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Abstract
Many sequence prediction tasks admit multiple
correct outputs and so, it is often useful to decode
a set of outputs that maximize some task-specific
set-level metric. However, retooling standard se-
quence prediction procedures tailored towards pre-
dicting single best outputs tends to produce sets
containing very similar sequences; failing to cap-
ture the variation in the output space. To address
this, we propose∇BS, a trainable decoding pro-
cedure that outputs a set of sequences, highly val-
ued according to the metric. Our method tightly
integrates the training and decoding phases and
further allows for the optimization of the task-
specific metric addressing the shortcomings of
standard sequence prediction. Further, we dis-
cuss the trade-offs of commonly used set-level
metrics and motivate a new set-level metric that
naturally evaluates the notion of “capturing the
variation in the output space”. Finally, we show
results on the image captioning task and find that
our model outperforms standard techniques and
natural ablations.

1. Introduction
Given an input x, sequence prediction problems require
outputting a single sequence y that it is highly valued
as measured by some task specific metric φ(y|x); for
example, BLEU (Papineni et al., 2002) is a commonly
used metric for language generation tasks. However, many
real-world sequence prediction problems are inherently
multimodal i.e. for a given input, there can be multiple
outputs Y = {y1,y2, . . .yK} that are highly valued
according to the metric. For instance, the task of image
captioning (Chen et al., 2015) admits multiple correct
outputs because an image can be accurately described
in numerous ways by focusing on different objects and
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interactions present in the image (Kalyan et al., 2018).
Being able to produce multiple relevant output sequences
is not only important from a modeling perspective, but is
also beneficial even in tasks in which a single best output is
ultimately required. For example, in the task of automated
response suggestion for email, Kannan et al. (2016) allow
the user to select from a set of generated responses with
different sentiments. Similarly, producing multiple outputs
and then reranking them leads to improvements in the task
of machine translation (Shen et al., 2004; Li et al., 2016).
In these settings where a set of sequences is expected, the
quality of the generated set is measured using set-level
metrics Φ(Y|x) that evaluate higher-order interactions
between elements of the decoded set. For example, oracle
accuracy is a set-level metric that corresponds to the
maximum sequence level score achieved by any of the
sequences in the generated set. It is commonly used as a
proxy for a downstream selection mechanism (Zhang et al.,
2006; Batra et al., 2012).

Decoding K outputs using Sequence Models. In
practice, the standard single-sequence prediction pipeline
can be used to produce a set of K outputs. In this setup,
neural sequence models like RNNs, LSTMs (Hochreiter
& Schmidhuber, 1997) or Transformers (Vaswani et al.,
2017) trained to maximize the likelihood of individual
sequences are used in conjunction with approximate top-K
inference procedures like Beam Search (BS). As the goal
of this procedure is to find the single best output, BS
does not consider intra-set interactions in the decoded
output set. Naturally, this leads to the decoding of largely
redundant output sets containing near identical sequences
(Vijayakumar et al., 2018; Li et al., 2016; Jiang & de Rijke,
2018). While the specific issue of diversity has been
addressed by a variety of approaches that either modify the
training objective (Dai & Lin, 2017; Wang et al., 2017),
learn model ensembles (Lee et al., 2016; Wang et al.,
2016; He et al., 2018) or modify the inference procedure
(Vijayakumar et al., 2018; Li et al., 2016), these methods
are incapable of modeling higher-order interactions between
the sequences in the decoded set and by extension, cannot
optimize arbitrary set-level metrics.

Trainable Decoding of Sequence Sets. In this work,
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we propose ∇BS1, a trainable decoder that finds ap-
proximate solutions for the best set of K sequences by
accounting for intra-set interactions. Our approach directly
models a set of outputs and allows for maximizing both
the set-level metric of interest, or the likelihood of a target
set when multiple ground truth annotations are provided.
We achieve this by treating the task as a sequential
subset selection problem, a novel perspective that allows
us to utilize techniques from the well-studied problem
of cardinality-constrained submodular maximization
(Nemhauser et al., 1978). Our method closely mimics BS;
replacing the likelihood informed pruning of the search
space with a subset selection step that is guided by a learned
submodular set function. Unlike existing sequence models,
our approach considers intra-set interactions and induces
a distribution over sets of sequences allowing the use of
greedy decoding to find the the maximizer set of size K.

Contributions. In summary, the primary technical
contribution of our work is∇BS, a task-agnostic trainable
decoding procedure for sets of sequences. In the context of
the proposed decoder, we discuss various training strategies
inspired from both supervised learning and reinforcement
learning that ensure stable training while mitigating
loss-evaluation mismatch and exposure bias (Ranzato et al.,
2015). Further, we motivate a new set-level metric inspired
by the facility location problem (Stollsteimer, 1963) that
naturally evaluates the notion of “capturing the variation in
the output space”. Finally, we choose the popular sequence
prediction task of image captioning to demonstrate the
effectiveness of our method and find that our approach,
∇BS consistently outperforms standard techniques and
ablations of our method on relevant set-level metrics.

2. Approach
We are interested in predicting a set of K sequences
Y = {y1,y2, . . .yK} given some input x such that Y is
highly valued according to some set-level metric Φ(Y|x).
While neural sequence models have been used to address
this problem in conjunction with decoding strategies
like Beam Search, existing approaches can neither learn
intra-set interactions nor optimize for arbitrary set-level
metrics. In this work, we propose ∇BS, a novel trainable
set decoding procedure capable of modeling interactions
between elements of the set. Further, our approach tightly
integrates the training and decoding phases overcoming
exposure bias or loss-evaluation mismatch suffered by
standard sequence models.

In the remainder of this section, we discuss how de-
1pronounced diff-BS, code available at https://github.

com/ashwinkalyan/diff-bs

coding a set of sequences can be viewed as sequential
subset selection problem. We then show how this problem
can be parameterized with a submodular function and then
trained via gradient descent.

2.1. Preliminaries: Sequence Prediction and Beam
Search Decoding

For convenience, let [n] denote {1, 2, . . . n} and v≤n denote
{v1, v2, . . . vn}, the first n elements of a vector v ∈ Rm.

Sequence prediction problems require outputting a sequence
y given an input x such that y is highly valued according to
some task specific metric φ(y|x). The common approach
to these sorts of problems is to learn a transition function
Pθ(yt|y≤t−1,x) parametrized by θ ∈ Rd that represents the
probability of choosing the next token from a vocabulary
V given the previous tokens y≤t−1 and the initial input x.
Given such a model, the most likely output sequence under
the model can be found by solving:

y∗ = argmaxP(y|x) (1)

= argmax
∏
t∈[T ]

Pθ(yt|y≤t−1,x) (2)

Due to the exponential size of the output space (|V|T
possibilities for a T length sequence), this inference
problem is NP-hard. Therefore, greedy heuristics are used
to find approximate solutions in practice – for example,
argmax decoding greedily selects the most likely token
at each time step to find the approximate single best solution.

Beam Search (BS), a widely-used approximate infer-
ence algorithm provides an alternative to argmax decoding.
BS maintains a set of K partial solutions, and often yields
better approximate solutions than argmax decoding as it ex-
plores a slightly larger portion of the search space (argmax
decoding is BS with K = 1). BS operates left-to-right in
a greedy manner – at each time step t ∈ [T ], using the
current set of K partial solutions, Yt−1 = {yk≤t−1}k∈[K],
BS constructs the next set Yt as:

{yk≤t}k∈[K] = argmax-K
Yt−1×V

∑
k∈[K]

∏
t∈[T ]

P(ykt |yk≤t−1,x) (3)

where argmax-K selects the K maximizing alternatives.
This problem is trivially solved by ranking all the possible
extensions, Yt−1 × V by their likelihood and selecting the
K most likely elements. This is repeated at each time step
until termination, at which point the most likely sequence is
selected from the K decoded sequences.

2.2. Decoding As Sequential Subset Selection

Taking a high-level view, each step of Beam Search (BS)
decoding performs a subset selection that is informed by the

https://github.com/ashwinkalyan/diff-bs
https://github.com/ashwinkalyan/diff-bs
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likelihood of sequences under the trained model – selecting
the K most likely sequences from the K × |V| options.
Unlike likelihood that guides BS to perform this subset
selection, it is often a strong requirement for the metric
Φ(·|x) to decompose across time steps in a similar manner;
ruling out a naı̈ve greedy decoder like BS informed by the
set-level metric. Therefore, we are instead learning to select
subsets, i.e. solve the

(
K×|V|
K

)
problem of selecting the K

most promising alternatives such that the resulting set YT
after T time steps is highly valued by the set-level task
metric Φ(·|x).

Submodular Functions and Sequence-level Metrics.
Task-specific metrics typically evaluate a notion of coverage
i.e. highly valued outputs must overlap significantly with
the “correct” outputs. For example – at a high level,
metrics for language generation tasks evaluate a candidate
sentence by checking for shared n-grams with a reference
sentence. Submodular functions, an important class of
set functions, elegantly capture the notion of coverage
and therefore have not only motivated the development of
popular sequence-level metrics (Hong et al., 2014) but some
previously proposed metrics have been showed to belong to
this function family (Lin & Bilmes, 2011). With the notion
of coverage guiding the development of sequence-level
metrics, various simple set-level metrics like average or
maximum of individual sequence level-scores can also be
shown to be submodular (as submodularity is preserved
by these operations). While it may not possible to always
show that task-specific metrics are exactly submodular,
it can be expected that they are at least approximately
submodular. This link between submodular functions and
set-level metrics motivates us to develop a subset selection
mechanism that uses submodular maximization at its core.

Before explaining our method in its entirety, we provide
a brief overview of submodular functions and explain
the classic greedy algorithm for maximizing them in the
presence of cardinality constraints.

Submodular Maximization. Given a ground set V ,
a set function f : 2V → R≥0 assigns a value for all sets
S ⊆ V . Finding a subset of some bounded size K that
maximizes the set function i.e. argmaxS⊆V,|S|≤K f(S) is
a natural way of characterizing various coverage problems –
for example, finding where to place K sensors such that
the covered area as measured by f is maximized. Despite
its usefulness, this maximization is NP hard for arbitrary
functions. However, the classic result of Nemhauser et al.
(1978) shows that a greedy strategy achieves a constant
factor approximation ratio of (1− 1/e) if the function f is
monotone submodular. Given sets S, T s.t. S ⊆ T ⊆ V
and e ∈ V\T , a set function f : 2V → R is submodular if

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T )

i.e. adding an element to a larger set results in smaller gains;
capturing the notion of diminishing returns. The marginal
utility of adding a new element to the set (e.g. increase in
coverage by placing a sensor) is given by the difference,
f(S ∪ {e})− f(S) which we denote by ∆f (e|S). Further,
the function f is (a) monotone if f(S) ≤ f(T ),∀S ⊆ T ⊆
V and (b) normalized if f(∅) = 0. The greedy strategy of
Nemhauser et al. (1978) adds the element with the largest
marginal gain at each step i.e.

Ak ← Ak−1 ∪ argmax
e∈V\Ak−1

∆f (e|Ak−1)

to yield AK s.t. f(AK) ≥ (1− 1/e) f(A∗) after K steps.

Learning Subset Selection. Provided a submodular
function that estimates the utility of the set chosen w.r.t. to
maximizing the final set-level metric, we can construct a
set-level policy to find the approximate maximizer using
the greedy algorithm. Since the sequence-level metric does
not decompose over time steps, the choice of a submodular
function that can estimate the utility of a partial solution
is not obvious. Following Tschiatschek et al. (2018),
we choose to learn an appropriate function maximizing
which yields good approximate solution sets. Further, they
show that this maximization can be made differentiable by
replacing the argmax operation by a softmaxτ operation
with temperature τ > 0 and iteratively sampling each
element2 proportional to exp(∆f (e|Ai−1)/τ) – yielding
an updated approximation ratio of 1 − 1/e − ε(τ), where
ε(τ) is some decreasing function of the temperature.

Algorithm 1 Sequential Subset Selection
input: fβ ,x,V, τ,K, T
output: YT = {y1,y2, . . .yK}
Y0 → ∅
for t ∈ [T ] do
Ct ← Yt−1 × V
S0 ← ∅
for k ∈ [K] do

gk[i]← ∆fβ (c|Sk−1), ∀c ∈ Ct\Sk−1

sk ∼ softmax
(

gk/τ
)

Sk ← Sk−1 ∪ {sk}
end
Yt = SK

end
return YT

Sequential Subset Selection. Finally, given a sub-
modular function fβ parametrized by β, a suitable
temperature τ and other inputs necessary to perform
BS, a straightforward algorithm for sequential subset
selection can be written down (Algorithm 1); with bounded

2instead of selecting the one with the highest marginal gain
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approximation error for each time step. At each time step
t, given the set of partial sequences Yt−1, all possible
extensions Ct = Yt−1 × V are produced and sampled from
sequentially. Specifically, the kth sequence sky is sampled
according to exp(∆f (·|Sk−1

t )/τ) and added to a working
set Sk−1

t such that Skt = Sk−1
t ∪ {skt }. This sampling

procedure additionally allows us to compute the likelihood
of the alternatives chosen at time t, Pf (Yt|Yt−1,x) as:∏

k∈K

exp(∆f (skt |Sk−1
t ))∑

s∈Ct\Sk−1
t

exp(∆f (s|Sk−1
t ))

(4)

If the order of the elements in the set does not matter, the
probabilities of all permutations must be summed; how-
ever, we simply multiply by K! to approximate this quantity
(Tschiatschek et al., 2018). Combined with this sampling
procedure, any given f implies a probability distribution
on all full-length sequence subsets S ∈ 2Y suitable for the
policy π, namely

Pf (YT |x) =
∏
t∈T

Pf (Yt|Yt−1,x) (5)

Connection to Sequence Level Training. In the re-
stricted setting of argmax or greedy decoding (BS with
K = 1), Ranzato et al. (2015), Gu et al. (2017), etc. learn a
policy π(·|x) such that acting according to it maximizes the
sequence level metric φ(·|x) i.e.

π∗ = argmax
π∈Π

E(y1,...yT )∼π(·|x) [φ(y|x)]

Following the probabilistic interpretation of the submodular
maximization procedure shown in (5), our approach lifts
this greedy decoding strategy to reason about sets and thus,
handle “beam search” (K > 1) i.e.

π∗ = argmax
π∈Π

E(Y1,...YT )∼π(·|x)[Φ(Y|x)] (6)

As we will see later in Section 2.4, this connection allows
us to come up with different strategies to train our model in
different scenarios.

With this formulation, learning to predict sets of se-
quences that maximize the set-level metric requires learning
a suitable monotone submodular function f .

2.3. Learning a Submodular Selection Policy

We would like to learn a monotone, submodular function
fβ : 2Y → R parameterized by β such that sampling from
the policy induced by its maximization as described above
maximizes the set-level task metric φ(Y|x), that is to say

fβ = argmax
f

EY∼πf [Φ(Y|x)] (7)

In this section, we discuss the form and training of fβ .

Parameterizing Submodular Function f . We ap-
ply recent work on deep submodular function (DSF)
modeling from (Zaheer et al., 2017a; Bilmes & Bai, 2017)
to construct f . To familiarize the reader with this work, we
note the key result that given non-negative input features
x+, a monotone submodular function can be parameterized
by a neural network of arbitrary depth provided it consists
of multiplication operations with non-negative weights and
element-wise non-decreasing concave activation functions.
We encourage readers to see these works for full details.

Constructing parametrized submodular functions re-
quires suitable representations of sets. At each time step
t, the set of partial solutions Yt−1 = {yt1, . . . , ytK} are
represented by their hidden states from an LSTM, i.e.
hkt = LSTM(ytk) and each token in V is represented by
its corresponding word-vector vt ∈ Rd. Therefore, each
alternative ct ∈ Ct = Yt−1 × V can now be represented
by a concatenation of these two representations, [ht,vt].
Given a set S ⊆ Ct, we compute a permutation invariant set
representation as

ψβ(S) =
∑
ct∈S
{MLP ([ht,vt])}+ (8)

using an MLP followed by a ReLU non-linearity (denoted
by ·+) to ensure non-negativity of the features. Importantly,
the bias of the MLP is set to 0 to ensure that the submodular
function is normalized by construction3. The submodular
function fβ is now defined similar as a two-layer DSF with
the element-wise non-negative monotone concave function
σ(·) = log(1 + ·),

fβ(S) = w>2 σ(W>1 σ(ψβ(S))) (9)

where W1 ∈ Rd×m≥0 and w2 ∈ Rm≥0. The parameters of a
DSF can be learnt via gradient descent using automatic
differentiation, similar to deep networks. However, the
weights need to be non-negative, so an additional projection
step is required which we denote by Π≥0. In practice,
evaluating the submodular function for all the elements
in the ground set K × V can be slow (for e.g. |V| in the
case of COCO captioning task is ∼10000). In such cases, a
standard sequence model can be used to first coarsely select
the top K ′ > K elements.

Connection to DivMBest. Allowing the function f
to be arbitrary and not restricting it to be submodular,
modifies our approach to a learnable variant4 of Diverse

3The initial hidden state representing no history and the dummy
input (e.g. start token) are both represented by vectors of all zeros.

4Removing the inductive bias and using standard MLPs in-
stead of DSFs leads to worse performance; more details in the
supplement.
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Beam Search (DBS) (Vijayakumar et al., 2018). Extending
DivMBest (Batra et al., 2012) to sequence models, DBS
greedily selects K alternatives at each step by adding
diversity constraints after each element is selected. While
hand-crafted diversity penalties (e.g. hamming or n-gram
distance based diversity) are used in DBS, this penalty is
instead learned by the set function f .

2.4. Training A DSF for Set Decoding.

In this subsection, we discuss various training strategies to
obtain good subset selection policies in practice.

Cross Entropy Loss. For many sequence prediction
tasks, datasets contain multiple correct outputs – for
instance, image captioning datasets like COCO (Lin et al.,
2014) have five captions per image. In this case, the policy
can be trained via teacher-forcing i.e. the cross-entropy loss
of the model’s predictions and the “ground-truth” subset
is minimized at each time step. For example, if the oracle
chooses subset Y∗t = {yk<t}k∈K at time t ∈ [T ], then the
the policy incurs the loss:

L(π) = −
∑
t∈[T ]

logP(Y∗t |Y∗t−1,x)

This method, which we denote by CE, is applicable only
when multiple annotations are available during training.

REINFORCE. Unlike CE, this strategy directly op-
timizes for the task-specific metric and only requires the
ability to query the metric. This strategy, denoted by RE,
minimizes the objective in (5) by computing the gradient
using REINFORCE (Williams, 1992) as:

∇βJ(π) = EY1,...YT

[
(φ(Y|x)−b)

∑
t∈T
∇β logP(Yt|Yt−1)

]

Here, b is a baseline reward that is subtracted to reduce the
variance in the gradient estimates (Greensmith et al., 2004).
For example, choosing the baseline to be the value achieved
by beam search ensures that the learnt policy is competent
w.r.t. to it (Rennie et al., 2017). While this training strategy
fixes both exposure bias and loss-evaluation mismatch, it
suffers from noisy gradients despite using suitable baselines
leading to poor convergence properties.

Queriable Expert. In many scenarios where output
sets need to be produced, only one ground truth annotation
may be available; ruling out the use of CE. As training via
RE is extremely unstable, Imitation Learning strategies like
DAgger (Ross et al., 2011) that use a queriable expert are
often employed to warm start the policy. This setting can
be used to warm-start the set-level decoder by obtaining
K outputs via BS and then using them to serve as expert

supervision.

Our proposed algorithm, ∇BS can be trained in a
stable manner using a mixture of the above strategies.
MIXER (Ranzato et al., 2015), a hybrid strategy that uses
both CE and RE trains the model for the first τ time steps
using CE and then training with RE for the rest of the time;
gradually reducing τ to 0. As proposed by Chen et al.
(2018), QE can be used to train a reasonably good model
that can be finetuned further using RE. Further, the entire
model can be trained in an end-to-end fashion (denoted by
EE) by backpropagating the gradients into the LSTM (the
state transition function) producing the hidden states.

3. Related Work
Predicting Set-Valued Outputs There are comparatively
few works that focus on predicting permutation invariant
set-valued outputs using deep learning. Zaheer et al.
(2017b) investigate commutative pooling operators for
processing set-valued inputs, but with a focus on classifi-
cation and regression problems. Rezatofighi et al. (2017)
and Rezatofighi et al. (2018) predict set-valued outputs by
learning both the cardinality and the state distribution of
the target set. However, these approaches define the output
space in terms of the possible subsets of some pre-existing
support set, and so none of these approaches are applicable
to the generative task of predicting sets of sequences.
Recent work by Powers et al. (2018) aims at predicting
diverse sequences but significantly differs from our work
as they only consider the task of retrieval as opposed to
sequence prediction.

Diverse Sequence Generation The most obvious
way to generate sets of sequences is to apply beam search
decoding to a standard neural sequence model such as an
LSTM (Hochreiter & Schmidhuber, 1997). However, it
is well known that the resulting sequences lack diversity
(Gimpel et al., 2013; Li et al., 2015; Li & Jurafsky, 2016).
A number of papers have tackled the problem of diverse
sequence generation, either by modifying the training
objective (Wang et al., 2017; Dai & Lin, 2017; Shetty
et al., 2017), using model ensembles (Lee et al., 2016;
He et al., 2018; Wang et al., 2016) or by modifying the
decoding procedure (Vijayakumar et al., 2018; Li et al.,
2016). However, none of these approaches are capable of
directly learning the interactions between sequences in a set.
Our model learns these interactions and can be optimized
for any arbitrary set-level metric.

Trainable Sequence Decoding As detailed further
in Section 2, our proposed approach constructs a set of
K sequences in the output set incrementally, and can
thus be interpreted as a trainable generalization of beam
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search. Therefore, although our motivations differ, our
method is related to recent research that seeks to unify
sequence model training and decoding regimes, either
by modifying the training procedure (Andor et al., 2016;
Wiseman & Rush, 2016; Goyal et al., 2017), or by casting
sequence decoding as an optimization problem (Gu et al.,
2017; Hoang et al., 2017; Chen et al., 2018). Notably,
our approach differs from Goyal et al. (2017) as it avoids
train-test mismatch by sampling in both phases and further,
modeling intra-set interactions.

4. Experiments
In this section, we first discuss the trade-offs of different
set-level metrics and then motivate a new set-level metric
that evaluates the multi-modality in the output space. Next,
we proceed to explaining the different evaluation metrics
and baselines used in this work. We then report results on
the visually-grounded language generation task of image
captioning. Finally, we present a discussion on variants of
our method and its applicability in different scenarios.

4.1. Set-Level Metrics for Language Generation.

Sequence level metrics for language generation tasks like
BLEU (Papineni et al., 2002), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016) evaluate a decoded
sequence by comparing it against a reference annotation in
some feature representation5. Oracle accuracy, a popular
set level metric (Zhang et al., 2006; Batra et al., 2012; Lee
et al., 2016; Wang et al., 2017) used to evaluate the quality
of decoded sets is constructed by using individual sequence
level scores. Specifically, it corresponds to the best score
achieved by any decoded sequence i.e. maxy∈Y{φ(y|x)}.
This serves the role of a downstream mechanism that selects
the most appropriate sequence – for example, a human user
or a reranker. While this is a reasonable choice when only
one reference annotation is available, it is insufficient when
multiple reference sentences are available; often the case
with inherently multimodal tasks like image captioning.
Oracle accuracy can be optimized by producing only one
good caption that aligns well with the ground truth and
therefore fails to penalize not covering the full variation
present in human annotations.

To address this shortcoming of oracle accuracy, we
propose a new set-level metric inspired by the classic
facility location problem (Stollsteimer, 1963). Similar to
oracle accuracy, the proposed faccuracy metric also uses
sequence level scores and is given by

∑
r∈Rmaxc∈C φ(r|c)

where R and C are the reference and candidate sequence
sets respectively. This metric values output sets that contain

5If Yx are the references corresponding to the input x, we write
φ(·|Yx) for φ(·|x) with some abuse of notation.

sequences that maximize the sequence-level metric for each
of the reference annotations; avoiding the shortcomings
of oracle accuracy. Further, it is easy to notice that this
set-level metric reduces to oracle accuracy when only
one reference annotation is present. Additionally, the
proposed faccuracy is also submodular; the notion of
diminishing returns is observed as the value of adding
new sequences after all references have been “covered” is
little. In summary, the proposed fac metric extends oracle
accuracy to consider higher order interactions between
decoded sequences in a manner that naturally evaluates for
the variation present in the reference set.

4.2. Baselines.

We are interested in the task of generating a set of captions
that are highly valued by set-level metrics like faccuracy and
oracle accuracy. All methods are evaluated and optimized
(if applicable) using CIDEr (Vedantam et al., 2015) as the
underlying sequence-level metric. Additionally, all methods
decode K = 5 sequences per input.

We compare our approach against the most natural baseline
– a standard sequence prediction model decoded using BS
(which we denote by Seq-BS). Next, we compare against
using a diversity-promoting decoding procedure, Diverse
Beam Search (Vijayakumar et al., 2018) along with a
sequence prediction model (Seq-DBS). Outperforming
a tuned version of DBS implies that the our proposed
algorithm introduces diversity appropriately without having
to explicitly incentivize it. Additionally, we compare
against Rennie et al. (2017), a sequence level model that
uses REINFORCE to directly optimize the metric along
with beam search decoding. This model, denoted by
SCST, uses the score achieved by beam search under the
current model as baseline to stabilize the training procedure.
Further, we compare to the following ablations of our model
that can be constructed by the various training strategies
discussed in Section 2:

1. ∇BS-CE: This approach corresponds to training
the model first using standard teacher forcing (CE, see
Section 2). This approach is feasible when multiple
annotations are available While this method suffers from
both exposure bias and loss-evaluation mismatch, it still
treats the outputs as a set and hence is capable of modeling
intra-set interactions.

2. ∇BS-CE-EE: This is a natural extension of the previous
baseline that backpropagates the gradient not only into the
DSF but also into the underlying LSTM network. In practice,
the finetuning begins after the DSF has been trained for a
few rounds.

3. ∇BS-CE-RE: This approach corresponds to training the
model first using CE and then using REINFORCE (RE);
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Dataset Method Faccuracy (K = 5) Oracle Accuracy (K = 5) distinct 4-grams
BLEU ROUGE CIDEr SPICE METEOR BLEU ROUGE CIDEr SPICE METEOR

Flickr-8k

Seq-BS 0.2510 0.3149 1.7548 0.1534 0.1625 0.2712 0.4576 1.6564 0.1496 0.2351 17.38
Seq-DBS 0.2583 0.3171 1.8374 0.1598 0.1607 0.2564 0.4535 1.6571 0.1572 0.2309 64.44

SCST 0.2643 0.3204 1.8521 0.1632 0.1754 0.2644 0.4589 1.6792 0.1623 0.2386 25.79

∇BS-CE 0.2681 0.3225 1.8946 0.1671 0.1751 0.2702 0.4592 1.7023 0.1643 0.2415 33.90
∇BS-CE-EE 0.2685 0.3242 1.9142 0.1682 0.1751 0.2716 0.4597 1.7146 0.1645 0.2421 32.19
∇BS-CE-RE 0.2707 0.3276 1.9238 0.1723 0.1822 0.2738 0.4618 1.7424 0.1664 0.2457 35.41
∇BS-MIXER 0.2697 0.3280 1.9224 0.1782 0.1782 0.2741 0.4614 1.7487 0.1659 0.2462 35.85
∇BS-CE-RE-EE 0.2712 0.3279 1.9287 0.1806 0.1849 0.2740 0.4624 1.7459 0.1667 0.2464 34.94

Flickr-30k

Seq-BS 0.2510 0.2916 1.7017 0.1643 0.1625 0.2781 0.4253 1.5850 0.1496 0.2351 18.04
Seq-DBS 0.2625 0.2958 1.7726 0.1629 0.1607 0.2782 0.4292 1.5828 0.1572 0.2309 64.18

SCST 0.2742 0.3124 1.7543 0.1664 0.1649 0.2804 0.4335 1.5974 0.1601 0.2390 27.42

∇BS-CE 0.2788 0.3186 1.7724 0.1672 0.1653 0.2816 0.4378 1.6104 0.1617 0.2427 35.62
∇BS-CE-EE 0.2793 0.3195 1.7812 0.1672 0.1657 0.2821 0.4467 1.6156 0.1621 0.2430 36.11
∇BS-CE-RE 0.2794 0.3206 1.7942 0.1679 0.1665 0.2845 0.4514 1.6233 0.1627 0.2366 36.84
∇BS-MIXER 0.2798 0.3215 1.8006 0.1688 0.1669 0.2839 0.4529 1.6229 0.1628 0.2471 35.91
∇BS-CE-RE-EE 0.2794 0.3211 1.8032 0.1685 0.1678 0.2846 0.4519 1.6238 0.1632 0.2472 35.23

COCO

Seq-BS 0.2842 0.4892 1.5324 0.1724 0.2541 0.2839 0.5204 1.4208 0.1701 0.2570 20.04
Seq-DBS 0.2915 0.4917 1.5266 0.1731 0.2585 0.2782 0.5247 1.4306 0.1708 0.2614 68.18

SCST 0.2942 0.5012 1.5521 0.1739 0.2601 0.2804 0.5287 1.4421 0.1724 0.2664 30.42

∇BS-CE 0.3015 0.5006 1.5721 0.1725 0.2605 0.2816 0.5276 1.4452 0.1722 0.2652 32.62
∇BS-CE-EE 0.3011 0.5011 1.5784 0.1728 0.2609 0.2821 0.5288 1.4461 0.1726 0.2660 34.19
∇BS-CE-RE 0.3056 0.5018 1.5894 0.1742 0.2656 0.2845 0.5296 1.4521 0.1759 0.2687 34.24
∇BS-MIXER 0.3022 0.5023 1.5870 0.1736 0.2645 0.2839 0.5294 1.4618 0.1740 0.2689 33.01
∇BS-CE-RE-EE 0.3063 0.5021 1.5995 0.1745 0.2661 0.2846 0.5314 1.4598 0.1765 0.2697 35.84

Table 1. On all the captioning datasets,∇BS variants (MIXER and CE-RE-EE) outperform standard baselines and ablations. However, in
terms of sheer diversity (as measured by distinct n-grams, Seq-DBS is still better. All the methods decode K = 5 outputs and further, we
scale faccuracy values in the table by K for better readability.

optimizing directly for the set-level metric. Improving the
model using RE “fixes” both loss-evaluation mismatch and
exposure bias.

4. ∇BS-MIXER (Ranzato et al., 2015): This approach is
similar to∇BS-CE-RE but differs in that the two methods
operate simultaneously instead of being applied one after
the other. The approach works by using CE for the first
τ ∈ [T ] steps and then trains via RE for the rest T − τ steps.
The value of τ is gradually reduced from T (correspond-
ing to∇BS-CE) to 0 (corresponding to∇BS-RE) thereby
following a curriculum that spans a spectrum of training
methods.

4.3. Image Captioning

In this section, we explain the experimental setup and report
results for the image-captioning task.

Datasets and Models. We show results on three
captioning datasets of increasing size – Flickr8k, Flickr30k
(Young et al., 2014) and the large scale COCO dataset
(Lin et al., 2014). All of these datasets are multimodal
and have 5 captions associated with each image. For
the first two Flickr datasets, 1000 images each are used
for validation and testing while using the rest (6000 and
∼28000 respectively) for training. For COCO, a similar
split is used but the number of images used for validation
and testing each is 5000.

The underlying sequence level model is an encoder-
decoder architecure proposed by Vinyals et al. (2015); a
single layer LSTM with 1024 hidden units. For the DSF,
we use a two-layer MLP, as defined in (9) with d = 1024
(LSTM hidden size) and m = 512. The input image is
treated as the first word and is represented using activations
of the penultimate layer of ResNet-152 (He et al., 2016)
network, pretrained on Imagenet (Deng et al., 2009). Both
the DSF and the LSTM (in the case of EE) are trained using
Adam (Kingma & Ba, 2014) with a learning rate of 1e− 4
and 1e − 5 respectively. We set the beam size K = 5 in
all our experiments. As mentioned in Section 2, we first
do a coarse selection using a standard sequence model;
inputting only the top-100 alternatives corresponding to
each partial solution to the DSF. Importantly, note that this
trick is required only to speed up the training phase. Further,
all variants of o ur approach are warm started from standard
sequence prediction trained via MLE.

Evaluation. When training using RE, we use CIDEr
(Vedantam et al., 2015) to compute faccuracy and optimize
for it; TF-IDF vectors for computing CIDEr are obtained
from COCO-validation split. However, we report results
on all the commonly used captioning metrics – BLEU-4
(Papineni et al., 2002), METEOR (Denkowski & Lavie,
2014), ROUGE (Lin, 2004), CIDEr and SPICE (Anderson
et al., 2016). Additionally, we report distinct n-grams, a
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Captions produced by

Humans Beam Search Diverse Beam Search ∇BS-CE-RE

A white and brown dog is asleep underneath a small table A black and white dog is looking at the camera A dog is looking out of a window A white dog sitting on the ground
A dog is sleeping under a table A black and white dog sitting on the floor A dog sitting in a window looking at something A black and white dog sitting on the floor
A dog is sleeping under a chair A black and white dog laying on the floor A black and white dog is sitting on the floor A black and white dog laying on the floor

A spotted dog is asleep under a table A black and white dog laying on the floor The dog is sitting on the floor looking at the camera The dog is sitting in the room
A dog is sleeping on the floor A brown and white dog sitting in the room A white dog is looking at a cat The dog is laying on the floor

Three people posing on a boat A man and a woman on a boat in the water A man and a woman are standing on a boat A man and a woman standing in front of a boat
Two women and a man on a boat are posing for a picture A man and a woman standing next to a small boat A man and a woman standing on a boat with a dog Two people standing on a boat in the water

Three people are riding in a boat on a sunny day A man and a woman sitting on a boat in the water Two people standing on a boat in the water A woman in pink dress standing on a boat
A group of people on a boat A man standing next to a woman on a boat Two people standing in front of a boat A young man holding his cellphone

Three friends enjoying a boat ride A man and a woman riding a boat The young man is holding his cellphone An older man and a woman standing on a boat

Table 2. Captions produced by our approach∇BS compared against Human annotations, BS and DBS for two images – one simple
image that has less variation in human annotations and a complex image that has multiple objects and interactions, exhibiting greater
variation in human generated captions. While BS tends to be largely repetitive, DBS, with parameters tuned based on a validation set,
tends to produce diverse captions while some of which might not be applicable to the image. On the other hand,∇BS strikes a balance
between the two procedures in terms of diversity, aligning with the observations from Table 1.

metric introduced by (Li & Jurafsky, 2016) to serve as an
indicator of the diversity in the decoded lists. Specifically,
we report the number of unique 4-grams and normalize it
by the number of words to bias against larger sequences.

As we see from Table 1, variants of∇BS outperform stan-
dard sequence models used with BS or DBS. Further, they
also outperform (Rennie et al., 2017) that directly optimizes
for the metric. Among the proposed decoders, the ∇BS-
MIXER and ∇BS-CE-RE-EE variants perform the best,
each performing best on certain metrics. Importantly, these
trends hold across all three data-sets used in this experiment.

4.4. Discussion.

In this subsection, we discuss different variants of our
method and its applicability in different scenarios.

Is Diversity Always Required? While diversity in
the decoded captions is beneficial, it may not always be
necessary. For example, it may not be possible to describe
an image containing one object (e.g. a close up of a cat) in
diverse ways. Following the analysis of (Vijayakumar et al.,
2018), we divide the images in the test set into three sets –
simple, average and complex, based on their image
complexity scores (Ionescu et al., 2016). These scores
are higher for images with many objects and are in some
sense, reflective of the “complexity” of the image. As seen
from Table 2 and 3, our method ∇BS-CE-RE-EE performs
consistently well on all three splits of varying complexity.

Set-metrics with Combinatorial Constraints. To
demonstrate the ability of our method in handling arbitrary
set-level constraints, we optimize set-level metrics with
combinatorial constraints; for e.g. in the context of
automatic response suggestion (Kannan et al., 2016), such a
set-level metric can reward the first two sequences based
on the presence of positive sentiment and the rest, on
negative sentiment. In our image captioning setup, we

Split Faccuracy

CIDEr SPICE

simple 1.5723 0.1724
average 1.6015 0.1751
complex 1.6012 0.1754

Table 3. The ∇BS-CE-RE-EE variant of our model performs
equally well (score on the entire COCO test split is 1.5995 and
0.1745 for CIDEr and SPICE respectively) across all levels of com-
plexity; demonstrating that learning to decode learns to promote
diversity while being aware of the contents of the image.

instantiate such a metric by using CIDEr to reward the first
two sequences and SPICE for the remaining three (K = 5).
We observe that first 2 sequences get a higher CIDEr score
(an average of 1.1623 against a SPICE score of 0.1622) and
similarly, the remaining three sequences achieve a higher
SPICE score (0.1698 as compared to a CIDEr score of
1.0624).

5. Conclusion
Producing a set of K outputs is beneficial for tasks that are
inherently multimodal, admitting multiple correct outputs
for a single input. Further, many tasks that desire a single
best output produce such a set of outputs as an intermediate
step. Despite its widespread usage, existing sequence predic-
tion models used in conjuction with decoding strategies like
BS fail to produce good output sets; often producing largely
redundant sequences with minor varations. To address this
we propose∇BS, a trainable decoder for sets of sequences.
Our method accounts for higher order interactions like di-
versity by modeling intra-set interactions and can be tuned
to optimize arbitrary set-level metrics. Finally, we report
results on the language generation task of image-captioning
and include a discussion of variants of our method and its
applicability in different scenarios.
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