minimization (ERM) problem 5. In this empirical version, all the probabilities and expectations are taken with respect to the empirical distribution of the data $\hat{\mathcal{P}}$.

Fair ERM Problem	
$\min_{\substack{Q \in \Delta(\mathcal{H})\\ a \neq b \neq a \neq c}} \Delta $	$\widehat{\operatorname{err}}\left(Q\right)$ $\widehat{\operatorname{AFR}}\left(Q\right) < \varepsilon $ (5)
S.t. $\forall a \in \mathcal{A}: a \neq 0$	$\Delta FP_a(Q) \le \gamma \tag{5}$
	$\Delta \widehat{\mathrm{TP}}_a(Q) \le \gamma$

Toward deriving a fair classification algorithm, the above fair ERM problem 5 will be rewritten as a two-player zero-sum game whose equilibrium is the solution to the problem. Let $\hat{r}(Q) \in \mathbb{R}^{4(|\mathcal{A}|-1)}$ store all $4(|\mathcal{A}|-1)$ constraints of 5, with γ moved to the other side of the inequalities, in one single vector.

$$\hat{\boldsymbol{r}}(Q) := \begin{bmatrix} \Delta \widehat{\mathrm{FP}}_{a}(Q) - \gamma \\ \Delta \widehat{\mathrm{TP}}_{a}(Q) - \gamma \end{bmatrix}_{\substack{a \in \mathcal{A} \\ a \neq 0}} = \begin{bmatrix} \widehat{\mathrm{FP}}_{a}(Q) - \widehat{\mathrm{FP}}_{0}(Q) - \gamma \\ \widehat{\mathrm{FP}}_{0}(Q) - \widehat{\mathrm{FP}}_{a}(Q) - \gamma \\ \widehat{\mathrm{TP}}_{a}(Q) - \widehat{\mathrm{TP}}_{0}(Q) - \gamma \\ \widehat{\mathrm{TP}}_{a}(Q) - \widehat{\mathrm{TP}}_{a}(Q) - \gamma \end{bmatrix}_{\substack{a \in \mathcal{A} \\ a \neq 0}} \in \mathbb{R}^{4(|\mathcal{A}|-1)}$$

For dual variable $\boldsymbol{\lambda} = \begin{bmatrix} \lambda_{(a,0,+)}, \ \lambda_{(a,0,-)}, \ \lambda_{(a,1,+)}, \ \lambda_{(a,1,-)} \end{bmatrix}_{\substack{a \in \mathcal{A} \\ a \neq 0}}^{\top} \in \mathbb{R}^{4(|\mathcal{A}|-1)}$, let

$$L(Q, \boldsymbol{\lambda}) = \widehat{\operatorname{err}}(Q) + \boldsymbol{\lambda}^{\top} \widehat{\boldsymbol{r}}(Q)$$

be the Lagrangian of the optimization problem. We therefore have that the Fair ERM Problem 5 is equivalent to

$$\min_{\substack{Q \in \Delta(\mathcal{H}) \\ \boldsymbol{\lambda} \in \mathbb{R}^{4|\mathcal{A}|}_+}} \max_{\boldsymbol{\lambda} \in \mathbb{R}^{4|\mathcal{A}|}_+} L(Q, \boldsymbol{\lambda})$$

In order to guarantee convergence, we further constrain the ℓ_1 norm of λ to be bounded. So let $\Lambda = \{\lambda \in \mathbb{R}^{4(|\mathcal{A}|-1)}_+ : ||\lambda||_1 \leq B\}$ be the feasible space of the dual variable λ for some constant B. Hence, the primal and the dual problems are as follows.

$$\begin{array}{ll} \mbox{primal problem:} & \min_{Q \in \Delta(\mathcal{H})} & \max_{\boldsymbol{\lambda} \in \Lambda} & L(Q, \boldsymbol{\lambda}) \\ \mbox{dual problem:} & \max_{\boldsymbol{\lambda} \in \Lambda} & \min_{Q \in \Delta(\mathcal{H})} & L(Q, \boldsymbol{\lambda}) \end{array}$$

The above primal and dual problems can be shown to have solutions that coincide at a point (Q^*, λ^*) which is the saddle point of L. From a game theoretic perspective, the saddle point can be viewed as an equilibrium of a zero-sum game between a Learner (Q-player) and an Auditor (λ -player) where $L(Q, \lambda)$ is how much the Learner must pay to the Auditor. Algorithm 3, developed by (Agarwal et al., 2018), proceeds iteratively according to a no-regret dynamic where in each iteration, the Learner plays the best response (BEST_h) to the given play of the Auditor and the Auditor plays exponentiated gradient descent. The average play of both players over T rounds are then taken as the output of the algorithm, which can be shown to converge to the saddle point (Q^*, λ^*) ((Freund & Schapire, 1996)). (Agarwal et al., 2018) shows how BEST_h can be solved efficiently having access to the cost-sensitive classification oracle for \mathcal{H} (CSC(\mathcal{H})) and we have their reduction for our Equalized Odds notion of fairness written in Subroutine 2.

Assumption 3.1 (Cost-Sensitive Classification Oracle for \mathcal{H}). It is assumed that the proposed algorithm has access to $CSC(\mathcal{H})$ which is the cost-sensitive classification oracle for \mathcal{H} . This oracle takes as input a set of individual-level attributes and costs $\{X_i, C_i^0, C_i^1\}_{i=1}^m$, and outputs $\arg\min_{h \in \mathcal{H}} \sum_{i=1}^m h(X_i)C_i^1 + (1 - h(X_i))C_i^0$. In practice, these oracles are implemented using learning heuristics.

Note that the Learner finds $\arg \min_{Q \in \Delta(\mathcal{H})} L(Q, \lambda)$ for a given λ of the Auditor and since the Lagrangian L is linear in Q, the minimizer of $L(Q, \lambda)$ can be chosen to put all the probability mass on a single classifier $h \in \mathcal{H}$. Additionally, our reduction in Subroutine 2 looks different from the one derived in Example 4 of (Agarwal et al., 2018) since we have our Equalized Odds fairness constraints formulated a bit differently from how it is formulated in (Agarwal et al., 2018).

Subroutine 2 BEST_h

Input: λ , training examples $\{(X_i, A_i, Y_i)\}_{i=1}^m$

for i = 1 to m do

$$C_{i}^{0} \leftarrow \mathbb{1}\{Y_{i} \neq 0\}$$

$$C_{i}^{1} \leftarrow \mathbb{1}\{Y_{i} \neq 1\} + \frac{\lambda_{(A_{i}, Y_{i}, +)} - \lambda_{(A_{i}, Y_{i}, -)}}{\hat{q}_{A_{i}Y_{i}}} \mathbb{1}\{A_{i} \neq 0\} - \sum_{\substack{a \in \mathcal{A} \\ a \neq 0}} \frac{\lambda_{(a, Y_{i}, +)} - \lambda_{(a, Y_{i}, -)}}{\hat{q}_{A_{i}Y_{i}}} \mathbb{1}\{A_{i} = 0\}$$

end for

Call CSC (\mathcal{H}) to find $h^{\star} = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^{m} h(X_i) C_i^1 + (1 - h(X_i)) C_i^0$

Algorithm 3 exp. gradient reduction for fair classification (Agarwal et al., 2018)

Input: fairness violation γ , bound B, learning rate η , number of rounds T, training examples $\{(X_i, A_i, Y_i)\}_{i=1}^m$

$$\begin{aligned} \boldsymbol{\theta}_{1} \leftarrow \mathbf{0} \in \mathbb{R}^{4(|\mathcal{A}|-1)} \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ \lambda_{t,k} \leftarrow B \frac{\exp(\theta_{t,k})}{1 + \sum_{k'} \exp(\theta_{t,k'})} \text{ for } 1 \leq k \leq 4(|\mathcal{A}|-1) \\ h_{t} \leftarrow \text{BEST}_{h}(\boldsymbol{\lambda}_{t}) \\ \boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_{t} + \eta \, \hat{\boldsymbol{r}}_{t}(h_{t}) \\ \text{end for} \\ \hat{Q} \leftarrow \frac{1}{T} \sum_{t=1}^{T} h_{t}, \quad \hat{\boldsymbol{\lambda}} \leftarrow \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\lambda}_{t} \\ \text{Output: } (\hat{Q}, \hat{\boldsymbol{\lambda}}) \end{aligned}$$

(Agarwal et al., 2018) shows for any $\nu > 0$, and for appropriately chosen η and T, Algorithm 3 under Assumption 3.1 returns a pair $(\hat{Q}, \hat{\lambda})$ for which

$$\begin{split} L(\widehat{Q}, \widehat{\boldsymbol{\lambda}}) &\leq L(Q, \widehat{\boldsymbol{\lambda}}) + \nu \quad \text{for all } Q \in \Delta(\mathcal{H}) \\ L(\widehat{Q}, \widehat{\boldsymbol{\lambda}}) &\geq L(\widehat{Q}, \boldsymbol{\lambda}) - \nu \quad \text{for all } \boldsymbol{\lambda} \in \Lambda \end{split}$$

that corresponds to a ν -approximate equilibrium of the game and it implies neither player can gain more than ν by changing their strategy (see Theorem 1 of (Agarwal et al., 2018)). They further show that any ν -approximate equilibrium of the game achieves an error close to the best error one would hope to get and the amount by which it violates the fairness constraints is reasonably small (see Theorem 2 of (Agarwal et al., 2018)).

3.2. A Differentially Private Algorithm: Design and Analysis

We are now going to introduce a differentially private fair classification algorithm to solve the Fair ERM Problem 5 which can be seen as an extension of Algorithm 3 to also guarantee privacy of the protected attribute A. In this differentially private version, the Learner and the Auditor are made private in each iteration of the algorithm by the exponential and Laplace mechanisms respectively. Particularly, in the t-th iteration of the algorithm,

- the *private Auditor* (λ -player) perturbs the $\hat{r}_t(h_t)$ of Algorithm 3 with appropriately calibrated Laplace noise to ensure ϵ' -differential privacy of A for some value of ϵ' specified later on;
- and the *private Learner (Q-player)* plays its best response $\arg\min_{h\in\mathcal{H}} \{\ell_t(h) := L(h, \lambda_t)\}$ to a given λ_t using a subroutine $\text{BEST}_h^{\epsilon'}$ which is made ϵ' -DP by the exponential mechanism.

We assume in this subsection that the VC dimension of $\mathcal{H} (= d_{\mathcal{H}})$ is finite, in which case the set of strategies for the Learner reduces to $\Delta(\mathcal{H}(S))$, where $\mathcal{H}(S)$ is the set of all possible labellings induced on $S := \{X_i\}_{i=1}^m$ by \mathcal{H} . In other words, $\mathcal{H}(S) = \{(h(X_1), \ldots, h(X_m)) | h \in \mathcal{H}\}$ and recall that $|\mathcal{H}(S)| \leq O(m^{d_{\mathcal{H}}})$ by Sauer's Lemma. Note that since the privacy of the protected attribute A is required, we need A to be excluded from the domain of functions in \mathcal{H} and accordingly, from S. Because otherwise there might be some privacy loss of A through using $\mathcal{H}(S)$ as the range of the exponential mechanism

Subroutine 4 BEST $_{h}^{\epsilon'}$

Input: λ , training examples $\{(X_i, A_i, Y_i)\}_{i=1}^m$, privacy guarantee ϵ'

 $\begin{array}{l} \text{for } i=1,\ldots,m \text{ do} \\ C_i^0 \leftarrow \mathbbm{1}\{Y_i \neq 0\} \\ C_i^1 \leftarrow \mathbbm{1}\{Y_i \neq 1\} + \frac{\lambda_{(A_i,Y_i,+)} - \lambda_{(A_i,Y_i,-)}}{\hat{q}_{A_iY_i}} \mathbbm{1}\{A_i \neq 0\} - \sum_{\substack{a \in \mathcal{A} \\ a \neq 0}} \frac{\lambda_{(a,Y_i,+)} - \lambda_{(a,Y_i,-)}}{\hat{q}_{A_iY_i}} \mathbbm{1}\{A_i = 0\} \\ \text{end for} \\ \text{Call } \text{CSC}_{\epsilon'}(\mathcal{H}) \text{ with } \{X_i, C_i^0, C_i^1\}_{i=1}^m \text{ to get } h^\star. \end{array}$

for the private Learner. This assumption is of course not necessary if one is willing to instead assume $|\mathcal{H}| < \infty$. We will have a discussion later where we state our guarantees assuming $|\mathcal{H}| < \infty$ instead of $d_{\mathcal{H}} < \infty$.

Assumption 3.2. The VC dimension of \mathcal{H} is finite: $d_{\mathcal{H}} = VCD(\mathcal{H}) < \infty$.

The best response of the private Learner $\text{BEST}_{h}^{\epsilon'}$ can be reduced to a call to an ϵ' -DP cost-sensitive classification oracle for \mathcal{H} , which is denoted by $\text{CSC}_{\epsilon'}(\mathcal{H})$ and runs the exponential mechanism over $\mathcal{H}(S)$ as discused before. We have $\text{BEST}_{h}^{\epsilon'}$ written in Subroutine 4.

Having done so and letting the per-iteration privacy cost of each player be $\epsilon' = \epsilon/(4\sqrt{T \ln(1/\delta)})$, one can guarantee (ϵ, δ) -differential privacy of the algorithm which is run in T iterations by the Advanced Composition Theorem 1.5. Since the magnitude of the noise introduced by the mechanisms of the private players depends on the sensitivity of the functions being perturbed as well, in the following lemma, we derive these sensitivities. All the proofs of this subsection can be found in Appendix B.

Assumption 3.3. We assume throughout this section that $\min_{a,y}{\{\hat{q}_{ay}\}} > 1/m$.

Lemma 3.1 (Sensitivity of the Private Players to A). Let $\Delta \hat{r}_t$ and $\Delta \ell_t$ be the sensitivity of \hat{r}_t (of the Auditor) and ℓ_t (of the Learner) respectively. We have that for all $t \in [T]$,

$$\Delta \hat{\boldsymbol{r}}_t = \max_{\substack{A,A' \in \mathcal{A}^m \\ A \sim A'}} ||\hat{\boldsymbol{r}}_t(A) - \hat{\boldsymbol{r}}_t(A')||_1 \leqslant \frac{2|\mathcal{A}|}{\min_{a,y}\{\hat{q}_{ay}\}\,m-1}$$

0 4

$$\Delta \ell_t = \max_{\substack{h \in \mathcal{H} \\ A \sim A'}} \max_{\substack{A, A' \in \mathcal{A}' \\ A \sim A'}} |\ell_t(h; A) - \ell_t(h; A')| \leq \frac{2|\mathcal{A}|B+1}{\min_{a,y}\{\hat{q}_{ay}\}m-1}$$

Having specified the sensitivities of the functions associated with the private players, we are now ready to introduce **DP-oracle-learner** (Algorithm 5) which is an (ϵ, δ) -differentially private algorithm for fair classification. This algorithm, as discussed before, proceeds iteratively and in each iteration one of the players plays private exponentiated gradient descent and the other plays its best response using a private cost-sensitive classification oracle. The analysis of the algorithm will depend on the accuracy of the private players actions which is the subject of Lemma 3.2.

Lemma 3.2 (Accuracy of the Private Players). At round t of Algorithm 5, let $\hat{r}_t = \tilde{r}_t - W_t$ be the noiseless version of \tilde{r}_t and h_t^* be the classifier given by the noiseless subroutine $BEST_h(\tilde{\lambda}_t)$. We have that

$$w.p. \ge 1 - \beta/2T, \quad ||\widetilde{\boldsymbol{r}}_t - \widehat{\boldsymbol{r}}_t||_{\infty} \le \frac{8|\mathcal{A}|\sqrt{T\ln(1/\delta)}\ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\widehat{q}_{ay}\}\,m-1)\cdot\epsilon}$$

$$w.p. \ge 1 - \beta/2T, \quad L(\widetilde{h}_t, \widetilde{\lambda}_t) \le L(h_t^{\star}, \widetilde{\lambda}_t) + \frac{8\left(2|\mathcal{A}|B+1\right)\sqrt{T\ln\left(1/\delta\right)\left(d_{\mathcal{H}}\ln\left(m\right) + \ln\left(2T/\beta\right)\right)}}{\left(\min_{a,y}\{\hat{q}_{ay}\} m - 1\right) \cdot \epsilon}$$

Algorithm 5 (ϵ , δ)-differentially private fair classification: **DP-oracle-learner**

Input: privacy parameters ϵ, δ , bound *B*, VC dimension $d_{\mathcal{H}}$, confidence parameter β , fairness violation γ , training examples $\{(X_i, A_i, Y_i)\}_{i=1}^m$

$$T \leftarrow \frac{B\sqrt{\ln\left(4|\mathcal{A}|-3\right)} \, m \, \epsilon}{2\left(2|\mathcal{A}|B+1\right)\sqrt{\ln\left(1/\delta\right)} \left(d_{\mathcal{H}}\ln\left(m\right)+\ln\left(2/\beta\right)\right)}}$$
$$\eta \leftarrow \frac{1}{2}\sqrt{\frac{\ln\left(4|\mathcal{A}|-3\right)}{T}}$$

$$\begin{split} \widetilde{\boldsymbol{\theta}}_{1} &\leftarrow \mathbf{0} \in \mathbb{R}^{4(|\mathcal{A}|-1)} \\ \text{for } t = 1, \dots, T \text{ do} \\ \widetilde{\lambda}_{t,k} &\leftarrow B \frac{\exp(\widetilde{\theta}_{t,k})}{1 + \sum_{k'} \exp(\widetilde{\theta}_{t,k'})} \text{ for } 1 \leqslant k \leqslant 4(|\mathcal{A}| - 1) \\ \widetilde{h}_{t} &\leftarrow \text{BEST}_{h}^{\epsilon'}(\widetilde{\lambda}_{t}) \text{ with } \epsilon' = \epsilon/(4\sqrt{T \ln(1/\delta)}) \\ \text{Sample } \boldsymbol{W}_{t} \in \mathbb{R}^{4(|\mathcal{A}|-1)} \text{ where } W_{t,k} \stackrel{i.i.d.}{\sim} \text{Lap}(\frac{8|\mathcal{A}|\sqrt{T \ln(1/\delta)}}{(\min_{a,y}\{\widehat{q}_{ay}\} m - 1) \cdot \epsilon}) \\ \widetilde{\boldsymbol{r}}_{t} &\leftarrow \widehat{\boldsymbol{r}}_{t}(\widetilde{h}_{t}) + \boldsymbol{W}_{t} \\ \widetilde{\boldsymbol{\theta}}_{t+1} &\leftarrow \widetilde{\boldsymbol{\theta}}_{t} + \eta \widetilde{\boldsymbol{r}}_{t} \\ \text{end for} \\ \widetilde{\boldsymbol{Q}} &\leftarrow \frac{1}{T} \sum_{t=1}^{T} \widetilde{h}_{t}, \quad \widetilde{\boldsymbol{\lambda}} \leftarrow \frac{1}{T} \sum_{t=1}^{T} \widetilde{\boldsymbol{\lambda}}_{t} \\ \text{Output: } (\widetilde{\boldsymbol{Q}}, \widetilde{\boldsymbol{\lambda}}) \end{split}$$

The next part of the analysis of Algorithm 5 is to compute the regret of the private players over T rounds using their per-iteration accuracy stated in Lemma 3.2. These regret bounds which are derived in Lemma 3.3 and 3.4 will be used in Theorem 3.5 to show that the output $(\tilde{Q}, \tilde{\lambda})$ of Algorithm 5 is a ν -approximate solution of the game, for some value of ν which is specified in the theorem.

Lemma 3.3 (Regret of the Private Learner). Suppose $\{\tilde{h}_t\}_{t=1}^T$ is the sequence of best responses to $\{\tilde{\lambda}_t\}_{t=1}^T$ by the private *Q*-player over *T* rounds. We have that with probability at least $1 - \beta/2$,

$$\frac{1}{T}\sum_{t=1}^{T}L(\tilde{h}_t, \tilde{\boldsymbol{\lambda}}_t) - \frac{1}{T}\min_{Q \in \Delta(\mathcal{H})}\sum_{t=1}^{T}L(Q, \tilde{\boldsymbol{\lambda}}_t) \\ \leqslant \frac{8\left(2|\mathcal{A}|B+1\right)\sqrt{T\ln\left(1/\delta\right)}\left(d_{\mathcal{H}}\ln\left(m\right) + \ln\left(2T/\beta\right)\right)}{\left(\min_{a,y}\{\hat{q}_{ay}\} \ m-1\right) \cdot \epsilon}$$

Lemma 3.4 (Regret of the Private Auditor). Let $\{\tilde{\lambda}_t\}_{t=1}^T$ be the sequence of exponentiated gradient descent plays by the private λ -player to given $\{\tilde{h}_t\}_{t=1}^T$ of the private λ -player over T rounds. We have that with probability at least $1 - \beta/2$,

$$\frac{1}{T} \max_{\boldsymbol{\lambda} \in \Lambda} \sum_{t=1}^{T} L(\widetilde{h}_t, \boldsymbol{\lambda}) - \frac{1}{T} \sum_{t=1}^{T} L(\widetilde{h}_t, \widetilde{\boldsymbol{\lambda}}_t) \leq \frac{B \ln(4|\mathcal{A}| - 3)}{\eta T} + 4\eta B \left(1 + \frac{4|\mathcal{A}|\sqrt{T \ln(1/\delta)} \ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\widehat{q}_{ay}\} m - 1) \cdot \epsilon} \right)^2$$

Theorem 3.5. Let assumptions 3.2, and 3.3 hold. Let $(\tilde{Q}, \tilde{\lambda})$ be the output of Algorithm 5. We have that with probability at least $1 - \beta$, $(\tilde{Q}, \tilde{\lambda})$ is a ν -approximate solution of the game, i.e.,

$$\begin{split} L(\tilde{Q}, \tilde{\boldsymbol{\lambda}}) &\leq L(Q, \tilde{\boldsymbol{\lambda}}) + \nu \quad \text{for all } Q \in \Delta(\mathcal{H}) \\ L(\tilde{Q}, \tilde{\boldsymbol{\lambda}}) &\geq L(\tilde{Q}, \boldsymbol{\lambda}) - \nu \quad \text{for all } \boldsymbol{\lambda} \in \Lambda \end{split}$$

and that

$$\nu = \widetilde{O}\left(\frac{B}{\min_{a,y}\{\hat{q}_{ay}\}}\sqrt{\frac{|\mathcal{A}|\sqrt{\ln\left(1/\delta\right)}\left(d_{\mathcal{H}}\ln(m) + \ln\left(1/\beta\right)\right)}{m\,\epsilon}}\right)$$

where we hide further logarithmic dependence on m, ϵ , and $|\mathcal{A}|$ under the \tilde{O} notation.

We are now ready to conclude the **DP-oracle-learner** algorithm's analysis with the main theorem of this subsection that provides high probability bounds on the accuracy and fairness violation of the output \tilde{Q} of Algorithm 5. These bounds can be viewed as revealing the inherent tradeoff between privacy of the algorithm and accuracy or fairness of the output classifier where a stronger privacy guarantee (i.e. smaller ϵ and δ) will lead to weaker accuracy and fairness guarantees.

Theorem 3.6 (Error-Privacy, Fairness-Privacy Tradeoffs). Let $(\tilde{Q}, \tilde{\lambda})$ be the output of Algorithm 5 and let Q^* be the solution to the Fair ERM problem 5. Under assumptions 3.2, and 3.3, we have that with probability at least $1 - \beta$,

$$\widehat{err}(\widehat{Q}) \leq \widehat{err}(Q^{\star}) + 2i$$

and for all $a \neq 0$,

$$\Delta \widehat{FP}_{a}(\widetilde{Q}) \leq \gamma + \frac{1+2\nu}{B}$$
$$\Delta \widehat{TP}_{a}(\widetilde{Q}) \leq \gamma + \frac{1+2\nu}{B}$$

where

$$\nu = \widetilde{O}\left(\frac{B}{\min_{a,y}\{\hat{q}_{ay}\}}\sqrt{\frac{|\mathcal{A}|\sqrt{\ln(1/\delta)}\left(d_{\mathcal{H}}\ln(m) + \ln(1/\beta)\right)}{m\,\epsilon}}\right)$$

Proof. The results follow from Theorem 3.5 stated above, Lemma B.1, and Lemma B.2 which are both stated in the Appendix. \Box

Remark 3.1. Notice the bounds stated above reveal a tradeoff between accuracy and fairness violation that we may control through the parameter B. As B gets increased, the upper bound on error will get looser while the one on fairness violation gets tighter. We will consider a setting in the next subsection where we can remove this extra tradeoff and choose B as small as possible — at the cost of requiring that the classifiers be able to use protected attributes at test time.

Recall that we assumed so far throughout this subsection that $d_{\mathcal{H}} < \infty$ and reduced \mathcal{H} to the set of induced labelings $\mathcal{H}(S)$ and deployed Sauer's Lemma to argue that this set has size at most $O(m^{d_{\mathcal{H}}})$. This set of finite labelings $\mathcal{H}(S)$ was then used as the range of the exponential mechanism for the private Learner. Accordingly, while our algorithm guarantees the privacy of the sensitive attribute A, it doesn't guarantee the privacy of the unprotected attributes $S = \{X_i\}_{i=1}^m$. We could instead assume $|\mathcal{H}| < \infty$ and state all our bounds in terms of $\ln(\mathcal{H})$, and as there is no reduction of \mathcal{H} to $\mathcal{H}(S)$ in this case, our algorithm does guarantee the privacy of X, as well as A (this corresponds to the third row of the table in the introduction). All we have to modify in Algorithm 5 is to use $\ln(\mathcal{H})$ instead of $d_{\mathcal{H}} \ln(m)$ for computing the number of iterations T, and this change will propagate all the way to the bounds for accuracy and fairness.

Theorem 3.7 (Error-Privacy, Fairness-Privacy Tradeoffs). Under assumptions 3.3 and $|\mathcal{H}| < \infty$, let $(\tilde{Q}, \tilde{\lambda})$ be the output of Algorithm 5 that runs for

$$T = \frac{B\sqrt{\ln(4|\mathcal{A}| - 3)} m \epsilon}{2(2|\mathcal{A}|B + 1)\sqrt{\ln(1/\delta)} (\ln(|\mathcal{H}|) + \ln(2/\beta))}$$

iterations, and let Q^* be the solution to the Fair ERM problem 5. We have that with probability at least $1 - \beta$,

$$\widehat{err}(\widetilde{Q}) \leq \widehat{err}(Q^{\star}) + 2\nu$$

and for all $a \neq 0$,

$$\Delta \widehat{FP}_{a}(\widetilde{Q}) \leq \gamma + \frac{1+2\nu}{B}$$
$$\Delta \widehat{TP}_{a}(\widetilde{Q}) \leq \gamma + \frac{1+2\nu}{B}$$

where

$$\nu = \widetilde{O}\left(\frac{B}{\min_{a,y}\{\hat{q}_{ay}\}}\sqrt{\frac{|\mathcal{A}|\sqrt{\ln\left(1/\delta\right)}\left(\ln\left(|\mathcal{H}|/\beta\right)\right)}{m\,\epsilon}}\right)$$

3.3. An Extension: Better Tradeoffs for A-aware Classification

In this subsection we show that if we only ask for equalized false positive rates (instead of equalized odds, which also requires that we equalize true positive rates), and moreover, if we assume the sensitive attribute A is available to the classifiers in \mathcal{H} at classification time, the fairness violation guarantees given in Theorems 3.6 and 3.7 can be improved. As a consequence, the tradeoff discussed in Remark 3.1 will be no longer an issue. Thus, in this subsection, we are interested in solving the Fair ERM Problem 6 which now has $2(|\mathcal{A}| - 1)$ constraints.

Fair ERM Problem		
$ \min_{\substack{Q \in \Delta(\mathcal{H})\\ \text{s.t. } \forall a \in \mathcal{A}:\\ a \neq 0}} $	$\widehat{\operatorname{err}}(Q)$ $\Delta \widehat{\operatorname{FP}}_a(Q) \leq \gamma$	(6)

In particular, we will assume all maximally discriminatory classifiers (i.e. group indicator functions $h_a(X, A) = \mathbb{1}_{A=a}$ and $\bar{h}_a(X, A) = 1 - h_a(X, A)$ for all $a \in A$) are included in \mathcal{H} , and will show that the existence of these classifiers helps one to get a tighter bound on fairness violation. Note that since A is now included in the set of input features for classification, due to the desired privacy of A, one must not use the induced labellings $\mathcal{H}(S)$ as the range of the exponential mechanism of the private Learner since there might be some privacy loss of the sensitive attribute A which is now included in the set $S = \{X_i, A_i\}_{i=1}^m$. We will instead have to assume that $|\mathcal{H}| < \infty$ in order to be able to use the exponential mechanism for the private Learner.

Assumption 3.4. Assume $|\mathcal{H}| < \infty$, and that \mathcal{H} includes all group indicator functions: $\{h_a(X, A) = \mathbb{1}_{A=a}, \bar{h}_a(X, A) = 1 - h_a(X, A) | a \in \mathcal{A}\} \subseteq \mathcal{H}.$

It is straightforward to see that our algorithm must now depend on $\ln(|\mathcal{H}|)$ instead of $d_{\mathcal{H}} \ln(m)$, and accordingly, the $d_{\mathcal{H}} \ln(m)$ appearing in the number of iterations T of Algorithm 5 and any other $d_{\mathcal{H}} \ln(m)$ terms appearing in the bounds stated in the previous section must now be replaced by $\ln(|\mathcal{H}|)$. We state and prove the improved bound on fairness violation in the following theorem.

Theorem 3.8 (Error-Privacy, Fairness-Privacy Tradeoffs). Let $(\widetilde{Q}, \widetilde{\lambda})$ be the output of Algorithm 5 that runs for

$$T = \frac{B\sqrt{\ln(4|\mathcal{A}| - 3)} \, m \, \epsilon}{2 \left(2|\mathcal{A}|B + 1\right) \sqrt{\ln\left(1/\delta\right)} \left(\ln\left(|\mathcal{H}|\right) + \ln(2/\beta)\right)}$$

iterations, and let Q^* be the solution to the Fair ERM problem 6. Under assumptions 3.3, 3.4, and $B > |\mathcal{A}| - 1$, we have that with probability at least $1 - \beta$,

$$\widehat{err}(\widetilde{Q}) \leq \widehat{err}(Q^{\star}) + 2\nu$$

and for all $a \neq 0$,

$$\Delta \widehat{FP}_a(\widetilde{Q}) \le \gamma + \frac{2\nu}{B - (|\mathcal{A}| - 1)}$$

where

$$\nu = \widetilde{O}\left(\frac{B}{\min_{a,y}\{\hat{q}_{ay}\}}\sqrt{\frac{|\mathcal{A}|\sqrt{\ln\left(1/\delta\right)}\ln\left(|\mathcal{H}|/\beta\right)}{m\,\epsilon}}\right)$$

Proof of Theorem 3.8. The stated bound on $\widehat{\operatorname{err}}(\widetilde{Q})$ follows from Lemma B.1. Let's now prove the bound on fairness violation. Let, for all $a \in \mathcal{A}$, $\beta_a := (\widehat{\operatorname{FP}}_0(\widetilde{Q}) - \widehat{\operatorname{FP}}_a(\widetilde{Q}) - \gamma)_+$ and $\overline{\beta}_a := (\widehat{\operatorname{FP}}_a(\widetilde{Q}) - \widehat{\operatorname{FP}}_0(\widetilde{Q}) - \gamma)_+$. Notice at most one of β_a and $\overline{\beta}_a$ can be positive.

We are going to construct some deviating strategies: Q and λ . As shown in the previous subsection, we know $(\tilde{Q}, \tilde{\lambda})$ is a ν -approximate equilibrium of the zero-sum game. It implies

$$L(\widetilde{Q}, \lambda) - \nu \leq L(\widetilde{Q}, \widetilde{\lambda}) \leq L(Q, \widetilde{\lambda}) + \nu.$$

Define $Q = \frac{1}{1 + \sum_{a \in \mathcal{A}} (\beta_a + \bar{\beta}_a)} (\tilde{Q} + \sum_a \beta_a h_a + \hat{\beta}_a \hat{h}_a)$. It is easy to see that, for all $a \in \mathcal{A}$,

$$\Delta \widehat{\mathsf{FP}}_a(Q) \le \gamma.$$

Then we have

$$\begin{split} &L(Q,\boldsymbol{\lambda}) + \nu \\ \leqslant \widehat{\operatorname{err}}\left(Q\right) + \nu \\ \leqslant \widehat{\operatorname{err}}\left(\frac{1}{1 + \sum_{a \in \mathcal{A}}(\beta_a + \bar{\beta}_a)}(\widetilde{Q} + \sum_a \beta_a h_a + \hat{\beta}_a \hat{h}_a)\right) + \nu \\ \leqslant \frac{1}{1 + \sum_{a \in \mathcal{A}}(\beta_a + \bar{\beta}_a)} \widehat{\operatorname{err}}\left(\widetilde{Q}\right) + \frac{\sum_{a \in \mathcal{A}}(\beta_a + \bar{\beta}_a)}{1 + \sum_{a \in \mathcal{A}}(\beta_a + \bar{\beta}_a)} + \nu \\ \leqslant \widehat{\operatorname{err}}\left(\widetilde{Q}\right) + \sum_{a \in \mathcal{A}}(\beta_a + \bar{\beta}_a) + \nu \\ \leqslant \widehat{\operatorname{err}}\left(\widetilde{Q}\right) + (|\mathcal{A}| - 1) \cdot (\max_{a \in \mathcal{A}}|\widehat{\operatorname{FP}}_a(\widetilde{Q}) - \widehat{\operatorname{FP}}_0(\widetilde{Q})| - \gamma)_+ + \nu. \end{split}$$

Define λ to have B in the coordinate which corresponds to $\arg \max_{a \in \mathcal{A}} |\widehat{FP}_a(\widetilde{Q}) - \widehat{FP}_0(\widetilde{Q})|$ and 0 in other coordinates. Then we have

$$L(\widetilde{Q}, \boldsymbol{\lambda}) - \nu = \widehat{\operatorname{err}}(\widetilde{Q}) + B(\max_{a \in \mathcal{A}} |\widehat{\operatorname{FP}}_{a}(\widetilde{Q}) - \widehat{\operatorname{FP}}_{0}(\widetilde{Q})| - \gamma) - \nu$$

To sum up, we get

$$\widehat{\operatorname{err}}(\widetilde{Q}) + B(\max_{a \in \mathcal{A}} |\widehat{\operatorname{FP}}_{a}(\widetilde{Q}) - \widehat{\operatorname{FP}}_{0}(\widetilde{Q})| - \gamma) - \nu \leqslant \widehat{\operatorname{err}}(\widetilde{Q}) + (|\mathcal{A}| - 1) \cdot (\max_{a \in \mathcal{A}} |\widehat{\operatorname{FP}}_{a}(\widetilde{Q}) - \widehat{\operatorname{FP}}_{0}(\widetilde{Q})| - \gamma)_{+} + \nu.$$

This implies

$$\max_{a \in \mathcal{A}} |\widehat{\mathrm{FP}}_{a}(\widetilde{Q}) - \widehat{\mathrm{FP}}_{0}(\widetilde{Q})| \leq \gamma + \frac{2\nu}{B - (|\mathcal{A}| - 1)}$$

which completes the proof.

As an immediate consequence of Theorem 3.8, we have the following Corollary where $B = |\mathcal{A}|$ can be chosen to get bounds which are now free of B.

Corollary 3.8.1. Under assumptions stated in Theorem 3.8, one can let $B = |\mathcal{A}|$, in which case with probability at least $1 - \beta$,

$$\widehat{err}\left(\widetilde{Q}
ight)\leqslant\widehat{err}\left(Q^{\star}
ight)+2
u$$

and for all $a \neq 0$,

$$\Delta \widehat{FP}_a(\widetilde{Q}) \leq \gamma + 2\nu$$

where

$$\nu = \widetilde{O}\left(\frac{|\mathcal{A}|}{\min_{a,y}\{\hat{q}_{ay}\}}\sqrt{\frac{|\mathcal{A}|\sqrt{\ln(1/\delta)}\ln(|\mathcal{H}|/\beta)}{m\,\epsilon}}\right)$$

3.4. A Separation: A-blind vs. A-aware Classification

In this subsection we show that the sensitivity of the accuracy of the optimal classifier subject to fairness constraints can be substantially higher if it is prohibited from using sensitive attributes at test time. This implies that higher error must be introduced when estimating this accuracy subject to differential privacy. This shows a fundamental tension between the goals of trading off privacy and approximate equalized odds, with the goal of preventing disparate treatment. Given a data

set D of m individuals, define f(D) to be the optimal error rate in the Fair ERM problem 6 which is constrained to have a false positive rate differential of at most γ .

Consider the following problem instance. Let X be the unprotected attribute taking value in $\mathcal{X} = \{U, V\}$, and let A be the protected attribute taking value in $\mathcal{A} = \{R, B\}$. Suppose \mathcal{H} consists of two classifiers h_0 and h_U where $h_0(X, A) = 0$ and $h_U(X, A) = \mathbb{1}_{X=U}$. Notice that both h_0 and h_U depend only on the unprotected attribute. Consider two other classifiers h_R and h_B that depend on the protected attribute: $h_R(X, A) = \mathbb{1}_{A=R}$ and $h_B(X, A) = \mathbb{1}_{A=B}$.

Theorem 3.9. Consider $\gamma > 1/m$ and data sets with $\min_a \hat{q}_{a0} \ge C$ for some constant C > 0. If $\mathcal{H} = \{h_0, h_U\}$, the sensitivity of f is $\Omega(1/(\gamma m))$. If the "maximally discriminatory" classifier h_R and h_B are included in \mathcal{H} as well, i.e. $\mathcal{H} = \{h_0, h_U, h_R, h_B\}$, the sensitivity of f is O(1/m).

Proof. First consider the case where $\mathcal{H} = \{h_0, h_U\}$. Choose data set D of size m as follows: m/2 individuals with (A = R, X = V, Y = 0); m/4 individuals with (A = B, X = U, Y = 1), $m(1 - \gamma)/4$ individuals with (A = B, X = V, Y = 0) and $m\gamma/4$ individuals with (A = B, X = U, Y = 0). For this data set, it is easy to check that h_U has error $\gamma/4$ and h_U satisfies the fairness constraint. So $f(D) \leq \gamma/4$. Now consider D's neighboring data set D' by changing one individual with (A = B, X = V, Y = 0). For D', the classifier which satisfies the fairness constraint and has the minimum error rate is $\frac{1}{4+\gamma m}(4h_0 + \gamma mh_U)$. Therefore

$$f(D') = \frac{1}{4 + \gamma m} \left(4 \cdot \frac{1}{4} + \gamma m \cdot \frac{m\gamma/4 + 1}{m} \right) = \frac{\gamma}{4} + \frac{1}{4 + \gamma m}.$$

implying that $|f(D) - f(D')| = \Omega(1/(\gamma m))$ and the sensitivity of f is $\Omega(1/(\gamma m))$.

Now consider the case where $\mathcal{H} = \{h_0, h_U, h_R, h_B\}$. It suffices to show that $f(D') \leq f(D) + O(1/m)$ for any neighboring data sets D and D'. Let Q^* be the classifier with minimum error rate on data set D. We have $f(D) = \widehat{\operatorname{err}}(Q^*, D)$ and we know $|\widehat{\operatorname{FP}}_R(Q^*, D) - \widehat{\operatorname{FP}}_B(Q^*, D)| \leq \gamma$ (we put D into the arguments of $\widehat{\operatorname{err}}$ and $\widehat{\operatorname{FP}}$ as we are talking about two different data sets). For data set D', there are two cases.

• The case when $|\widehat{FP}_R(Q^*, D') - \widehat{FP}_B(Q^*, D')| \leq \gamma$: In this case, we have

$$f(D') \leq \widehat{\operatorname{err}}(Q^*, D') \leq \widehat{\operatorname{err}}(Q^*, D) + 1/m = f(D) + 1/m.$$

• The case when $|\widehat{FP}_R(Q^*, D') - \widehat{FP}_B(Q^*, D')| > \gamma$: Wlog let's assume $\widehat{FP}_R(Q^*, D') - \widehat{FP}_B(Q^*, D') > \gamma$. And let $\alpha = \widehat{FP}_R(Q^*, D') - \widehat{FP}_B(Q^*, D') - \gamma$. We know $\alpha > 0$ and we also have

$$\alpha = \widehat{\operatorname{FP}}_R(Q^*, D') - \widehat{\operatorname{FP}}_B(Q^*, D') - \gamma \leqslant \widehat{\operatorname{FP}}_R(Q^*, D) - \widehat{\operatorname{FP}}_B(Q^*, D) - \gamma + 2/(Cm) \leqslant 2/(Cm).$$

Now define $Q' = \frac{1}{1+\gamma+\alpha} \left((1+\gamma)Q^* + \alpha h_B \right)$. We have

$$\widehat{\operatorname{FP}}_R(Q',D') - \widehat{\operatorname{FP}}_B(Q',D') = \frac{1}{1+\gamma+\alpha} \left((1+\gamma)(\widehat{\operatorname{FP}}_R(Q^*,D') - \widehat{\operatorname{FP}}_B(Q^*,D')) - \alpha \right) = \gamma.$$

Therefore

$$f(D') \leq \widehat{\operatorname{err}}(Q', D')$$

$$\leq \frac{1}{1 + \gamma + \alpha} \left((1 + \gamma) \,\widehat{\operatorname{err}}(Q^*, D') + \alpha \,\widehat{\operatorname{err}}(h_B, D') \right)$$

$$\leq f(D) + 1/m + \alpha$$

$$\leq f(D) + O(1/m)$$

L	_	_	_	

References

- Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., and Wallach, H. A reductions approach to fair classification. 2018. URL arXiv:1803.02453v3. arXiv:1803.02453v3.
- Dwork, C. and Roth, A. The algorithmic foundations of differential privacy. *Foundations and Trends* (*in Theoretical Computer Science*, 9(3–4):211–407, 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL http://dx.doi.org/10.1561/0400000042.
- Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private data analysis. In Halevi, S. and Rabin, T. (eds.), *Theory of Cryptography*, pp. 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-32732-5.
- Dwork, C., Rothblum, G. N., and Vadhan, S. Boosting and differential privacy. In *Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science*, FOCS '10, pp. 51–60, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4244-7. doi: 10.1109/FOCS.2010.12. URL http://dx.doi.org/10.1109/FOCS.2010.12.
- Freund, Y. and Schapire, R. E. Game theory, on-line prediction and boosting. In *Proceedings of the Ninth Annual Conference on Computational Learning Theory*, COLT '96, pp. 325–332, New York, NY, USA, 1996. ACM. ISBN 0-89791-811-8. doi: 10.1145/238061.238163. URL http://doi.acm.org/10.1145/238061.238163.
- Hardt, M., Price, E., and Srebro, N. Equality of opportunity in supervised learning. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems 29*, pp. 3315–3323. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning.pdf.
- Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. 2018. URL arXiv:1711.05144v4. arXiv:1711.05144v4.
- McSherry, F. and Talwar, K. Mechanism design via differential privacy. In *Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science*, FOCS '07, pp. 94–103, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3010-9. doi: 10.1109/FOCS.2007.41. URL http://dx.doi.org/10.1109/FOCS.2007.41.
- Shalev-Shwartz, S. Online learning and online convex optimization. *Foundations and Trends* (*in Machine Learning*, 4(2): 107–194, 2012. ISSN 1935-8237. doi: 10.1561/2200000018. URL http://dx.doi.org/10.1561/2200000018.

Appendix

A. Proof of Theorem 2.2

The proof of Theorem 2.2 relies on some facts which are stated in Lemma A.1.

Lemma A.1. Suppose $\min_{a,y}{\{\hat{q}_{ay}\}} > 4\ln(4|\mathcal{A}|/\beta)/(m\epsilon)$. we have that with probability at least $1 - \beta$,

$$\begin{split} &I. \left| \widetilde{err} \left(\hat{Y}_p \right) - \widehat{err} \left(\hat{Y}_p \right) \right| \leqslant \frac{12|\mathcal{A}| \ln(4|\mathcal{A}|/\beta)}{m\epsilon} \quad ; \forall p. \\ &2. \quad \tilde{q}_{ay} > 0 \quad ; \forall a, y. \\ &3. \left| \widetilde{FP}_a \left(\hat{Y} \right) - \widehat{FP}_a \left(\hat{Y} \right) \right| \leqslant \frac{2\ln(4|\mathcal{A}|/\beta)}{\tilde{q}_{a0} m\epsilon}, \quad \left| \widetilde{TP}_a \left(\hat{Y} \right) - \widehat{TP}_a \left(\hat{Y} \right) \right| \leqslant \frac{2\ln(4|\mathcal{A}|/\beta)}{\tilde{q}_{a1} m\epsilon} \quad ; \forall a. \\ &4. \left| \Delta \widetilde{FP}_a \left(\hat{Y}_p \right) - \Delta \widehat{FP}_a \left(\hat{Y}_p \right) \right| \leqslant \frac{4\ln(4|\mathcal{A}|/\beta)}{\min\{\tilde{q}_{a0}, \tilde{q}_{00}\} m\epsilon}, \quad \left| \Delta \widetilde{TP}_a \left(\hat{Y}_p \right) - \Delta \widehat{TP}_a \left(\hat{Y}_p \right) \right| \leqslant \frac{4\ln(4|\mathcal{A}|/\beta)}{\min\{\tilde{q}_{a1}, \tilde{q}_{01}\} m\epsilon} ; \forall a, p. \\ &5. \quad \hat{p}^*, \ the \ optimal \ solution \ of \ \widehat{LP} (2), \ is \ feasible \ in \ \widetilde{LP} (3). \end{split}$$

Proof of Lemma A.1. By Lemma 2.1 and Theorem 1.1, we have that with probability at least $1 - \beta$, $||\hat{q} - \tilde{q}||_{\infty} \leq \ln (4|\mathcal{A}|/\beta) \cdot (2/m\epsilon)$. Hence with probability $\geq 1 - \beta$,

1.
$$\forall p$$
,

$$\left|\widetilde{\operatorname{err}}\left(\widehat{Y}_p\right) - \widehat{\operatorname{err}}\left(\widehat{Y}_p\right)\right| \leqslant \sum_{\hat{y}, a, y} \left|\tilde{q}_{\hat{y}ay} - \hat{q}_{\hat{y}ay}\right| + \sum_{\hat{y}, a} \left|\tilde{q}_{\hat{y}a1} - \hat{q}_{\hat{y}a1}\right| \leqslant \frac{12|\mathcal{A}|\ln(4|\mathcal{A}|/\beta)|}{m\epsilon}$$

2. For all a, y,

$$\begin{aligned} |\tilde{q}_{ay} - \hat{q}_{ay}| &= |\tilde{q}_{1ay} + \tilde{q}_{0ay} - \hat{q}_{1ay} - \hat{q}_{0ay}| \\ &\leq |\tilde{q}_{1ay} - \hat{q}_{1ay}| + |\tilde{q}_{0ay} - \hat{q}_{0ay}| \\ &\leq \frac{4\ln(4|\mathcal{A}|/\beta)}{m\epsilon} \end{aligned}$$

But by the stated assumption, $\hat{q}_{ay} > \frac{4\ln(4|\mathcal{A}|/\beta)}{m\epsilon}$ implying that $\tilde{q}_{ay} > 0$.

3. $\forall a$,

$$\begin{split} \left| \widetilde{\mathrm{FP}}_{a}(\widehat{Y}) - \widehat{\mathrm{FP}}_{a}(\widehat{Y}) \right| &= \left| \frac{\widetilde{q}_{1a0}}{\widetilde{q}_{1a0} + \widetilde{q}_{0a0}} - \frac{\widehat{q}_{1a0}}{\widehat{q}_{1a0} + \widehat{q}_{0a0}} \right| \\ &= \left| \frac{\widetilde{q}_{1a0} \, \widehat{q}_{0a0} - \widehat{q}_{1a0} \, \widetilde{q}_{0a0}}{(\widetilde{q}_{1a0} + \widetilde{q}_{0a0})(\widehat{q}_{1a0} + \widehat{q}_{0a0})} \right| \\ &= \left| \frac{\widehat{q}_{0a0}(\widetilde{q}_{1a0} - \widehat{q}_{1a0}) - \widehat{q}_{1a0}(\widetilde{q}_{0a0} - \widehat{q}_{0a0})}{(\widetilde{q}_{1a0} + \widetilde{q}_{0a0})(\widehat{q}_{1a0} + \widehat{q}_{0a0})} \right| \\ &\leqslant \frac{2\ln(4|\mathcal{A}|/\beta)}{|\widetilde{q}_{a0}| \, m\epsilon} \\ &= \frac{2\ln(4|\mathcal{A}|/\beta)}{\widetilde{q}_{a0} \, m\epsilon} \quad \text{(by Part 2 of this Lemma)} \end{split}$$

And similarly,

$$\left|\widetilde{\mathrm{TP}}_a(\widehat{Y}) - \widehat{\mathrm{TP}}_a(\widehat{Y})\right| \leqslant \frac{2\ln(4|\mathcal{A}|/\beta)}{\widetilde{q}_{a1}\,m\epsilon}$$

4. Observe that $\forall a, p$,

$$\begin{split} \left| \Delta \widetilde{\mathrm{FP}}_{a}(\hat{Y}_{p}) - \Delta \widehat{\mathrm{FP}}_{a}(\hat{Y}_{p}) \right| \\ &\leqslant \left| \widetilde{\mathrm{FP}}_{a}(\hat{Y}) \cdot p_{1a} + (1 - \widetilde{\mathrm{FP}}_{a}(\hat{Y})) \cdot p_{0a} - \widetilde{\mathrm{FP}}_{0}(\hat{Y}) \cdot p_{10} - (1 - \widetilde{\mathrm{FP}}_{0}(\hat{Y})) \cdot p_{00} \right. \\ &\left. - \widehat{\mathrm{FP}}_{a}(\hat{Y}) \cdot p_{1a} - (1 - \widehat{\mathrm{FP}}_{a}(\hat{Y})) \cdot p_{0a} + \widehat{\mathrm{FP}}_{0}(\hat{Y}) \cdot p_{10} + (1 - \widehat{\mathrm{FP}}_{0}(\hat{Y})) \cdot p_{00} \right. \\ &\leqslant \left| \widetilde{\mathrm{FP}}_{a}(\hat{Y}) - \widehat{\mathrm{FP}}_{a}(\hat{Y}) \right| \cdot |p_{1a} - p_{0a}| + \left| \widetilde{\mathrm{FP}}_{0}(\hat{Y}) - \widehat{\mathrm{FP}}_{0}(\hat{Y}) \right| \cdot |p_{10} - p_{0}| \\ &\leqslant \frac{4 \ln(4|\mathcal{A}|/\beta)}{\min\{\tilde{q}_{a0}, \tilde{q}_{00}\} \, m\epsilon} \quad \text{(by part 3 of this Lemma)} \end{split}$$

A similar argument holds for $\left|\Delta \widetilde{\mathrm{TP}}_{a}(\widehat{Y}_{p}) - \Delta \widehat{\mathrm{TP}}_{a}(\widehat{Y}_{p})\right| \leq \frac{4\ln(4|\mathcal{A}|/\beta)}{\min\{\widetilde{q}_{a1}, \widetilde{q}_{01}\} m\epsilon}$.

5. We will show that \hat{p}^* satisfies the first constraint of \widetilde{LP} (3) for all $a \in \mathcal{A}$. Satisfying the second constraint can be similarly shown and the third is trivial. We have that

$$\begin{split} \left| \Delta \widetilde{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) \right| &= \left| \Delta \widetilde{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) - \Delta \widehat{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) + \Delta \widehat{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) \right| \\ &\leq \left| \Delta \widehat{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) \right| + \left| \Delta \widetilde{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) - \Delta \widehat{\mathsf{FP}}_{a}(\hat{Y}_{\hat{p}^{\star}}) \right| \\ &\leq \gamma + \frac{4\ln(4|\mathcal{A}|/\beta)}{\min\{\tilde{q}_{a0}, \tilde{q}_{00}\} \, m\epsilon} \end{split}$$

by part 4 of this Lemma and the fact that $\left|\Delta \widehat{\operatorname{FP}}_a(\widehat{Y}_{\widehat{p}^\star})\right| \leqslant \gamma$ (see $\widehat{\operatorname{LP}}$ (2)).

Proof of Theorem 2.2. Following Lemma A.1, with probability at least $1 - \beta$

$$\begin{split} \widehat{\operatorname{err}} \left(\widehat{Y}_{\widetilde{p}^{\star}} \right) &\leqslant \widetilde{\operatorname{err}} \left(\widehat{Y}_{\widetilde{p}^{\star}} \right) + \frac{12|\mathcal{A}| \ln(4|\mathcal{A}|/\beta)}{m\epsilon} \quad (\text{part 1 of Lemma A.1}) \\ &\leqslant \widetilde{\operatorname{err}} \left(\widehat{Y}_{\widetilde{p}^{\star}} \right) + \frac{12|\mathcal{A}| \ln(4|\mathcal{A}|/\beta)}{m\epsilon} \quad (\text{part 5 of Lemma A.1}) \\ &\leqslant \widehat{\operatorname{err}} \left(\widehat{Y}_{\widetilde{p}^{\star}} \right) + \frac{24|\mathcal{A}| \ln(4|\mathcal{A}|/\beta)}{m\epsilon} \quad (\text{part 1 of Lemma A.1}) \end{split}$$

Also, for all $a \neq 0$,

$$\begin{split} \Delta \widehat{\mathrm{FP}}_{a}\left(\widehat{Y}_{\widetilde{p}^{\star}}\right) &\leqslant \Delta \widetilde{\mathrm{FP}}_{a}(\widehat{Y}_{\widetilde{p}^{\star}}) + \frac{4\ln(4|\mathcal{A}|/\beta)}{\min\{\widetilde{q}_{a0},\widetilde{q}_{00}\}\,m\epsilon} \quad (\text{part 4 of Lemma A.1}) \\ &\leqslant \gamma + \frac{8\ln(4|\mathcal{A}|/\beta)}{\min\{\widetilde{q}_{a0},\widetilde{q}_{00}\}\,m\epsilon} \quad (\text{see }\widetilde{\mathrm{LP}}(3)) \\ &\leqslant \gamma + \frac{8\ln(4|\mathcal{A}|/\beta)}{\min\{\widehat{q}_{a0},\widehat{q}_{00}\}\,m\epsilon - 4\ln(4|\mathcal{A}|/\beta)} \end{split}$$

The last inequality follows from the fact that $|\tilde{q}_{ay} - \hat{q}_{ay}| \leq 4 \ln(4|\mathcal{A}|/\beta)/m\epsilon$ for all a, y. It follows similarly that,

$$\Delta \widehat{\mathrm{TP}}_{a}\left(\widehat{Y}_{\widetilde{p}^{\star}}\right) \leqslant \gamma + \frac{8\ln(4|\mathcal{A}|/\beta)}{\min\{\widehat{q}_{a1}, \widehat{q}_{01}\}\,m\epsilon - 4\ln(4|\mathcal{A}|/\beta)}$$

_	_

B. Missing Proofs of Section 3

Proof of Lemma 3.1. Recall that at round t, the private λ -player is given some $h_t \in \mathcal{H}$ and wants to calculate

$$\hat{\boldsymbol{r}}_{t}(h_{t}) = \begin{bmatrix} \widehat{\mathrm{FP}}_{a}(h_{t}) - \widehat{\mathrm{FP}}_{0}(h_{t}) - \gamma \\ \widehat{\mathrm{FP}}_{0}(h_{t}) - \widehat{\mathrm{FP}}_{a}(h_{t}) - \gamma \\ \widehat{\mathrm{TP}}_{a}(h_{t}) - \widehat{\mathrm{TP}}_{0}(h_{t}) - \gamma \\ \widehat{\mathrm{TP}}_{0}(h_{t}) - \widehat{\mathrm{TP}}_{a}(h_{t}) - \gamma \end{bmatrix}_{\substack{a \in \mathcal{A} \\ a \neq 0}} \in \mathbb{R}^{4(|\mathcal{A}|-1)}$$

privately, where for all $a \in A$, we have that

$$\widehat{\text{FP}}_a(h_t) = \frac{\hat{q}_{1a0}}{\hat{q}_{a0}} = \frac{\hat{q}_{1a0}}{\hat{q}_{1a0} + \hat{q}_{0a0}} \qquad \widehat{\text{TP}}_a(h_t) = \frac{\hat{q}_{1a1}}{\hat{q}_{a1}} = \frac{\hat{q}_{1a1}}{\hat{q}_{1a1} + \hat{q}_{0a1}}$$

Having modified one of the records in $A \in \mathcal{A}^m$, say $A_j = a$ is changed to $A'_j = a'$ for some $j \in [m]$, $\hat{q}_{\hat{y}_j a y_j}$ will then decrease by 1/m and $\hat{q}_{\hat{y}'a'y_j}$ will increase by 1/m where \hat{y}' may or may not be equal to \hat{y}_j . Thus, depending on the value of y_j , it is then the case that

- if $y_j = 0$: $\widehat{FP}_a(h_t)$ and $\widehat{FP}_{a'}(h_t)$ will change by at most $1/(\min_{a,y}{\{\hat{q}_{ay}\}} m 1)$.
- if $y_j = 1$: $\widehat{TP}_a(h_t)$ and $\widehat{TP}_{a'}(h_t)$ will change by at most $1/(\min_{a,y}{\{\hat{q}_{ay}\}} m 1)$.

Note that $1/(\min_{a,y}{\{\hat{q}_{ay}\}}m-1)$ is a valid bound by Assumption 3.3. Therefore, since each \widehat{FP}_a (\widehat{TP}_a) appears twice in $\hat{r}_t(h_t)$ if $a \neq 0$ and $2(|\mathcal{A}|-1)$ times if a = 0, we have that

$$\Delta \hat{\boldsymbol{r}}_t \leqslant \frac{2|\mathcal{A}|}{\min_{a,y}\{\hat{q}_{ay}\}\,m-1}$$

Let's move on to the sensitivity of ℓ_t of the private Q-player. Recall that at round t, the Q-player is given some $\lambda_t \in \Lambda$ and wants to find $\arg \min_{h \in \mathcal{H}} \ell_t(h) \equiv L(h, \lambda_t) = \widehat{\operatorname{err}}(h) + \lambda_t^{\top} \widehat{r}_t(h)$ privately. It is then obvious that since $||\lambda_t||_1 \leq B$,

$$\begin{aligned} \Delta \ell_t &\leqslant \frac{1}{m} + \frac{2|\mathcal{A}|B}{\min_{a,y}\{\hat{q}_{ay}\}m - 1} \\ &\leqslant \frac{2|\mathcal{A}|B + 1}{\min_{a,y}\{\hat{q}_{ay}\}m - 1} \end{aligned}$$

Proof of Lemma 3.2. Results follow from Lemma 3.1, Theorem 1.1 and Theorem 1.2 of this paper. Recall that $|\mathcal{H}(S)| \leq O(m^{d_{\mathcal{H}}})$ by Sauer's Lemma.

Proof of Lemma 3.3. This result follows directly from the accuracy of the private Q-player given in Lemma 3.2.

Proof of Lemma 3.4. We follow the proof given for Theorem 1 of (Agarwal et al., 2018) and modify where necessary. Let $\Lambda' = \{\lambda' \in \mathbb{R}^{4|\mathcal{A}|-3}_+ : ||\lambda'||_1 = B\}$. Any $\lambda \in \Lambda$ is associated with a $\lambda' \in \Lambda'$ which is equal to λ on the first $4(|\mathcal{A}| - 1)$ coordinates and has the remaining mass on the last one. Let $\tilde{r}'_t \in \mathbb{R}^{4|\mathcal{A}|-3}$ be equal to \tilde{r}_t on the first $4(|\mathcal{A}| - 1)$ coordinates and zero in the last one. We have that for any λ and its associated λ' , and particularly $\tilde{\lambda}_t$ and $\tilde{\lambda}'_t$ of Algorithm 5, and all t

$$\boldsymbol{\lambda}^{\top} \, \widetilde{\boldsymbol{r}}_t = (\boldsymbol{\lambda}')^{\top} \, \widetilde{\boldsymbol{r}}'_t \quad , \quad \widetilde{\boldsymbol{\lambda}}_t^{\top} \, \widetilde{\boldsymbol{r}}_t = (\widetilde{\boldsymbol{\lambda}}'_t)^{\top} \, \widetilde{\boldsymbol{r}}'_t \tag{7}$$

Observe that with probability at least $1 - \beta/2T$, $||\tilde{r}'_t||_{\infty} = ||\tilde{r}_t||_{\infty} \leq 2 + \frac{8|\mathcal{A}|\sqrt{T\ln(1/\delta)}\ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\hat{q}_{ay}\}m-1)\cdot\epsilon}$ (see Lemma 3.2). Thus, by Corollary 2.14 of (Shalev-Shwartz, 2012), we have that with probability at least $1 - \beta/2$, for any $\lambda' \in \Lambda'$,

$$\sum_{t=1}^{T} (\boldsymbol{\lambda}')^{\top} \, \widetilde{\boldsymbol{r}}'_t \, \leqslant \, \sum_{t=1}^{T} (\widetilde{\boldsymbol{\lambda}}'_t)^{\top} \, \widetilde{\boldsymbol{r}}'_t + \frac{B \ln(4|\mathcal{A}|-3)}{\eta} + 4\eta B \left(1 + \frac{4|\mathcal{A}|\sqrt{T \ln(1/\delta)} \ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\hat{q}_{ay}\} \, m - 1) \cdot \epsilon} \right)^2 T$$

Consequently, by Equation 7, we have that with probability at least $1 - \beta/2$, for any $\lambda \in \Lambda$,

$$\sum_{t=1}^{T} \boldsymbol{\lambda}^{\top} \, \tilde{\boldsymbol{r}}_{t} \leq \sum_{t=1}^{T} \tilde{\boldsymbol{\lambda}}_{t}^{\top} \, \tilde{\boldsymbol{r}}_{t} + \frac{B \ln(4|\mathcal{A}|-3)}{\eta} + 4\eta B \left(1 + \frac{4|\mathcal{A}|\sqrt{T \ln(1/\delta)} \ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\hat{q}_{ay}\} \, m - 1) \cdot \epsilon} \right)^{2} T \tag{8}$$

which completes the proof.

Proof of Theorem 3.5. Let

$$R_Q := \frac{8(2|\mathcal{A}|B+1)\sqrt{T\ln(1/\delta)} \left(d_{\mathcal{H}}\ln(m) + \ln(2T/\beta)\right)}{(\min_{a,y}\{\hat{q}_{ay}\} m - 1) \cdot \epsilon}$$

and

$$R_{\boldsymbol{\lambda}} := \frac{B\ln(4|\mathcal{A}|-3)}{\eta T} + 4\eta B \left(1 + \frac{4|\mathcal{A}|\sqrt{T\ln(1/\delta)}\ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\hat{q}_{ay}\}\,m-1)\cdot\epsilon}\right)^2$$

be the regret bounds of the private Q and λ players respectively, and let $\nu := R_Q + R_{\lambda}$. We have that for any $Q \in \Delta(\mathcal{H}(S))$, with probability at least $1 - \beta$,

$$\begin{split} L(Q,\widetilde{\boldsymbol{\lambda}}) &= \frac{1}{T} \sum_{t=1}^{T} L(Q,\widetilde{\boldsymbol{\lambda}}_t) \quad \text{(by linearity of } L) \\ &\geqslant \frac{1}{T} \sum_{t=1}^{T} L(\widetilde{h}_t,\widetilde{\boldsymbol{\lambda}}_t) - R_Q \quad \text{(by Lemma 3.3)} \\ &\geqslant \frac{1}{T} \sum_{t=1}^{T} L(\widetilde{h}_t,\widetilde{\boldsymbol{\lambda}}) - R_{\boldsymbol{\lambda}} - R_Q \quad \text{(by Lemma 3.4)} \\ &= L(\widetilde{Q},\widetilde{\boldsymbol{\lambda}}) - \nu \end{split}$$

Now for any $\lambda \in \Lambda$, with probability at least $1 - \beta$,

$$\begin{split} L(\widetilde{Q}, \boldsymbol{\lambda}) &= \frac{1}{T} \sum_{t=1}^{T} L(\widetilde{h}_t, \boldsymbol{\lambda}) \quad \text{(by linearity of } L) \\ &\leqslant \frac{1}{T} \sum_{t=1}^{T} L(\widetilde{h}_t, \widetilde{\boldsymbol{\lambda}}_t) + R_{\boldsymbol{\lambda}} \quad \text{(by Lemma 3.4)} \\ &\leqslant \frac{1}{T} \sum_{t=1}^{T} L(\widetilde{Q}, \widetilde{\boldsymbol{\lambda}}_t) + R_{\boldsymbol{\lambda}} + R_Q \quad \text{(by Lemma 3.3)} \\ &= L(\widetilde{Q}, \widetilde{\boldsymbol{\lambda}}) + \nu \end{split}$$

Therefore, with probability at least $1 - \beta$,

$$\begin{split} L(\widetilde{Q},\widetilde{\boldsymbol{\lambda}}) &\leqslant L(Q,\widetilde{\boldsymbol{\lambda}}) + \nu \quad \text{for all } Q \in \Delta(\mathcal{H}(S)) \\ L(\widetilde{Q},\widetilde{\boldsymbol{\lambda}}) &\geqslant L(\widetilde{Q},\boldsymbol{\lambda}) - \nu \quad \text{for all } \boldsymbol{\lambda} \in \Lambda \end{split}$$

and that

$$\begin{split} \nu &= \frac{B\ln(4|\mathcal{A}|-3)}{\eta T} + 4\eta B \left(1 + \frac{4|\mathcal{A}|\sqrt{T\ln(1/\delta)}\ln(8T|\mathcal{A}|/\beta)}{(\min_{a,y}\{\hat{q}_{ay}\}m-1)\cdot\epsilon} \right)^2 \\ &+ \frac{8(2|\mathcal{A}|B+1)\sqrt{T\ln(1/\delta)}\left(d_{\mathcal{H}}\ln(m) + \ln(2T/\beta)\right)}{(\min_{a,y}\{\hat{q}_{ay}\}m-1)\cdot\epsilon} \end{split}$$

Plugging in the proposed values of T and η in Algorithm 5 results in

$$\nu = \widetilde{O}\left(\frac{B}{\min_{a,y}\{\hat{q}_{ay}\}}\sqrt{\frac{|\mathcal{A}|\sqrt{\ln(1/\delta)}\left(d_{\mathcal{H}}\ln(m) + \ln(1/\beta)\right)}{m\,\epsilon}}\right)$$

where we hide further logarithmic dependence on m, ϵ , and $|\mathcal{A}|$ under the \widetilde{O} notation.

The following two lemmas are taken from (Agarwal et al., 2018) and are used in the proof of Theorem 3.6 and Theorem 3.8. **Lemma B.1** (Empirical Error Bound (Agarwal et al., 2018)). Let $(\tilde{Q}, \tilde{\lambda})$ be any ν -approximate solution of the game described in section 3, *i.e.*,

$$\begin{split} L(\widetilde{Q},\widetilde{\boldsymbol{\lambda}}) &\leqslant L(Q,\widetilde{\boldsymbol{\lambda}}) + \nu \quad \text{for all } Q \in \Delta(\mathcal{H}) \\ L(\widetilde{Q},\widetilde{\boldsymbol{\lambda}}) &\geqslant L(\widetilde{Q},\boldsymbol{\lambda}) - \nu \quad \text{for all } \boldsymbol{\lambda} \in \Lambda \end{split}$$

For any Q satisfying the fairness constraints of the fair ERM problem, we have that

$$\widehat{err}(\widetilde{Q}) \leq \widehat{err}(Q) + 2\nu$$

Lemma B.2 (Empirical Fairness Violation (Agarwal et al., 2018)). Let $(\tilde{Q}, \tilde{\lambda})$ be any ν -approximate solution of the game described in section 3, i.e.,

$$\begin{split} L(\tilde{Q},\tilde{\boldsymbol{\lambda}}) &\leq L(Q,\tilde{\boldsymbol{\lambda}}) + \nu \quad \text{for all } Q \in \Delta(\mathcal{H}) \\ L(\tilde{Q},\tilde{\boldsymbol{\lambda}}) &\geq L(\tilde{Q},\boldsymbol{\lambda}) - \nu \quad \text{for all } \boldsymbol{\lambda} \in \Lambda \end{split}$$

and suppose the fairness constraints of the fair ERM problem are feasible. Then the distribution \widetilde{Q} satisfies

$$\begin{split} \max_{a \in \mathcal{A}} \left| \widehat{FP}_{a}(\widetilde{Q}) - \widehat{FP}_{0}\left(\widetilde{Q}\right) \right| &\leq \gamma + \frac{1 + 2\nu}{B} \\ \max_{a \in \mathcal{A}} \left| \widehat{TP}_{a}(\widetilde{Q}) - \widehat{TP}_{0}\left(\widetilde{Q}\right) \right| &\leq \gamma + \frac{1 + 2\nu}{B} \end{split}$$