
Supplement for Differentially Private Fair Learning

1. Details for Model and Preliminaries

Suppose we are given a data set of m individuals drawn i.i.d. from an unknown distribution P where each individual is
described by a tuple pX,A, Y q. X P X forms a vector of unprotected attributes, A P A is the protected attribute where
|A| ă 8, and Y P Y is a binary label. Without loss of generality, we write A “ t0, 1, . . . , |A| ´ 1u and let Y “ t0, 1u. Let
pP denote the empirical distribution of the observed data. Our primary goal is to develop an algorithm to learn a (possibly
randomized) fair classifier pY , with an algorithm that guarantees the privacy of the sensitive attributes A. By privacy, we
mean differential privacy, and by fairness, we mean (approximate versions of) the Equalized Odds condition of (Hardt
et al., 2016). Both of these notions are parameterized: differential privacy has a parameter ε, and the approximate fairness
constraint is parameterized by γ. Our main interest is in characterizing the tradeoff between ε, γ, and classification error.

1.1. Fairness

Definition 1.1 (γ-Equalized Odds Fairness). We say a classifier pY satisfies the γ-Equalized Odds condition with respect to
the attribute A, if for all a, a1 P A, the false and true positive rates of pY in the subpopulations tA “ au and tA “ a1u are
within γ of one another. In other words, for all a, a1 P A,

ˇ

ˇ

ˇ
P
”

pY “ 1 |A “ a, Y “ 0
ı

´ P
”

pY “ 1 |A “ a1, Y “ 0
ı
ˇ

ˇ

ˇ
ď γ

ˇ

ˇ

ˇ
P
”

pY “ 1 |A “ a, Y “ 1
ı

´ P
”

pY “ 1 |A “ a1, Y “ 1
ı
ˇ

ˇ

ˇ
ď γ

where probabilities are taken with respect to P . The above constraint involves quadratically many inequalities in |A|. It will
be more convenient to instead work with a slightly different formulation of γ-Equalized Odds in which we constrain the
difference between false and true positive rates in the subpopulation tA “ au and the corresponding rates for tA “ 0u to
be at most γ for all a ‰ 0. The choice of group 0 as an anchor is arbitrary and without loss of generality. The result is a set
of only linearly many constraints. For all a P A:

ˇ

ˇ

ˇ
P
”

pY “ 1 |A “ a, Y “ 0
ı

´ P
”

pY “ 1 |A “ 0, Y “ 0
ı
ˇ

ˇ

ˇ
ď γ

ˇ

ˇ

ˇ
P
”

pY “ 1 |A “ a, Y “ 1
ı

´ P
”

pY “ 1 |A “ 0, Y “ 1
ı
ˇ

ˇ

ˇ
ď γ

Since the underlying distribution P is not known, we will work with empirical versions of the above quantities, in which all
the probabilities appearing above will be taken with respect to the empirical distribution of the observed data pP . Since we
will generally be dealing with this definition of fairness, we will use the shortened term “γ-fair” throughout the paper to
refer to “γ-Equalized Odds fair”. We now introduce some notation that will appear throughout the paper.

Remark 1.1. We will use notation FPappY q and TPappY q to refer to the false and true positive rates of pY on the subpopulation
tA “ au. xFPappY q and xTPappY q are used to refer to the empirical false and true positive rates which are calculated based
on the empirical distribution of the data.

Remark 1.2. Let q̂ŷay :“ pP rpY “ ŷ, A “ a, Y “ ys be the empirical fraction of the data with pY “ ŷ, A “ a, and Y “ y.
With slight abuse of notation, we will use q̂ay :“ pP rA “ a, Y “ ys “ q̂1ay ` q̂0ay to denote the empirical fraction of the
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data with A “ a and Y “ y. We will see that mina,y q̂ay shows up in our analyses and plays a role in the performance of
our algorithms.

Remark 1.3. Observe that using the introduced notation, given a classifier pY

xFPa
´

pY
¯

“
q̂1a0

q̂a0
, xTPa

´

pY
¯

“
q̂1a1

q̂a1

1.2. Differential Privacy

Let D be a data universe from which a database D of size m is drawn and let M be an algorithm that takes the database
D as input and outputs MpDq P O. Informally speaking, differential privacy requires that the addition or removal of a
single data entry should have little (distributional) effect on the output of the mechanism. In other words, for every pair of
neighboring databases D „ D1 P Dm that differ in at most one entry, differential privacy requires that the distribution of
MpDq and MpD1q are “close” to each other where closeness are measured by the privacy parameters ε and δ.

Definition 1.2 (pε, δq-Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm M : Dm Ñ O is said to be
pε, δq-differentially private if for all pairs of neighboring databases D,D1 P Dm and all O Ď O,

P rMpDq P Os ď eε P
“

MpD1q P O
‰

` δ

if δ “ 0, M is said to be ε-differentially private.

Recall that our data universe is D “ pX ,A,Yq, which will be convenient to partition as pX ,Yq ˆA. Given a dataset D of
size m, we will write it as a pair D “ pDI , DSq where DI P pX ,Yqm represent the insensitive attributes and DS P Am
represent the sensitive attributes. We will sometimes incidentally guarantee differential privacy over the entire data universe
D (see the table in the introduction), but our main goal will be to promise differential privacy only with respect to the
sensitive attributes. Write DS „ D1S to denote that DS and D1S differ in exactly one coordinate (i.e. in one person’s group
membership). An algorithm is pε, δq-differentially private in the sensitive attributes if for all DI P pX ,Yqm and for all
DS „ D1S P Am, we have:

P rMpDI , DSq P Os ď eε P
“

MpDI , D
1
Sq P O

‰

` δ

Differentially private mechanisms usually work by deliberately injecting perturbations into quantities computed from the
sensitive data set, and used as part of the computation. The injected perturbation is sometimes “explicitly” in the form of a
(zero-mean) noise sampled from a known distribution, say Laplace or Gaussian, where the scale of noise is calibrated to
the sensitivity of the query function to the input data. However, in some other cases, the noise is “implicitly” injected by
maintaining a distribution over a set of possible outcomes for the algorithm and outputting a sample from that distribution.
The Laplace or Gaussian mechanisms which are two standard techniques to achieve differential privacy follow the former
approach by adding Laplace or Gaussian noise of appropriate scale to the outcome of computation, respectively. The
Exponential mechanism instead falls into the latter case and is often used when an object, say a classifier, with optimal utility
is to be chosen privately. In the setting of this paper, to guarantee the privacy of the sensitive attribute A in our algorithms,
we will be using the Laplace and the Exponential Mechanisms which are briefly reviewed below. See (Dwork & Roth, 2014)
for a more detailed discussion and analysis.

Let’s start with the Laplace mechanism which, as stated before, perturbs the given query function f with zero-mean Laplace
noise calibrated to the `1-sensitivity of the query function. The `1-sensitivity of a function is essentially how much a function
would change in `1 norm if one changed at most one entry of the database.

Definition 1.3 (`1-sensitivity of a function). The `1-sensitivity of f : Dm Ñ Rk is

∆f “ max
D,D1 PDm

D„D1

›

›fpDq ´ fpD1q
›

›

1

Definition 1.4 (Laplace Mechanism (Dwork et al., 2006)). Given a query function f : Dm Ñ Rk, a database D P Dm,
and a privacy parameter ε, the Laplace mechanism outputs:

rfε pDq “ f pDq ` pW1, . . . ,Wkq

where Wi’s are i.i.d. random variables drawn from Lap p∆f{εq.
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Keep in mind that besides having privacy, we would like the privately computed query rfεpDq to have some reasonable
accuracy. The following theorem which uses standard tail bounds for a Laplace random variable formalizes the trade-off
between privacy and accuracy for the Laplace mechanism.

Theorem 1.1 (Privacy vs. Accuracy of the Laplace Mechanism (Dwork et al., 2006)). The Laplace mechanism guarantees
ε-differential privacy and that with probability at least 1´ δ,

|| rfε pDq ´ f pDq ||8 ď ln

ˆ

k

δ

˙

¨

ˆ

∆f

ε

˙

While the Laplace mechanism is often used when the task at hand is to calculate a bounded numeric query (e.g. mean,
median), the Exponential mechanism is used when the goal is to output an object (e.g. a classifier) with maximum utility
(i.e. minimum loss). To formalize the exponential mechanism, let ` : Dm ˆHÑ R be a loss function that given an input
database D P Dm and h P H, specifies the loss of h on D by ` pD,hq. Without a privacy constraint, the goal would be
to output arg minhPH ` pD,hq for the given database D, but when privacy is required, the private algorithm must output
arg minhPH ` pD,hq with some “perturbation” which is formalized in the following definition. Let ∆` be the sensitivity of
the loss function ` with respect to the database argument D. In other words,

∆` “ max
h PH

max
D,D1 PDm

D„D1

ˇ

ˇ` pD,hq ´ `
`

D1, h
˘
ˇ

ˇ

Definition 1.5 (Exponential Mechansim (McSherry & Talwar, 2007)). Given a database D P Dm and a privacy parameter
ε, output h P H with probability proportional to exp p´ε`pD,hq{2∆`q.

Theorem 1.2 (Privacy vs. Accuracy of the Exponential Mechanism (McSherry & Talwar, 2007)). Let h‹ “

arg minhPH ` pD,hq and rhε P H be the output of the Exponential mechanism. We have that rhε is ε-DP and that with
probability at least 1´ δ,

|` pD,rhεq ´ ` pD,h
‹q | ď ln

ˆ

|H|
δ

˙

¨

ˆ

2∆`

ε

˙

An important property of differential privacy is that it is robust to post-processing. The post-processing of an pε, δq-DP
algorithm output remains pε, δq-DP.

Lemma 1.3 (Post-Processing (Dwork et al., 2006)). Let M : Dm Ñ O be a pε, δq-DP algorithm and let f : O Ñ R be
any randomized function. We have that the algorithm f oM : Dm Ñ R is pε, δq-DP.

Another important property of differential privacy is that DP algorithms can be composed adaptively with a graceful
degradation in their privacy parameters.

Theorem 1.4 (Composition (Dwork et al., 2010)). Let Mt be an pεt, δtq-DP algorithm for t P rT s. We have that the
composition M “ pM1, . . . ,MT q is pε, δq-DP where ε “

ř

t εt and δ “
ř

t δt.

Following the Composition Theorem 1.4, if for instance, an iterative algorithm that runs in T iterations is to be made private
with target privacy parameters ε and δ “ 0, each iteration must be made ε{T -DP. This may lead to a huge amount of per
iteration noise if T is too large. The Advanced Composition Theorem 1.5 instead allows the privacy parameter at each step
to scale with Opε{

?
T q.

Theorem 1.5 (Advanced Composition (Dwork et al., 2010)). Suppose 0 ă ε ă 1 and δ ą 0 are target privacy parameters.
Let Mt be a pε1, δ1q-DP algorithm for all t P rT s. We have that the composition M “ pM1, . . . ,MT q is pε, T δ1 ` δq-DP
where ε “ 2ε1

a

2T lnp1{δq.

2. Details for Differentially Private Fair Learning: Post-processing

In this section we will present and analyze our first differentially private fair learning algorithm which will be called
DP-postprocessing. The DP-postprocessing algorithm is based on the fair learning model introduced in (Hardt et al.,
2016) where decisions made by an arbitrary base classifier have their false and true positive rates equalized across different
groups tA “ au in a post-processing step. Due to the desire for privacy of the sensitive attribute A, we assume the base
classifier is trained only on the unprotected attributes X and that A is used only for the post-processing step. We will see the
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Figure 1: The post-processing technique. In the training phase, training examples are used to train the base classifier and find the optimal
p‹ by solving LP (1).

fair learning problem can be written as a linear program whose coefficients depend only on the q̂ŷay introduced in Remark
1.2, and thus privacy will be achieved if these quantities are calculated privately using the Laplace mechanism. While the
approach is straightforward and simply implementable, the privately learned classifier will need to take as input the sensitive
attribute A at test time which is not feasible (or legal) in all applications.

We will first review the basic approach of (Hardt et al., 2016) in Subsection 2.1. We will then introduce the DP-
postprocessing algorithm in Subsection 2.2 which is followed by its analysis including the tradeoffs between accuracy,
fairness, and privacy.

2.1. Fair Learning

Following the model presented in (Hardt et al., 2016), suppose there is an arbitrary base classifier pY which is trained on
the set of training examples tpXi, Yiqu

m
i“1. Notice the protected attribute A is excluded from the training set, and so pY is

trivially 0-DP in the protected attribute. The goal for now is to make the classifications of the base classifier γ-fair with
respect to the sensitive attribute A by post-processing the predictions given by pY . With slight abuse of notation, let pYp
denote the derived optimal γ-fair randomized classifier where p “ ppŷaqŷ,a is a vector of probabilities describing pYp and
that pŷa :“ P rpYp “ 1 | pY “ ŷ, A “ as. Define p‹ to be the solution to the optimization problem LP (1) where,

∆FPa
´

pYp

¯

“

ˇ

ˇ

ˇ
FPa

´

pYp

¯

´ FP0

´

pYp

¯
ˇ

ˇ

ˇ

∆TPa
´

pYp

¯

“

ˇ

ˇ

ˇ
TPa

´

pYp

¯

´ TP0

´

pYp

¯
ˇ

ˇ

ˇ

and err ppYpq is the expected loss of pYp, i.e.,

err
´

pYp

¯

“ PpX,A,Y q„P

”

pYp ‰ Y
ı

Once p‹ is found by solving LP (1), one would then use this vector of probabilities, along with the estimate pY given by the
base classifier and the sensitive attribute A, to make further predictions. See Fig. 1 for a visual presentation of the adopted
model in this section.

LP: Linear Program

arg min
p

err
´

pYp

¯

s.t. @a P A
a‰0

∆FPa
´

pYp

¯

ď γ

∆TPa
´

pYp

¯

ď γ

0 ď pŷa ď 1 @ŷ, a

(1)
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Since the true underlying distribution P is not known, in practice the empirical distribution pP is used to estimate the
quantities appearing in LP (1). Using simple probability techniques, one can expand the empirical quantities xerr ppYpq,
∆xFPappYpq, and ∆xTPappYpq in a linear form in p with coefficients being a function of q̂ŷay and q̂ay quantities introduced in
Remark 1.2. We have the expanded empirical version of LP (1) written in xLP (2).

xLP: Empirical Linear Program

arg min
p

xerr
´

pYp

¯

“
ÿ

ŷ,a

pq̂ŷa0 ´ q̂ŷa1q ¨ pŷa `
ÿ

ŷ,a

q̂ŷa1

s.t. @a P A
a‰0

∆xFPa
´

pYp

¯

“

ˇ

ˇ

ˇ

xFPa
´

pY
¯

¨ p1a `

´

1´xFPa
´

pY
¯¯

¨ p0a

´xFP0

´

pY
¯

¨ p10 ´

´

1´xFP0

´

pY
¯¯

¨ p00

ˇ

ˇ

ˇ
ď γ

∆xTPa
´

pYp

¯

“

ˇ

ˇ

ˇ

xTPa
´

pY
¯

¨ p1a `

´

1´ xTP1

´

pY
¯¯

¨ p0a

´ xTP0

´

pY
¯

¨ p10 ´

´

1´ xTP0

´

pY
¯¯

¨ p00

ˇ

ˇ

ˇ
ď γ

0 ď pŷa ď 1 @ŷ, a

(2)

2.2. A Differentially Private Algorithm: Design and Analysis

In order to guarantee privacy of the protected attribute A, we simply need to compute the empirical quantities appearing in
xLP (2) in a differentially private manner: once we do this, the differential privacy guarantees of the algorithm will follow
from the post-processing property. In particular, we need to compute a private estimate of q̂ “ rq̂ŷaysŷ,a,y P R4|A|. The first
thing to do is to find the `1-sensitivity of q̂ to the sensitive attribute A P A.

Lemma 2.1 (`1-Sensitivity of the Empirical Distribution q̂ to A). We have that

∆q̂ “ max
A,A1 PAm

A„A1

›

› q̂ pAq ´ q̂
`

A1
˘
›

›

1
“

2

m

Following Definition 1.4 and Theorem 1.1, to achieve privacy with target parameter ε, let

q̃ “ rq̃ŷaysŷ,a,y :“ q̂ ` rWŷaysŷ,a,y

be the perturbed version of q̂ where Wŷay’s are i.i.d. draws from Lap p2{mεq distribution. Once q̂ is computed privately
with privacy guarantee of ε, any post-processing of the private q̃ would still be ε-differentially private by the Post-processing
Lemma 1.3. As a consequence, one may instead feed the privately computed empirical distribution q̃ to the linear program
xLP (2) to ensure privacy of the sensitive attribute A. With an inevitable modification to the constraints of the linear
program xLP (2), we now introduce the ε-differentially private linear program ĂLP (3) which is used in the DP-postprocessing
Algorithm 1 to obtain an optimal ε-DP γ-fair classifier. Note that in ĂLP (3), β is the confidence parameter, m is the training
sample size, ĂFPappY q and ĂTPappY q are the false and true positive rates of the classifier pY in tA “ au calculated using the
private q̃, and q̃ay refers to the noisy version of q̂ay , or in other words, q̃ay :“ q̃1ay ` q̃0ay . We will provide high probability
guarantees on the accuracy and fairness violation of the classifier given by the DP-postprocessing Algorithm 1 in Theorem
2.2. The proof of Theorem 2.2 relies on some facts which are stated in Lemma A.1. All the proofs are given in Appendix A.
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Algorithm 1 ε-differentially private fair classification: DP-postprocessing
Input: privacy parameter ε, confidence parameter β, fairness violation γ, training examples tpXi, Ai, Yiqu

m
i“1

Train the base classifier pY on tpXi, Yiqu
m
i“1 and get the estimates tpYiumi“1.

Calculate the empirical joint distribution of tpY ,A, Y u: q̂ŷay “ pPrpY “ ŷ, A “ a, Y “ ys.

Sample Wŷay
i.i.d.
„ Lap p2{mεq for all ŷ, a, y.

Perturb each q̂ŷay with noise: q̃ŷay “ q̂ŷay `Wŷay.
Solve ĂLP (3) to get the minimizer p̃‹.

Output: p̃‹, the trained classifier pY

ĂLP: ε-Differentially Private Linear Program

arg min
p

Ăerr
´

pYp

¯

:“ 1
ÿ

ŷ,a

pq̃ŷa0 ´ q̃ŷa1q ¨ pŷa `
ÿ

ŷ,a

q̃ŷa1

s.t. @a P A
a‰0

∆ĂFPa
´

pYp

¯

:“
ˇ

ˇ

ˇ

ĂFPa
´

pY
¯

¨ p1a `

´

1´ĂFPa
´

pY
¯¯

¨ p0a

´ĂFP0

´

pY
¯

¨ p10 ´

´

1´ĂFP0

´

pY
¯¯

¨ p00

ˇ

ˇ

ˇ
ď γ `

4 ln p4|A|{βq
mintq̃a0, q̃00umε

∆ĂTPa
´

pYp

¯

:“
ˇ

ˇ

ˇ

ĂTPa
´

pY
¯

¨ p1a `

´

1´ ĂTPa
´

pY
¯¯

¨ p0a

´ ĂTP0

´

pY
¯

¨ p10 ´

´

1´ ĂTP0

´

pY
¯¯

¨ p00

ˇ

ˇ

ˇ
ď γ `

4 ln p4|A|{βq
mintq̃a1, q̃01umε

0 ď pŷa ď 1 @ŷ, a

(3)

1Here, and throughout, x :“ y denotes that we define x to be the quantity y.

Theorem 2.2 (Error-Privacy, Fairness-Privacy Tradeoffs). Suppose mina,ytq̂ayu ą 4 ln p4|A|{βq { pmεq. Let pp‹ be the
optimal solution of xLP (2) and let rp‹ be the output of Algorithm 1 which is the optimal solution of ĂLP (3). With probability
at least 1´ β,

xerr
´

pY
rp‹

¯

ď xerr
´

pY
pp‹

¯

`
24|A| ln p4|A|{βq

mε

and for all a ‰ 0,

∆xFPa
´

pY
rp‹

¯

ď γ `
8 ln p4|A|{βq

mintq̂a0, q̂00umε´ 4 ln p4|A|{βq

∆xTPa
´

pY
rp‹

¯

ď γ `
8 ln p4|A|{βq

mintq̂a1, q̂01umε´ 4 ln p4|A|{βq

We emphasize that the accuracy guarantee stated in Theorem 2.2 is relative to the non-private post-processing algorithm, not
relative to the optimal fair classifier. This is because the non-private post-processing algorithm itself has no such optimality
guarantees: its main virtue is simplicity. In the next section, we analyze a more complicated algorithm that is competitive
with the optimal fair classifier.

3. Details for Differentially Private Fair Learning: In-processing
In this section we will introduce our second differentially private fair learning algorithm which will be called DP-oracle-
learner and is based on the algorithm presented in (Agarwal et al., 2018). The method developed by (Agarwal et al., 2018),
in the language of (Kearns et al., 2018) gives a reduction from finding an optimal fair classifier to finding the equilibrium of a
two-player zero-sum game played between a “Learner” who needs to solve an unconstrained learning problem (given access
to an efficient cost-sensitive classification oracle which will be described later in Assumption 3.1) and an “Auditor” who
finds fairness violations. Having the learner play its best response and the auditor play a no-regret learning algorithm (we use
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exponentiated gradient descent, or “multiplicative weights”) guarantees convergence of the average plays to the equilibrium.
Our differentially private extension achieves privacy by having the learner play its best response using the exponential
mechanism. This is the differentially private equivalent of assuming access to a perfect oracle, as is done in (Agarwal et al.,
2018; Kearns et al., 2018). In practice, the exponential mechanism would be substituted for a computationally efficient
private learner with heuristic accuracy guarantees. The auditor is made private by the Laplace mechanism where the Laplace
perturbations are added to the gradients.

We will first review the fair learning problem in section 3.1 and briefly give the reduction discussed above. The DP-oracle-
learner algorithm and its analysis come afterwards in section 3.2 where tradeoffs among accuracy, fairness, and privacy of
the learned classifier output by the DP-oracle-learner algorithm are studied. In section 3.3 we consider a scenario where
only equalized false positive rates are required and improve the tradeoffs assuming that access to the sensitive attribute A at
test time is allowed. Finally, in section 3.4, we consider the sensitivity of computing the error of the optimal classifier subject
to fairness constraints. We show that this sensitivity can be substantially higher when the classifier cannot use protected
attributes at test time, which shows that higher error must be introduced to estimate this error privately. This demonstrates an
interesting interaction between the error achievable in the equalized odds fairness constraints, and the ability to use protected
attributes explicitly in classification (i.e. requiring “disparate treatment”) which does not arise without the constraint of
differential privacy.

3.1. Fair Learning

Suppose given a class of binary classifiersH, the task is to find the optimal γ-fair classifier in ∆pHq, where ∆pHq is the set
of all randomized classifiers that can be obtained by functions inH. In our main analysis, we will not necessarily assume
that the protected attribute A is available to the classifiersH— i.e. we will allow them to be “A-blind” at test time. We will
discuss in subsection 3.3 how we can get better accuracy/fairness guarantees if we allow classifiers in H to have access
to the protected attribute A. (Agarwal et al., 2018) provided a reduction of the learning problem with only the fairness
constraint to a two-player zero-sum game and introduced an algorithm that achieves the lowest empirical error. In this
section we mainly discuss their reduction approach which forms the basis of our differentially private fair learning algorithm
that will be introduced later on in subsection 3.2. Although (Agarwal et al., 2018) considers a general form of a constraint
that captures many existing notions of fairness, in this paper, we focus on the Equalized Odds notion of fairness described in
Definition 1.1. Our techniques, however, generalize beyond this.

To begin with, the γ-fair classification task can be modeled as the constrained optimization problem 4, where

∆FPapQq :“

„

FPapQq ´ FP0pQq
FP0pQq ´ FPapQq



∆TPapQq :“

„

TPapQq ´ TP0pQq
TP0pQq ´ TPapQq



form the difference of the false and true positive rates of the classifier Q given A “ a with those of the subpopulation with
A “ 0, and err pQq is the expected error over the distribution Q onH.

err pQq “ Eh„Q rerr phqs “ Eh„Q
“

PpX,A,Y q„P rhpXq ‰ Y s
‰

Fair Learning Problem

min
Q P∆pHq

err pQq

s.t. @a P A
a‰0

: ∆FPapQq ĺ 1γ

∆TPapQq ĺ γ

(4)

1
ĺ : element-wise inequality

Once again, as the data generating distribution P is unknown, we will be dealing with the Fair Empirical Risk Minimization
(ERM) problem 5. In this empirical version, all the probabilities and expectations are taken with respect to the empirical
distribution of the data pP .
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Fair ERM Problem

min
Q P∆pHq

xerr pQq

s.t. @a P A
a‰0

: ∆xFPapQq ĺ γ

∆xTPapQq ĺ γ

(5)

Toward deriving a fair classification algorithm, the above fair ERM problem 5 will be rewritten as a two-player zero-sum
game whose equilibrium is the solution to the problem. Let prpQq P R4p|A|´1q store all 4p|A| ´ 1q constraints of 5, with γ
moved to the other side of the inequalities, in one single vector.

prpQq :“

«

∆xFPapQq ´ γ
∆xTPapQq ´ γ

ff

aPA
a‰0

“

»

—

—

—

–

xFPapQq ´xFP0pQq ´ γ
xFP0pQq ´xFPapQq ´ γ
xTPapQq ´ xTP0pQq ´ γ
xTP0pQq ´ xTPapQq ´ γ

fi

ffi

ffi

ffi

fl

aPA
a‰0

P R4p|A|´1q

For dual variable λ “
“

λpa,0,`q, λpa,0,´q, λpa,1,`q, λpa,1,´q
‰J

aPA
a‰0

P R4p|A|´1q, let

LpQ,λq “ xerr pQq ` λJprpQq

be the Lagrangian of the optimization problem. We therefore have that the Fair ERM Problem 5 is equivalent to

min
Q P∆pHq

max
λ PR4|A|

`

LpQ,λq

In order to guarantee convergence, we further constrain the `1 norm of λ to be bounded. So let Λ “ tλ P R4p|A|´1q
` :

||λ||1 ď Bu be the feasible space of the dual variable λ for some constant B. Hence, the primal and the dual problems are
as follows.

primal problem: min
Q P∆pHq

max
λ PΛ

LpQ,λq

dual problem: max
λ PΛ

min
Q P∆pHq

LpQ,λq

The above primal and dual problems can be shown to have solutions that coincide at a point pQ‹,λ‹q which is the saddle
point of L. From a game theoretic perspective, the saddle point can be viewed as an equilibrium of a zero-sum game
between a Learner (Q-player) and an Auditor (λ-player) where LpQ,λq is how much the Learner must pay to the Auditor.
Algorithm 3, developed by (Agarwal et al., 2018), proceeds iteratively according to a no-regret dynamic where in each
iteration, the Learner plays the best response (BESTh) to the given play of the Auditor and the Auditor plays exponentiated
gradient descent. The average play of both players over T rounds are then taken as the output of the algorithm, which can be
shown to converge to the saddle point pQ‹,λ‹q ((Freund & Schapire, 1996)). (Agarwal et al., 2018) shows how BESTh can
be solved efficiently having access to the cost-sensitive classification oracle forH (CSCpHq) and we have their reduction
for our Equalized Odds notion of fairness written in Subroutine 2.

Assumption 3.1 (Cost-Sensitive Classification Oracle for H). It is assumed that the proposed algorithm has access to
CSC pHq which is the cost-sensitive classification oracle forH. This oracle takes as input a set of individual-level attributes
and costs tXi, C

0
i , C

1
i u
m
i“1, and outputs arg minh PH

řm
i“1 hpXiqC

1
i ` p1´ hpXiqqC

0
i . In practice, these oracles are

implemented using learning heuristics.

Note that the Learner finds arg minQP∆pHq LpQ,λq for a given λ of the Auditor and since the Lagrangian L is linear in
Q, the minimizer of LpQ,λq can be chosen to put all the probability mass on a single classifier h P H. Additionally, our
reduction in Subroutine 2 looks different from the one derived in Example 4 of (Agarwal et al., 2018) since we have our
Equalized Odds fairness constraints formulated a bit differently from how it is formulated in (Agarwal et al., 2018).
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Subroutine 2 BESTh
Input: λ, training examples tpXi, Ai, Yiqu

m
i“1

for i “ 1 to m do
C0
i Ð 1tYi ‰ 0u

C1
i Ð 1tYi ‰ 1u `

λpAi,Yi,`q
´λpAi,Yi,´q

q̂AiYi
1tAi ‰ 0u ´

ř

aPA
a‰0

λpa,Yi,`q
´λpa,Yi,´q

q̂AiYi
1tAi “ 0u

end for
Call CSC pHq to find h‹ “ arg min

hPH

řm
i“1 hpXiqC

1
i ` p1´ hpXiqqC

0
i

Output: h‹

Algorithm 3 exp. gradient reduction for fair classification (Agarwal et al., 2018)

Input: fairness violation γ, bound B, learning rate η, number of rounds T , training examples tpXi, Ai, Yiqu
m
i“1

θ1 Ð 0 P R4p|A|´1q

for t “ 1 to T do
λt,k Ð B

exppθt,kq
1`

ř

k1 exppθt,k1 q
for 1 ď k ď 4p|A| ´ 1q

ht Ð BESThpλtq
θt`1 Ð θt ` η prtphtq

end for
pQÐ 1

T

řT
t“1 ht, pλÐ 1

T

řT
t“1 λt

Output: p pQ, pλq

(Agarwal et al., 2018) shows for any ν ą 0, and for appropriately chosen η and T , Algorithm 3 under Assumption 3.1
returns a pair p pQ, pλq for which

Lp pQ, pλq ď LpQ, pλq ` ν for all Q P ∆pHq

Lp pQ, pλq ě Lp pQ,λq ´ ν for all λ P Λ

that corresponds to a ν-approximate equilibrium of the game and it implies neither player can gain more than ν by changing
their strategy (see Theorem 1 of (Agarwal et al., 2018)). They further show that any ν-approximate equilibrium of the game
achieves an error close to the best error one would hope to get and the amount by which it violates the fairness constraints is
reasonably small (see Theorem 2 of (Agarwal et al., 2018)).

3.2. A Differentially Private Algorithm: Design and Analysis

We are now going to introduce a differentially private fair classification algorithm to solve the Fair ERM Problem 5 which
can be seen as an extension of Algorithm 3 to also guarantee privacy of the protected attribute A. In this differentially private
version, the Learner and the Auditor are made private in each iteration of the algorithm by the exponential and Laplace
mechanisms respectively. Particularly, in the t-th iteration of the algorithm,

• the private Auditor (λ-player) perturbs the prtphtq of Algorithm 3 with appropriately calibrated Laplace noise to ensure
ε1-differential privacy of A for some value of ε1 specified later on;

• and the private Learner (Q-player) plays its best response arg minhPH t`tphq :“ Lph,λtqu to a given λt using a
subroutine BESTε

1

h which is made ε1-DP by the exponential mechanism.

We assume in this subsection that the VC dimension ofH (“ dH) is finite, in which case the set of strategies for the Learner
reduces to ∆pHpSqq, where HpSq is the set of all possible labellings induced on S :“ tXiu

m
i“1 by H. In other words,

HpSq “ tphpX1q, . . . , hpXmqq|h P Hu and recall that |HpSq| ď OpmdHq by Sauer’s Lemma. Note that since the privacy
of the protected attribute A is required, we need A to be excluded from the domain of functions inH and accordingly, from
S. Because otherwise there might be some privacy loss of A through usingHpSq as the range of the exponential mechanism
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Subroutine 4 BESTε
1

h

Input: λ, training examples tpXi, Ai, Yiqu
m
i“1, privacy guarantee ε1

for i “ 1, . . . ,m do
C0
i Ð 1tYi ‰ 0u

C1
i Ð 1tYi ‰ 1u `

λpAi,Yi,`q
´λpAi,Yi,´q

q̂AiYi
1tAi ‰ 0u ´

ř

aPA
a‰0

λpa,Yi,`q
´λpa,Yi,´q

q̂AiYi
1tAi “ 0u

end for
Call CSCε1pHq with tXi, C

0
i , C

1
i u
m
i“1 to get h‹.

Output: h‹

for the private Learner. This assumption is of course not necessary if one is willing to instead assume |H| ă 8. We will
have a discussion later where we state our guarantees assuming |H| ă 8 instead of dH ă 8.

Assumption 3.2. The VC dimension ofH is finite: dH “ V CDpHq ă 8.

The best response of the private Learner BESTε
1

h can be reduced to a call to an ε1-DP cost-sensitive classification oracle for
H, which is denoted by CSCε1pHq and runs the exponential mechanism over HpSq as discused before. We have BESTε

1

h

written in Subroutine 4.

Having done so and letting the per-iteration privacy cost of each player be ε1 “ ε{p4
a

T lnp1{δqq, one can guarantee
pε, δq-differential privacy of the algorithm which is run in T iterations by the Advanced Composition Theorem 1.5. Since
the magnitude of the noise introduced by the mechanisms of the private players depends on the sensitivity of the functions
being perturbed as well, in the following lemma, we derive these sensitivities. All the proofs of this subsection can be found
in Appendix B.

Assumption 3.3. We assume throughout this section that mina,ytq̂ayu ą 1{m.

Lemma 3.1 (Sensitivity of the Private Players to A). Let ∆prt and ∆`t be the sensitivity of prt (of the Auditor) and `t (of the
Learner) respectively. We have that for all t P rT s,

∆prt “ max
A,A1PAm

A„A1

||prtpAq ´ prtpA
1q||1 ď

2|A|
mina,ytq̂ayum´ 1

∆`t “ max
hPH

max
A,A1PAm

A„A1

|`tph;Aq ´ `tph;A1q| ď
2|A|B ` 1

mina,ytq̂ayum´ 1

Having specified the sensitivities of the functions associated with the private players, we are now ready to introduce
DP-oracle-learner (Algorithm 5) which is an pε, δq-differentially private algorithm for fair classification. This algorithm,
as discussed before, proceeds iteratively and in each iteration one of the players plays private exponentiated gradient descent
and the other plays its best response using a private cost-sensitive classification oracle. The analysis of the algorithm will
depend on the accuracy of the private players actions which is the subject of Lemma 3.2.

Lemma 3.2 (Accuracy of the Private Players). At round t of Algorithm 5, let prt “ rrt ´W t be the noiseless version of rrt
and h‹t be the classifier given by the noiseless subroutine BESThprλtq. We have that

w.p. ě 1´ β{2T, ||rrt ´ prt||8 ď
8|A|

a

T lnp1{δq ln p8T |A|{βq
pmina,ytq̂ayum´ 1q ¨ ε

w.p. ě 1´ β{2T, Lprht, rλtq ď Lph‹t ,
rλtq `

8 p2|A|B ` 1q
a

T ln p1{δq pdH ln pmq ` ln p2T {βqq

pmina,ytq̂ayum´ 1q ¨ ε
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Algorithm 5 pε, δq-differentially private fair classification: DP-oracle-learner
Input: privacy parameters ε, δ, bound B, VC dimension dH, confidence parameter β, fairness violation γ, training
examples tpXi, Ai, Yiqu

m
i“1

T Ð
B
a

ln p4|A| ´ 3qmε

2 p2|A|B ` 1q
a

ln p1{δq pdH ln pmq ` ln p2{βqq

η Ð
1

2

c

ln p4|A| ´ 3q

T

rθ1 Ð 0 P R4p|A|´1q

for t “ 1, . . . , T do
rλt,k Ð B

expprθt,kq

1`
ř

k1 expprθt,k1 q
for 1 ď k ď 4p|A| ´ 1q

rht Ð BESTε
1

h p
rλtq with ε1 “ ε{p4

a

T lnp1{δqq

SampleW t P R4p|A|´1q where Wt,k
i.i.d.
„ Lapp 8|A|

?
T lnp1{δq

pmina,ytq̂ayum´1q¨ε q

rrt Ð prtprhtq `W t

rθt`1 Ð rθt ` ηrrt
end for
rQÐ 1

T

řT
t“1

rht, rλÐ 1
T

řT
t“1

rλt

Output: p rQ, rλq

The next part of the analysis of Algorithm 5 is to compute the regret of the private players over T rounds using their
per-iteration accuracy stated in Lemma 3.2. These regret bounds which are derived in Lemma 3.3 and 3.4 will be used in
Theorem 3.5 to show that the output p rQ, rλq of Algorithm 5 is a ν-approximate solution of the game, for some value of ν
which is specified in the theorem.

Lemma 3.3 (Regret of the Private Learner). Suppose trhtuTt“1 is the sequence of best responses to trλtuTt“1 by the private
Q-player over T rounds. We have that with probability at least 1´ β{2,

1

T

T
ÿ

t“1

Lprht, rλtq ´
1

T
min

QP∆pHq

T
ÿ

t“1

LpQ, rλtq ď
8 p2|A|B ` 1q

a

T ln p1{δq pdH ln pmq ` ln p2T {βqq

pmina,ytq̂ayum´ 1q ¨ ε

Lemma 3.4 (Regret of the Private Auditor). Let trλtuTt“1 be the sequence of exponentiated gradient descent plays by the
private λ-player to given trhtuTt“1 of the private λ-player over T rounds. We have that with probability at least 1´ β{2,

1

T
max
λPΛ

T
ÿ

t“1

Lprht,λq ´
1

T

T
ÿ

t“1

Lprht, rλtq ď
B lnp4|A| ´ 3q

ηT
` 4ηB

˜

1`
4|A|

a

T lnp1{δq lnp8T |A|{βq
pmina,ytq̂ayum´ 1q ¨ ε

¸2

Theorem 3.5. Let assumptions 3.2, and 3.3 hold. Let p rQ, rλq be the output of Algorithm 5. We have that with probability at
least 1´ β, p rQ, rλq is a ν-approximate solution of the game, i.e.,

Lp rQ, rλq ď LpQ, rλq ` ν for all Q P ∆pHq

Lp rQ, rλq ě Lp rQ,λq ´ ν for all λ P Λ

and that

ν “ rO

¨

˝

B

mina,ytq̂ayu

d

|A|
a

ln p1{δq pdH lnpmq ` ln p1{βqq

mε

˛

‚

where we hide further logarithmic dependence on m, ε, and |A| under the rO notation.
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We are now ready to conclude the DP-oracle-learner algorithm’s analysis with the main theorem of this subsection that
provides high probability bounds on the accuracy and fairness violation of the output rQ of Algorithm 5. These bounds
can be viewed as revealing the inherent tradeoff between privacy of the algorithm and accuracy or fairness of the output
classifier where a stronger privacy guarantee (i.e. smaller ε and δ) will lead to weaker accuracy and fairness guarantees.

Theorem 3.6 (Error-Privacy, Fairness-Privacy Tradeoffs). Let p rQ, rλq be the output of Algorithm 5 and let Q‹ be the solution
to the Fair ERM problem 5. Under assumptions 3.2, and 3.3, we have that with probability at least 1´ β,

xerr p rQq ď xerr pQ‹q ` 2ν

and for all a ‰ 0,

∆xFPap rQq ĺ γ `
1` 2ν

B

∆xTPap rQq ĺ γ `
1` 2ν

B

where

ν “ rO

¨

˝

B

mina,ytq̂ayu

d

|A|
a

lnp1{δq pdH lnpmq ` lnp1{βqq

mε

˛

‚

Proof. The results follow from Theorem 3.5 stated above, Lemma B.1, and Lemma B.2 which are both stated in the
Appendix.

Remark 3.1. Notice the bounds stated above reveal a tradeoff between accuracy and fairness violation that we may control
through the parameter B. As B gets increased, the upper bound on error will get looser while the one on fairness violation
gets tighter. We will consider a setting in the next subsection where we can remove this extra tradeoff and choose B as small
as possible — at the cost of requiring that the classifiers be able to use protected attributes at test time.

Recall that we assumed so far throughout this subsection that dH ă 8 and reducedH to the set of induced labelingsHpSq
and deployed Sauer’s Lemma to argue that this set has size at most OpmdHq. This set of finite labelingsHpSq was then used
as the range of the exponential mechanism for the private Learner. Accordingly, while our algorithm guarantees the privacy
of the sensitive attribute A, it doesn’t guarantee the privacy of the unprotected attributes S “ tXiu

m
i“1. We could instead

assume |H| ă 8 and state all our bounds in terms of lnpHq, and as there is no reduction of H to HpSq in this case, our
algorithm does guarantee the privacy of X , as well as A (this corresponds to the third row of the table in the introduction).
All we have to modify in Algorithm 5 is to use lnpHq instead of dH lnpmq for computing the number of iterations T , and
this change will propagate all the way to the bounds for accuracy and fairness.

Theorem 3.7 (Error-Privacy, Fairness-Privacy Tradeoffs). Under assumptions 3.3 and |H| ă 8, let p rQ, rλq be the output of
Algorithm 5 that runs for

T “
B
a

lnp4|A| ´ 3qmε

2 p2|A|B ` 1q
a

ln p1{δq pln p|H|q ` ln p2{βqq

iterations, and let Q‹ be the solution to the Fair ERM problem 5. We have that with probability at least 1´ β,

xerr p rQq ď xerr pQ‹q ` 2ν

and for all a ‰ 0,

∆xFPap rQq ĺ γ `
1` 2ν

B

∆xTPap rQq ĺ γ `
1` 2ν

B

where

ν “ rO

¨

˝

B

mina,ytq̂ayu

d

|A|
a

ln p1{δq pln p|H|{βqq
mε

˛

‚
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3.3. An Extension: Better Tradeoffs for A-aware Classification

In this subsection we show that if we only ask for equalized false positive rates (instead of equalized odds, which also
requires that we equalize true positive rates), and moreover, if we assume the sensitive attribute A is available to the
classifiers inH at classification time, the fairness violation guarantees given in Theorems 3.6 and 3.7 can be improved. As a
consequence, the tradeoff discussed in Remark 3.1 will be no longer an issue. Thus, in this subsection, we are interested in
solving the Fair ERM Problem 6 which now has 2p|A| ´ 1q constraints.

Fair ERM Problem

min
Q P∆pHq

xerr pQq

s.t. @a P A
a‰0

: ∆xFPapQq ĺ γ
(6)

In particular, we will assume all maximally discriminatory classifiers (i.e. group indicator functions hapX,Aq “ 1A“a and
h̄apX,Aq “ 1´ hapX,Aq for all a P A) are included inH, and will show that the existence of these classifiers helps one
to get a tighter bound on fairness violation. Note that since A is now included in the set of input features for classification,
due to the desired privacy of A, one must not use the induced labellingsHpSq as the range of the exponential mechanism
of the private Learner since there might be some privacy loss of the sensitive attribute A which is now included in the set
S “ tXi, Aiu

m
i“1. We will instead have to assume that |H| ă 8 in order to be able to use the exponential mechanism for

the private Learner.

Assumption 3.4. Assume |H| ă 8, and thatH includes all group indicator functions: thapX,Aq “ 1A“a, h̄apX,Aq “
1´ hapX,Aq |a P Au Ď H.

It is straightforward to see that our algorithm must now depend on lnp|H|q instead of dH lnpmq, and accordingly, the
dH lnpmq appearing in the number of iterations T of Algorithm 5 and any other dH lnpmq terms appearing in the bounds
stated in the previous section must now be replaced by lnp|H|q. We state and prove the improved bound on fairness violation
in the following theorem.

Theorem 3.8 (Error-Privacy, Fairness-Privacy Tradeoffs). Let p rQ, rλq be the output of Algorithm 5 that runs for

T “
B
a

lnp4|A| ´ 3qmε

2 p2|A|B ` 1q
a

ln p1{δq pln p|H|q ` lnp2{βqq

iterations, and let Q‹ be the solution to the Fair ERM problem 6. Under assumptions 3.3, 3.4, and B ą |A| ´ 1, we have
that with probability at least 1´ β,

xerr p rQq ď xerr pQ‹q ` 2ν

and for all a ‰ 0,

∆xFPap rQq ĺ γ `
2ν

B ´ p|A| ´ 1q

where

ν “ rO

¨

˝

B

mina,ytq̂ayu

d

|A|
a

ln p1{δq ln p|H|{βq
mε

˛

‚

Proof of Theorem 3.8. The stated bound on xerr p rQq follows from Lemma B.1. Let’s now prove the bound on fairness
violation. Let, for all a P A, βa :“ pxFP0p rQq ´xFPap rQq ´ γq` and β̄a :“ pxFPap rQq ´xFP0p rQq ´ γq`. Notice at most one of
βa and β̄a can be positive.

We are going to construct some deviating strategies: Q and λ. As shown in the previous subsection, we know p rQ, rλq is a
ν-approximate equilibrium of the zero-sum game. It implies

Lp rQ,λq ´ ν ď Lp rQ, rλq ď LpQ, rλq ` ν.



Differentially Private Fair Learning

Define Q “ 1
1`

ř

aPApβa`β̄aq
p rQ`

ř

a βaha ` β̂aĥaq. It is easy to see that, for all a P A,

∆xFPapQq ĺ γ.

Then we have

LpQ, rλq ` ν

ďxerr pQq ` ν

ďxerr

˜

1

1`
ř

aPApβa ` β̄aq
p rQ`

ÿ

a

βaha ` β̂aĥaq

¸

` ν

ď
1

1`
ř

aPApβa ` β̄aq
xerr p rQq `

ř

aPApβa ` β̄aq

1`
ř

aPApβa ` β̄aq
` ν

ďxerr p rQq `
ÿ

aPA
pβa ` β̄aq ` ν

ďxerr p rQq ` p|A| ´ 1q ¨ pmax
aPA

|xFPap rQq ´xFP0p rQq| ´ γq` ` ν.

Define λ to have B in the coordinate which corresponds to arg maxaPA |xFPap rQq ´xFP0p rQq| and 0 in other coordinates.
Then we have

Lp rQ,λq ´ ν “ xerr p rQq `Bpmax
aPA

|xFPap rQq ´xFP0p rQq| ´ γq ´ ν

To sum up, we get

xerr p rQq `Bpmax
aPA

|xFPap rQq ´xFP0p rQq| ´ γq ´ ν ď xerr p rQq ` p|A| ´ 1q ¨ pmax
aPA

|xFPap rQq ´xFP0p rQq| ´ γq` ` ν.

This implies

max
a PA

|xFPap rQq ´xFP0p rQq| ď γ `
2ν

B ´ p|A| ´ 1q
.

which completes the proof.

As an immediate consequence of Theorem 3.8, we have the following Corollary where B “ |A| can be chosen to get bounds
which are now free of B.

Corollary 3.8.1. Under assumptions stated in Theorem 3.8, one can let B “ |A|, in which case with probability at least
1´ β,

xerr p rQq ď xerr pQ‹q ` 2ν

and for all a ‰ 0,

∆xFPap rQq ĺ γ ` 2ν

where

ν “ rO

¨

˝

|A|
mina,ytq̂ayu

d

|A|
a

lnp1{δq lnp|H|{βq
mε

˛

‚

3.4. A Separation: A-blind vs. A-aware Classification

In this subsection we show that the sensitivity of the accuracy of the optimal classifier subject to fairness constraints can
be substantially higher if it is prohibited from using sensitive attributes at test time. This implies that higher error must be
introduced when estimating this accuracy subject to differential privacy. This shows a fundamental tension between the
goals of trading off privacy and approximate equalized odds, with the goal of preventing disparate treatment. Given a data



Differentially Private Fair Learning

set D of m individuals, define fpDq to be the optimal error rate in the Fair ERM problem 6 which is constrained to have a
false positive rate differential of at most γ.

Consider the following problem instance. Let X be the unprotected attribute taking value in X “ tU, V u, and let A be the
protected attribute taking value in A “ tR,Bu. SupposeH consists of two classifiers h0 and hU where h0pX,Aq “ 0 and
hU pX,Aq “ 1X“U . Notice that both h0 and hU depend only on the unprotected attribute. Consider two other classifiers
hR and hB that depend on the protected attribute: hRpX,Aq “ 1A“R and hBpX,Aq “ 1A“B .

Theorem 3.9. Consider γ ą 1{m and data sets with mina q̂a0 ě C for some constant C ą 0. If H “ th0, hUu, the
sensitivity of f is Ωp1{pγmqq. If the “maximally discriminatory” classifier hR and hB are included in H as well, i.e.
H “ th0, hU , hR, hBu, the sensitivity of f is Op1{mq.

Proof. First consider the case whereH “ th0, hUu. Choose data set D of size m as follows: m{2 individuals with pA “
R,X “ V, Y “ 0q; m{4 individuals with pA “ B,X “ U, Y “ 1q, mp1´γq{4 individuals with pA “ B,X “ V, Y “ 0q
and mγ{4 individuals with pA “ B,X “ U, Y “ 0q. For this data set, it is easy to check that hU has error γ{4 and hU
satisfies the fairness constraint. So fpDq ď γ{4. Now consider D’s neighboring data set D1 by changing one individual
with pA “ B,X “ V, Y “ 0q to pA “ B,X “ U, Y “ 0q. For D1, the classifier which satisfies the fairness constraint and
has the minimum error rate is 1

4`γm p4h0 ` γmhU q. Therefore

fpD1q “
1

4` γm

ˆ

4 ¨
1

4
` γm ¨

mγ{4` 1

m

˙

“
γ

4
`

1

4` γm
.

implying that |fpDq ´ fpD1q| “ Ωp1{pγmqq and the sensitivity of f is Ωp1{pγmqq.

Now consider the case whereH “ th0, hU , hR, hBu. It suffices to show that fpD1q ď fpDq`Op1{mq for any neighboring
data sets D and D1. Let Q˚ be the classifier with minimum error rate on data set D. We have fpDq “ xerr pQ˚, Dq and we
know |xFPRpQ˚, Dq ´xFPBpQ˚, Dq| ď γ (we put D into the arguments of xerr and xFP as we are talking about two different
data sets). For data set D1, there are two cases.

• The case when |xFPRpQ˚, D1q ´xFPBpQ˚, D1q| ď γ: In this case, we have

fpD1q ď xerr pQ˚, D1q ď xerr pQ˚, Dq ` 1{m “ fpDq ` 1{m.

• The case when |xFPRpQ˚, D1q ´xFPBpQ˚, D1q| ą γ: Wlog let’s assume xFPRpQ˚, D1q ´xFPBpQ˚, D1q ą γ. And let
α “ xFPRpQ˚, D1q ´xFPBpQ˚, D1q ´ γ. We know α ą 0 and we also have

α “ xFPRpQ˚, D1q ´xFPBpQ˚, D1q ´ γ ď xFPRpQ˚, Dq ´xFPBpQ˚, Dq ´ γ ` 2{pCmq ď 2{pCmq.

Now define Q1 “ 1
1`γ`α pp1` γqQ

˚ ` αhBq. We have

xFPRpQ1, D1q ´xFPBpQ1, D1q “
1

1` γ ` α

´

p1` γqpxFPRpQ˚, D1q ´xFPBpQ˚, D1qq ´ α
¯

“ γ.

Therefore

fpD1q ď xerr pQ1, D1q

ď
1

1` γ ` α

`

p1` γqxerr pQ˚, D1q ` αxerr phB , D1q
˘

ď fpDq ` 1{m` α

ď fpDq `Op1{mq
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Appendix

A. Proof of Theorem 2.2

The proof of Theorem 2.2 relies on some facts which are stated in Lemma A.1.

Lemma A.1. Suppose mina,ytq̂ayu ą 4 ln p4|A|{βq { pmεq. we have that with probability at least 1´ β,

1.
ˇ

ˇ

ˇ
Ăerr

´

pYp

¯

´ xerr
´

pYp

¯
ˇ

ˇ

ˇ
ď

12|A| lnp4|A|{βq
mε ;@ p.

2. q̃ay ą 0 ;@ a, y.

3.
ˇ

ˇ

ˇ

ĂFPa
´

pY
¯

´ xFPa
´

pY
¯
ˇ

ˇ

ˇ
ď

2 lnp4|A|{βq
q̃a0mε

,
ˇ

ˇ

ˇ

ĂTPa
´

pY
¯

´ xTPa
´

pY
¯
ˇ

ˇ

ˇ
ď

2 lnp4|A|{βq
q̃a1mε

;@ a.

4.
ˇ

ˇ

ˇ
∆ĂFPa

´

pYp

¯

´∆xFPa
´

pYp

¯
ˇ

ˇ

ˇ
ď

4 lnp4|A|{βq
mintq̃a0,q̃00umε

,
ˇ

ˇ

ˇ
∆ĂTPa

´

pYp

¯

´∆xTPa
´

pYp

¯
ˇ

ˇ

ˇ
ď

4 lnp4|A|{βq
mintq̃a1,q̃01umε

;@ a, p.

5. p̂‹, the optimal solution of xLP (2), is feasible in ĂLP (3).

Proof of Lemma A.1. By Lemma 2.1 and Theorem 1.1, we have that with probability at least 1 ´ β, ||q̂ ´ q̃||8 ď

ln p4|A|{βq ¨ p2{mεq. Hence with probability ě 1´ β,

1. @ p,
ˇ

ˇ

ˇ
Ăerr ppYpq ´xerr ppYpq

ˇ

ˇ

ˇ
ď

ÿ

ŷ,a,y

|q̃ŷay ´ q̂ŷay| `
ÿ

ŷ,a

|q̃ŷa1 ´ q̂ŷa1| ď
12|A| lnp4|A|{βq

mε
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2. For all a, y,

|q̃ay ´ q̂ay| “ |q̃1ay ` q̃0ay ´ q̂1ay ´ q̂0ay|

ď |q̃1ay ´ q̂1ay| ` |q̃0ay ´ q̂0ay|

ď
4 lnp4|A|{βq

mε

But by the stated assumption, q̂ay ą
4 lnp4|A|{βq

mε implying that q̃ay ą 0.

3. @ a,

ˇ

ˇ

ˇ

ĂFPappY q ´xFPappY q
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

q̃1a0

q̃1a0 ` q̃0a0
´

q̂1a0

q̂1a0 ` q̂0a0

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

q̃1a0 q̂0a0 ´ q̂1a0 q̃0a0

pq̃1a0 ` q̃0a0qpq̂1a0 ` q̂0a0q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

q̂0a0pq̃1a0 ´ q̂1a0q ´ q̂1a0pq̃0a0 ´ q̂0a0q

pq̃1a0 ` q̃0a0qpq̂1a0 ` q̂0a0q

ˇ

ˇ

ˇ

ˇ

ď
2 lnp4|A|{βq
|q̃a0|mε

“
2 lnp4|A|{βq
q̃a0mε

pby Part 2 of this Lemmaq

And similarly,
ˇ

ˇ

ˇ

ĂTPappY q ´ xTPappY q
ˇ

ˇ

ˇ
ď

2 lnp4|A|{βq
q̃a1mε

4. Observe that @ a, p,
ˇ

ˇ

ˇ
∆ĂFPappYpq ´∆xFPappYpq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ĂFPappY q ¨ p1a ` p1´ĂFPappY qq ¨ p0a ´ĂFP0ppY q ¨ p10 ´ p1´ĂFP0ppY qq ¨ p00

´xFPappY q ¨ p1a ´ p1´xFPappY qq ¨ p0a `xFP0ppY q ¨ p10 ` p1´xFP0ppY qq ¨ p00

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ĂFPappY q ´xFPappY q
ˇ

ˇ

ˇ
¨ |p1a ´ p0a| `

ˇ

ˇ

ˇ

ĂFP0ppY q ´xFP0ppY q
ˇ

ˇ

ˇ
¨ |p10 ´ p0|

ď
4 lnp4|A|{βq

mintq̃a0, q̃00umε
(by part 3 of this Lemma)

A similar argument holds for
ˇ

ˇ

ˇ
∆ĂTPappYpq ´∆xTPappYpq

ˇ

ˇ

ˇ
ď

4 lnp4|A|{βq
mintq̃a1,q̃01umε

.

5. We will show that pp‹ satisfies the first constraint of ĂLP (3) for all a P A. Satisfying the second constraint can be
similarly shown and the third is trivial. We have that

ˇ

ˇ

ˇ
∆ĂFPappYpp‹q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
∆ĂFPappYpp‹q ´∆xFPappYpp‹q `∆xFPappYpp‹q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
∆xFPappYpp‹q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
∆ĂFPappYpp‹q ´∆xFPappYpp‹q

ˇ

ˇ

ˇ

ď γ `
4 lnp4|A|{βq

mintq̃a0, q̃00umε

by part 4 of this Lemma and the fact that
ˇ

ˇ

ˇ
∆xFPappYpp‹q

ˇ

ˇ

ˇ
ď γ (see xLP (2)).
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Proof of Theorem 2.2. Following Lemma A.1, with probability at least 1´ β

xerr ppY
rp‹q ď Ăerr ppY

rp‹q `
12|A| lnp4|A|{βq

mε
(part 1 of Lemma A.1)

ď Ăerr ppY
pp‹q `

12|A| lnp4|A|{βq
mε

(part 5 of Lemma A.1)

ď xerr ppY
pp‹q `

24|A| lnp4|A|{βq
mε

(part 1 of Lemma A.1)

Also, for all a ‰ 0,

∆xFPa ppYrp‹q ď ∆ĂFPappYrp‹q `
4 lnp4|A|{βq

mintq̃a0, q̃00umε
(part 4 of Lemma A.1)

ď γ `
8 lnp4|A|{βq

mintq̃a0, q̃00umε
(see ĂLP (3))

ď γ `
8 lnp4|A|{βq

mintq̂a0, q̂00umε´ 4 lnp4|A|{βq
The last inequality follows from the fact that |q̃ay ´ q̂ay| ď 4 lnp4|A|{βq{mε for all a, y. It follows similarly that,

∆xTPa ppYrp‹q ď γ `
8 lnp4|A|{βq

mintq̂a1, q̂01umε´ 4 lnp4|A|{βq

B. Missing Proofs of Section 3
Proof of Lemma 3.1. Recall that at round t, the private λ-player is given some ht P H and wants to calculate

prtphtq “

»

—

—

—

–

xFPaphtq ´xFP0phtq ´ γ
xFP0phtq ´xFPaphtq ´ γ
xTPaphtq ´ xTP0phtq ´ γ
xTP0phtq ´ xTPaphtq ´ γ

fi

ffi

ffi

ffi

fl

aPA
a‰0

P R4p|A|´1q

privately, where for all a P A, we have that

xFPaphtq “
q̂1a0

q̂a0
“

q̂1a0

q̂1a0 ` q̂0a0

xTPaphtq “
q̂1a1

q̂a1
“

q̂1a1

q̂1a1 ` q̂0a1

Having modified one of the records in A P Am, say Aj “ a is changed to A1j “ a1 for some j P rms, q̂ŷjayj will then
decrease by 1{m and q̂ŷ1a1yj will increase by 1{m where ŷ1 may or may not be equal to ŷj . Thus, depending on the value of
yj , it is then the case that

• if yj “ 0: xFPaphtq and xFPa1phtq will change by at most 1{ pmina,ytq̂ayum´ 1q.

• if yj “ 1: xTPaphtq and xTPa1phtq will change by at most 1{ pmina,ytq̂ayum´ 1q.

Note that 1{ pmina,ytq̂ayum´ 1q is a valid bound by Assumption 3.3. Therefore, since each xFPa (xTPa) appears twice in
prtphtq if a ‰ 0 and 2p|A| ´ 1q times if a “ 0, we have that

∆prt ď
2|A|

mina,ytq̂ayum´ 1

Let’s move on to the sensitivity of `t of the private Q-player. Recall that at round t, the Q-player is given some λt P Λ and
wants to find arg minhPH `tphq ” Lph,λtq “ xerr phq ` λJt prtphq privately. It is then obvious that since ||λt||1 ď B,

∆`t ď
1

m
`

2|A|B
mina,ytq̂ayum´ 1

ď
2|A|B ` 1

mina,ytq̂ayum´ 1
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Proof of Lemma 3.2. Results follow from Lemma 3.1, Theorem 1.1 and Theorem 1.2 of this paper. Recall that |HpSq| ď
OpmdHq by Sauer’s Lemma.

Proof of Lemma 3.3. This result follows directly from the accuracy of the private Q-player given in Lemma 3.2.

Proof of Lemma 3.4. We follow the proof given for Theorem 1 of (Agarwal et al., 2018) and modify where necessary. Let
Λ1 “ tλ1 P R4|A|´3

` : ||λ1||1 “ Bu. Any λ P Λ is associated with a λ1 P Λ1 which is equal to λ on the first 4p|A| ´ 1q

coordinates and has the remaining mass on the last one. Let rr1t P R4|A|´3 be equal to rrt on the first 4p|A| ´ 1q coordinates
and zero in the last one. We have that for any λ and its associated λ1, and particularly rλt and rλ

1

t of Algorithm 5, and all t

λJ rrt “ pλ
1
qJ rr1t , rλ

J

t rrt “ prλ
1

tq
J
rr1t (7)

Observe that with probability at least 1´ β{2T , ||rr1t||8 “ ||rrt||8 ď 2`
8|A|
?
T lnp1{δq lnp8T |A|{βq

pmina,ytq̂ayum´1q¨ε (see Lemma 3.2). Thus,
by Corollary 2.14 of (Shalev-Shwartz, 2012), we have that with probability at least 1´ β{2, for any λ1 P Λ1,

T
ÿ

t“1

pλ1qJ rr1t ď
T
ÿ

t“1

prλ
1

tq
J
rr1t `

B lnp4|A| ´ 3q

η
` 4ηB

˜

1`
4|A|

a

T lnp1{δq lnp8T |A|{βq
pmina,ytq̂ayum´ 1q ¨ ε

¸2

T

Consequently, by Equation 7, we have that with probability at least 1´ β{2, for any λ P Λ,

T
ÿ

t“1

λJ rrt ď
T
ÿ

t“1

rλ
J

t rrt `
B lnp4|A| ´ 3q

η
` 4ηB

˜

1`
4|A|

a

T lnp1{δq lnp8T |A|{βq
pmina,ytq̂ayum´ 1q ¨ ε

¸2

T (8)

which completes the proof.

Proof of Theorem 3.5. Let

RQ :“
8p2|A|B ` 1q

a

T lnp1{δq pdH lnpmq ` lnp2T {βqq

pmina,ytq̂ayum´ 1q ¨ ε

and

Rλ :“
B lnp4|A| ´ 3q

ηT
` 4ηB

˜

1`
4|A|

a

T lnp1{δq lnp8T |A|{βq
pmina,ytq̂ayum´ 1q ¨ ε

¸2

be the regret bounds of the private Q and λ players respectively, and let ν :“ RQ`Rλ. We have that for any Q P ∆pHpSqq,
with probability at least 1´ β,

LpQ, rλq “
1

T

T
ÿ

t“1

LpQ, rλtq (by linearity of Lq

ě
1

T

T
ÿ

t“1

Lprht, rλtq ´RQ pby Lemma 3.3q

ě
1

T

T
ÿ

t“1

Lprht, rλq ´Rλ ´RQ pby Lemma 3.4q

“ Lp rQ, rλq ´ ν
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Now for any λ P Λ, with probability at least 1´ β,

Lp rQ,λq “
1

T

T
ÿ

t“1

Lprht,λq (by linearity of Lq

ď
1

T

T
ÿ

t“1

Lprht, rλtq `Rλ pby Lemma 3.4q

ď
1

T

T
ÿ

t“1

Lp rQ, rλtq `Rλ `RQ pby Lemma 3.3q

“ Lp rQ, rλq ` ν

Therefore, with probability at least 1´ β,

Lp rQ, rλq ď LpQ, rλq ` ν for all Q P ∆pHpSqq

Lp rQ, rλq ě Lp rQ,λq ´ ν for all λ P Λ

and that

ν “
B lnp4|A| ´ 3q

ηT
` 4ηB

˜

1`
4|A|

a

T lnp1{δq lnp8T |A|{βq
pmina,ytq̂ayum´ 1q ¨ ε

¸2

`
8p2|A|B ` 1q

a

T lnp1{δq pdH lnpmq ` lnp2T {βqq

pmina,ytq̂ayum´ 1q ¨ ε

Plugging in the proposed values of T and η in Algorithm 5 results in

ν “ rO

¨

˝

B

mina,ytq̂ayu

d

|A|
a

lnp1{δq pdH lnpmq ` lnp1{βqq

mε

˛

‚

where we hide further logarithmic dependence on m, ε, and |A| under the rO notation.

The following two lemmas are taken from (Agarwal et al., 2018) and are used in the proof of Theorem 3.6 and Theorem 3.8.

Lemma B.1 (Empirical Error Bound (Agarwal et al., 2018)). Let p rQ, rλq be any ν-approximate solution of the game
described in section 3,i.e.,

Lp rQ, rλq ď LpQ, rλq ` ν for all Q P ∆pHq

Lp rQ, rλq ě Lp rQ,λq ´ ν for all λ P Λ

For any Q satisfying the fairness constraints of the fair ERM problem, we have that

xerr p rQq ď xerr pQq ` 2ν

Lemma B.2 (Empirical Fairness Violation (Agarwal et al., 2018)). Let p rQ, rλq be any ν-approximate solution of the game
described in section 3, i.e.,

Lp rQ, rλq ď LpQ, rλq ` ν for all Q P ∆pHq

Lp rQ, rλq ě Lp rQ,λq ´ ν for all λ P Λ

and suppose the fairness constraints of the fair ERM problem are feasible. Then the distribution rQ satisfies

max
a PA

ˇ

ˇ

ˇ

xFPap rQq ´ xFP0

´

rQ
¯ˇ

ˇ

ˇ
ď γ `

1` 2ν

B

max
a PA

ˇ

ˇ

ˇ

xTPap rQq ´ xTP0

´

rQ
¯
ˇ

ˇ

ˇ
ď γ `

1` 2ν

B


