
Appendix: Molecular Hypergraph Grammar
with Its Application to Molecular Optimization

Hiroshi Kajino 1

Algorithm 1 Production rule extraction
Input: tree decomposition T and node vT ∈ VT .
Output: production rule p = (A,R).

1: Find pa(vT) and ch(vT).
2: if pa(vT) does not exist then
3: Set A as the starting hyperedge S.
4: else
5: Set A = `

(V)
T (vT) ∩ `(V)

T (pa(vT)).
6: Set R = H(vT), where the nodes shared with A are set

to be the external nodes, ext(R).
7: if ch(vT) is not empty then
8: for each child v′T ∈ ch(vT) do
9: Add a non-terminal hyperedge to R, which con-

sists of nodes `(V)
T (vT) ∩ `(V)

T (v′T) with the non-
terminal label.

10: return (A,R)

A. HRG Inference Algorithm
This section describes the details of the algorithm proposed
by Aguiñaga et al. (2016).

The input of the algorithm is a set of hypergraphs, Ĥ =
{H1, . . . ,HN}, and its output is a hyperedge replacement
grammar G whose language includes the input hypergraphs.
The algorithm extracts production rules from each input
hypergraph. Let H ∈ Ĥ be any input hypergraph. It first
computes a tree decomposition ofH , which we denote by T ,
and picks an arbitrary node of T as its root. Then, for each
node vT ∈ VT , it applies Algorithm 1 to extract a production
rule. Algorithm 1 chooses the triplet of vT and its parent
and children as shown in Fig. 1a, and extracts a production
rule that glues H(vT) to H(pa(vT)) with non-terminal hy-
peredges for gluing each child. Figure 1b illustrates the
production rule extracted from the triplet shown in Fig. 1a.
After applying Algorithm 1 to all of the nodes and all of the
input hypergraphs, it removes duplicated production rules

1MIT-IBM Watson AI Lab; IBM Research, Tokyo, Japan. Cor-
respondence to: Hiroshi Kajino <kajino@jp.ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

and outputs the set of production rules.

B. Proofs
This section provides a proof of Theorem 2. Throughout
this section, a node refers to a hypergraph’s node, and a tree
node refers to a tree decomposition’s node.

To prove Theorem 2, we only have to prove thatLHRG(Ĥ) ⊆
H(L(V)

H , L
(E)
H , c(E)) holds, because Ĥ ⊆ LHRG(Ĥ) has

been proven by Aguiñaga et al. (2016).

LHRG(Ĥ) ⊆ H(L(V)
H , L

(E)
H , c(E)) can be proven by com-

bining Lemmata 2, 3, and 4. Lemmata 2 and 3 guarantee
that our algorithm preserves the first condition of a molecu-
lar hypergraph, and Lemma 4 guarantees that our algorithm
preserves the second condition of a molecular hypergraph.

Condition 1. For each production rule p = (A,R), the
degree of external nodes of R is one, and the degree of
internal nodes of R is two.

Lemma 2. HRG inferred by applying our algorithm to a
set of 2-regular hypergraphs satisfies Condition 1.

Lemma 3. If HRG satisfies Condition 1, then it always
generates a 2-regular hypergraph.

Lemma 4. HRG inferred by applying our algorithm to a
set of cardinality-consistent hypergraphs always generates
a cardinality-consistent hypergraph.

Proof of Lemma 2. Let H be an arbitrary input hypergraph,
and (T, `

(V)
T , `

(E)
T) be its irredundant tree decomposition.

Since H is 2-regular, for each vH ∈ VH , T [VT (vH)] is
a single tree node that contains both of the two hyper-
edges (Fig. 2a, Case 1), or T [VT (vH)] is a path where each
of the leaf tree nodes contains one of two hyperedges ad-
jacent to vH (Fig. 2b, Cases 2, 3). It is sufficient to prove
that for each vH ∈ VH and for each vT ∈ T [VT (vH)], the
production rule extracted by running Algorithm 1 satisfies
Condition 1. In the following, we fix vH ∈ VH to be an
arbitrary node and eH,1, eH,2 ∈ EH to be the hyperedges
incident with vH .

Case 1. |VT (vH)| = 1
First, let us assume |VT (vH)| = 1 and let v∗T be the only

Appendix: Molecular Hypergraph Grammar with Its Application to Molecular Optimization

1

3

4

1

3

2

3C

4

H

H

1C

4

H

H

!"

pa !"

ch !"

(a) Triplet of vT , pa(vT), and ch(vT) chosen from the tree decom-
position in Figure 3.

1

3

4

N

N
1

4 N

(b) Production rule extracted from the triplet in Figure 1a. Nodes
IDs are added for explanation, and in the algorithm, they are
removed except for the correspondence between the nodes in LHS
and the external nodes in RHS.

Figure 1. Illustration of Algorithm 1.

node in VT (vH), i.e., VT (vH) = {v∗T }. In this case, vH
cannot be an external node, because pa(v∗T) does not contain
vH . Thus, vH must be an internal node with eH,1 and
eH,2 when it appears in R. In addition, no non-terminal
hyperedge will be incident with vH in R, because none of
ch(v∗T) contains vH in it. Therefore, in this case, vH is an
internal node whose degree equals two in R.

Case 2. |VT (vH)| ≥ 2 and vH is an internal node in R
Such a production rule is made from a triplet
(vT ,pa(vT), ch(vT)) such that vH ∈ `

(V)
T (vT) and

vH /∈ `(V)
T (pa(vT)) hold.

If eH,1 ∈ `(E)
T (vT) or eH,2 ∈ `(E)

T (vT) holds, there exists
exactly one node v(ch)T ∈ ch(vT) such that vH ∈ `(V)

T (v
(ch)
T)

holds. In this case, exactly one non-terminal hyperedge will
be connected to vH , and therefore, the degree of vH equals
two in R.

If eH,1 /∈ `(E)
T (vT) and eH,2 /∈ `(E)

T (vT) hold, there exist
exactly two nodes v(ch)T,1 , v

(ch)
T,2 ∈ ch(vT) such that vH ∈

`
(V)
T (v

(ch)
T,1) and vH ∈ `(V)

T (v
(ch)
T,2) hold. In this case, exactly

two non-terminal hyperedges will be connected to vH , and
therefore, the degree of vH equals two in R.

Case 3. |VT (vH)| ≥ 2 and vH is an external node in R
Such a production rule is made from a triplet
(vT ,pa(vT), ch(vT)) such that vH ∈ `

(V)
T (vT) and

vH ∈ `(V)
T (pa(vT)) hold.

If eH,1 ∈ `
(E)
T (vT) or eH,2 ∈ `

(E)
T (vT) holds, for each

node v(ch)T ∈ ch(vT), vH /∈ `(V)
T (v

(ch)
T) holds. In this case,

no non-terminal hyperedge will be connected to vH , and
therefore, the degree of vH equals one in R.

If eH,1 /∈ `(E)
T (vT) and eH,2 /∈ `(E)

T (vT) hold, there exists
exactly one node v(ch)T ∈ ch(vT) such that vH ∈ `(V)

T (v
(ch)
T)

holds. In this case, exactly one non-terminal hyperedge will
be connected to vH , and therefore, the degree of vH equals
one in R.

Therefore, for any case, Condition 1 holds, and therefore,
Lemma 2 has been proven.

Proof of Lemma 3. Let H be an arbitrary hypergraph that
can be derived from the starting symbol S. Note that H
may contain non-terminal hyperedges. It is sufficient to
prove that H is 2-regular, if the production rules satisfy
Condition 1.

If H is directly derivable from the starting symbol S, then
it is 2-regular, because Condition 1 guarantees that for any
production rule p = (S,R), R is 2-regular.

If H is directly derivable from H ′ by applying p = (A,R),
and ifH ′ is 2-regular and derivable from S, then there exists
a non-terminal hyperedge in eH′ ∈ EH′ that is labeled as
A and is replaced with R to yield H . For each node vH′ ∈
VH′\eH′ , the replacement does not change the degree, and
the degree of vH′ equals two in H . For each node vR ∈
VR\ext(R)1, the replacement does not change the degree,
and the degree of vR equals two in H . For each node vH′ ∈
eH′ , the replacement first deletes eH′ , and then, connects the
hyperedges adjacent to the external nodes ext(R). Since the
degrees of the external nodes are one, the replacement does
not change its degree. The same applies to each external
node. Since the degree of each node of H is two, H is
proven to be 2-regular.

Proof of Lemma 4. Let T be a tree decomposition of a
molecular hypergraph H . For each vT ∈ VT , all of the
hyperedges in `(E)

T (vT) are cardinally-consistent, which is
guaranteed by the second condition in Def. 1. Therefore,
letting the production rule extracted from vT be p = (A,R),

1ext(R) denotes the set of external nodes in R

Appendix: Molecular Hypergraph Grammar with Its Application to Molecular Optimization

!"

#",% #",&

'[)*(!")]
(a) Case 1: |VT (vH)| = 1.

![#$(&')]

',,',-

(b) Cases 2, 3: |VT (vH)| ≥ 2.

Figure 2. Illustrations of T [VT (vH)] in two cases.

all of the hyperedges in R are cardinally-consistent. Since
applying such a production rule preserves the cardinality
consistency, this lemma has been proven.

C. Model Configuration
We tune the model configuration using the reconstruction
rate on the validation set. Both EncN and DecN use three-
layer GRU (Cho et al., 2014) with 384 hidden units (EncN
is bidirectional), handling a sequence of production rule
embeddings in 128-dimensional space. In EncN , the output
of GRU is fed into a linear layer to compute the mean and
log variance of a 72-dimensional Gaussian distribution, and
the latent vector z ∈ R72 is sampled from it as the output of
EncN . The encoder and decoder are trained by optimizing
the objective function of β-VAE (Higgins et al., 2017) with
β = 0.01 using ADAM (Kingma & Ba, 2015) with initial
learning rate 5× 10−4. As a predictive model f̂ : R72 → R,
we employ a linear regression. Whenever target values are
available, we jointly train seq2seq VAE and the predictive
model.

D. Basic Statistics of MHG
This section reports basic statistics of MHG inferred using
the ZINC dataset.

From the ZINC dataset, our algorithm obtains 2,031 produc-
tion rules, of which 1,424 are starting rules. Each molecule
is associated with 25 production rules on average. While
the grammar seems to be huge, 2/3 of the starting rules
(1,073 rules) are used by less than ten molecules, and in
total, 2,355 out of 250k molecules are using these starting
rules. If ignoring these rules, our grammar has moderate
size.

We also investigate the coverage rate of the language as-
sociated with MHG (i.e., how many molecules out of all
possible molecules can MHG represent?). While we could
not provide any theoretical validation on the coverage rate,
we instead approximately estimate the coverage rate by the
number of molecules in the test set that cannot be parsed us-
ing the grammar inferred using the training set. As a result,

Algorithm 2 Local Molecular Optimization

In: Mol. graph g0 and its latent vector z0, Dec, f̂ , step size
η, similarity measure sim(·, ·), threshold τ , # iterations K.

1: g? ← null, y? ← −∞
2: for k = 1, . . . ,K do
3: zk ← zk−1 + η ∂f̂(zk−1)

∂z

4: gk ← Dec(zk), yk ← f̂(zk)
5: if sim(g0, gk) ≥ τ , g0 6= gk, and yk > y? then
6: g? ← gk, y? ← yk

return (g?, y?)

16 out of 5,000 molecules cannot be parsed, and thus, the
coverage rate will be 99.68%, and we believe this coverage
is sufficiently high.

E. Local Molecular Optimization
Local molecular optimization (Algorithm 2) aims to im-
prove the property of a given molecule without modifying
it too much. This problem setting is originally proposed by
Jin et al. (2018) and is formalized as,

m? = Dec

(
argmax

z : sim(m,Dec(z))≥τ
f(Dec(z))

)
. (1)

where sim(m,m′) computes a similarity between molecules
m and m′, and τ is a similarity threshold. We use Tanimoto
similarity with Morgan fingerprint (radius=2). Problem 1 is
approximately solved by Algorithm 2, where we substitute
our predictive model f̂ for the unknown target function f .

Note that the predictive model f̂ requires a large data set
for training and it is difficult to apply the limited oracle sce-
nario to local molecular optimization. Since the unlimited
oracle scenario is out of our scope, we leave this topic in
the appendix. We would like to leave a local optimization
algorithm tailored for the limited oracle scenario as future
work.

Protocol. As a target property, we use a penalized logP:

f(m) = logP(m)− SA(m). (2)

Appendix: Molecular Hypergraph Grammar with Its Application to Molecular Optimization

Table 1. Results on local molecular optimization.

Improvement Similarity Success

δ 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

JT-VAE
1.91
±2.04

1.68
±1.85

0.84
±1.45

0.21
±0.71

0.28
±0.15

0.33
±0.13

0.51
±0.10

0.69
±0.06 97.5% 97.1% 83.6% 46.4%

GCPN
4.20
±1.28

4.12
±1.19

2.49
±1.30

0.79
±0.63

0.32
±0.12

0.34
±0.11

0.47
±0.08

0.68
±0.08 100% 100% 100% 100%

Ours
3.28
±2.19

2.40
±2.16

1.00
±1.87

0.61
±1.20

0.09
±0.06

0.26
±0.10

0.52
±0.11

0.70
±0.06 100% 86.3% 43.5% 17.0%

We choose 800 molecules with the lowest penalized logP
from the test set. For each initial molecule m, we run Algo-
rithm 2 with τ ∈ {0, 0.2, 0.4, 0.6}, K = 80, and η = 0.01.
For each threshold τ , we report (i) the mean and standard
deviation of the target value improvements, (ii) those of the
similarity, and (iii) the success rate, where Algorithm 2 suc-
ceeds if the output is not null, i.e., if there exists a modified
molecule that satisfies the similarity constraint.

Result. Table 1 reports the scores. First of all, we observe
that GCPN outperforms VAE-based methods. This result
is reasonable considering that this task assumes the unlim-
ited oracle scenario. Among the VAE-based methods, for
any similarity threshold, our method improves the target
property better than JT-VAE, which demonstrates the effec-
tiveness of our method over JT-VAE.

F. Molecules Discovered by Global Molecular
Optimization

In the following, we illustrate the top 50 molecules found
by global molecular optimization in Section 8.2.

References
Aguiñaga, S., Palacios, R., Chiang, D., and Weninger, T.

Growing graphs from hyperedge replacement graph gram-
mars. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management,
pp. 469–478, 2016.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing, pp. 1724–1734, 2014.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. β-VAE:
Learning basic visual concepts with a constrained vari-

ational framework. In Proceedings of the Fifth Interna-
tional Conference on Learning Representations, 2017.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
Proceedings of the Thirty-fifth International Conference
on Machine Learning, 2018.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the Third International
Conference on Learning Representations, 2015.

Appendix: Molecular Hypergraph Grammar with Its Application to Molecular Optimization

F

Cl

NH

5.558

O

NH

F

O

N

N

NH

5.401

Cl

N

N

O

5.344

NH

O

NH

N

Cl

5.289

NH NH

Cl

5.063

O

NH

N

O

Cl

N

4.979

F

N

Cl

Cl

4.811

O

NH

O

N

Cl

Cl

4.779

N

O

NH

4.775

O

NH

Cl

Cl N+ O

O-

4.730

O

NH

NH

N

F

4.712

O

NH

N

N

NH

Cl

4.641

O

NH

Cl

N

N

4.617

O

N+
O

O-

Cl

N

4.598

Cl

F

4.595

O NH
NH

F

4.555

Cl

N

N

N

4.546

H2N

Cl

N

O

4.538

O

NH

O

N

Cl

4.484

O

N

Cl

4.464

Appendix: Molecular Hypergraph Grammar with Its Application to Molecular Optimization

O
NH

NH

Cl N

Cl

4.450

O

NH

SH

N

O-

4.443

N

N

N

Cl

4.408

NH

F

S

N

4.404

N N

NH

Cl

Cl

4.374

N

O
N

Cl

4.362

O

NH

S

F
Cl

4.354

N
N

Cl

N

N

4.351

NH

O
S

F

N

4.349

NH

O

O

NH

N

4.341

N

NH

O

N

Cl

4.335

NH

O

NH

Cl

4.294

N
O

NH

N

Cl

4.274

NH

O

NH

N

Cl

4.265

N

N

N

F

N

4.259

NNH

O

NH

4.258

O

O

Cl

N

N

4.242

O

N

N

Cl

NH2

4.240

O

N

O

NH

4.233

N

Cl

N

N

4.209

Appendix: Molecular Hypergraph Grammar with Its Application to Molecular Optimization

O

NH

O

Cl

F

4.202

N

O

NH

Cl

4.196

Cl

NN

N

4.185

NH

O

F

N

Cl

4.171

N

N

S

Cl

F

4.169

S

O

NH

4.163

O

NH

Cl

Cl

4.153

O

NH

O

Cl

4.150

NH

O

F

N

Cl

4.124

NH

O

Cl

4.124

