
Appendix

1 Differences between DRLM and ∂ILP

There are 2 major differences between DRLM and ∂ILP. First, each deduction
step of ∂ILP outputs the probabilistic sum of the valuation generated in this
step and the valuation in last step, which makes definitions that require less
steps of deduction repeatedly affect final outputs, namely, the result valuation.
In RL tasks, this give the agent strong incentive to use simpler strategies with
less logic chaining and therefore easier be trapped in local optima. We instead
make the agent treat valuation produced by last step deduction only as input.
The output of each step is simply the sum of deduced valuation and the initial
inputs e0 that encloses both the state and background information in NLRL.
Notably, the valuations deduced in last step will not be forgot because they will
be derived again in current step.

Another difference is about the weights, in ∂ILP, the weights are assigned
to combinations of clauses for each intensional predicate, whereas DRLM as-
sign them to individual clauses. It is easy to see that later approach will use
much less variables. Suppose there are n predicates each defined by m clauses,
and each clause has r possible definitions. The ∂ILP implementation will use
nrm variables while the DRLM will only consume nmr of them. ∂ILP used the
memory expensive one because they use elementary max to combine valuations
of different clauses defining the same predicate, in which case they found con-
clusions of the two clauses will over-write each other when they are combined
and thus the gradient flow is truncated. To prevent truncated gradient flow,
they thus choose to assign variables of combinations of clauses directly. Such
choice makes ∂ILP consuming huge amount of memory while at the same time
constraint the program templates to define two and only 2 clauses for each in-
tensional predicate. We use the probabilistic sum in place of max to prevent
the truncated gradient flow problem while keeping the advantage of smaller,
memory cheaper and more flexible model.

1



2 policy interpretation of other tasks

UNSTACK induced policy: The policy induced by NLRL in UNSTACK
task is:

0.972 : move(X,Y )← isF loor(Y ), pred(X)

0.987 : pred(X)← pred2(X), top(X)

0.997 : pred2(X)← on(X,Y ), on(Y, Z)

(1)

We only show the invented predicates that are used by the action predi-
cate and the definition clause with high confidence (larger than 0.3) here. The
pred2(X) means the block X is on top of another block (the block is not directly
on the floor). The pred(X) means the block X is in the top position of a column
of blocks and it is not directly on the floor, which basically indicates the block
to be moved. The action predicate move(X,Y ) simply move the top block in
any column with more than 1 block to the floor.

ON induced policy: The induced policy of the ON task is:

1.000 : move(X,Y )← top(X), pred(X,Y )

1.000 : move(X,Y )← top(X), goalOn(X,Y )

0.947 : pred(X,Y )← isF loor(Y ), pred2(X)

1.000 : pred2(X)← on(X,Y ), on(Y,Z)

(2)

The goal of ON is to move block a onto b, while in the training environment
the block a is at the bottom of the whole column of blocks. The strategy NLRL
agent learned is to first unstack all the blocks and then move a onto b. The
first clause of move move(X,Y )← top(X), pred(X,Y ) implements the unstack
procedures, where the logics are similar to the UNSTACK task. The second
clause move(X,Y )← top(X), goalOn(X,Y ) tells if the block X is already mov-
able (there is no blocks above), just move X on Y . This strategy can deal with
most of the circumstances and is optimal in the training environment. Whereas,
we can also construct non-optimal case where unstacking all the blocks are not
necessary or if the block b is below the block a, e.g., ((b, c, a, d)).

Windy cliff-walking induced policy: The induced policy of the windy
cliff-walking task is:

0.999 : down()← current(X,Y ), last(X)

0.472 : right()← current(X,Y ), succ(Z, Y )

0.628 : right()← current(X,Y ), succ(Z,X)

0.966 : up()← current(X,Y ), zero(X)

(3)

Differing from the original cliff-walking, the agent tends be more conservative.
It tends to move upwards when it is on the left edge of the field. By doing so,
there is less risk of falling to the cliff when it approaching the right edge.

2


