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Supplementary Material for
Policy Consolidation for Continual Reinforcement Learning

A. Details of Implementation
Much of the code for the PC model was built on top of
and adapted from the distributed PPO implementation in
(Dhariwal et al., 2017).

A.1. Single agent experiments

For the baseline models, we mainly used the hyperparam-
eters used for the training of Mujoco tasks in (Schulman
et al., 2017). The value function network shared parame-
ters with the policy network and no task-id input was given
to the agents. As in (Dhariwal et al., 2017), the running
mean and variance of the inputs was recorded and used to
normalise the input to mean 0 and variance 1. The gra-
dients are also clipped to a norm of 0.5 as in (Dhariwal
et al., 2017). In (Schulman et al., 2017), different parame-
ters were used for the Humanoid tasks as well as multiple
actors - for simplicity we used the Mujoco parameters and
a single actor. The hidden policies were all initialised with
the same parameters as the visible policy for the PC agent,
which means that the beginning of training can be slow as
the agent is over-consolidated at the initial weights. This
might be remedied in the future by introducing incremental
flow from the deeper beakers as training progresses.

Table S1 shows a list of hyperparameters used for the ex-
periments. In future, we would like to do a broader param-
eter search for both the baselines and the policy consolida-
tion model. For this work, many more baselines were run
than policy consolidation agents in the interest of fairness.

A.2. Self-play experiments

For the self-play experiments, the agents were trained for
much longer than in the single agent tasks. For this rea-
son, in order to speed up training, a number of changes
were made, namely: using multiple environments in paral-
lel to generate experience, increasing the trajectory length,
increasing the minibatch size, reducing number of epochs
per update. As a result of increasing the number of experi-
ences trained on per update as well as the trajectory length,
it was reasonable to expect that the variance of the updates
should decrease and that short term non-stationarity is bet-
ter dealt with. For this reason, we reduced ω1,2 and β in
the PC model to allow larger updates per iteration. Addi-

tionally, we compared the PC model to a lower range of βs
for the fixed-KL baselines for fairness.

The primary (sparse) reward for the RoboSumo agent was
administered at the end of an episode, with 2000 for a win,
-2000 for a loss and -2000 for a draw. To encourage faster
learning, as in (Al-Shedivat et al., 2018) and (Bansal et al.,
2018), we also trained all agents using a dense reward cur-
riculum in the initial stages of training. We refer readers to
(Al-Shedivat et al., 2018) for the details of the curriculum,
which include auxiliary rewards for agents staying close to
the centre of the ring and for being in contact with their
opponent. Specifically, for the the first 15% of training
episodes, the agent was given a linear interpolation of the
dense and sparse rewards αrdense + (1−α)rsparse with α
being decayed linearly from 1 to 0 over the course of the
first 15% of episodes until only the sparse reward was ad-
ministered. Only the experiences from one of the players
in each environment was used to update the agent.

B. Directionality of KL constraint
In our initial experiments we found that using a
DKL (πk||πkold

) constraint for each policy in the PC
model, rather than the DKL (πkold

||πk) constraint used
in the KL versions of PPO (Schulman et al., 2017), re-
sulted in better continual learning and so in the main re-
sults section we compared the PC model with KL base-
lines that also used the DKL (πk||πkold

) constraint. Here
we show in a few experiments that we get the same qualita-
tive improvements from the PC agent if we use the original
KL constraint from PPO for both the PC model and the
baselines (Figure S1). As can be seen particularly in the
HalfCheetah and Humanoid alternating task settings, the
DKL (πk||πkold

) version performs better.

The effect of the directionality of this KL constraint, as well
as the directionality of the KL constraints between adjacent
policies (of which there are four possible combinations)
warrants further investigation and is an important avenue
for future work.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Table S1. Hyperparameters
PARAMETER MULTI-TASK SINGLE TASK SELF-PLAY

# TASK SWITCHES 19 0 0
# TIMESTEPS/TASK 1M 50M (HUMANOID) / 20M (OTHERS) 600M
DISCOUNT γ 0.99 0.99 0.995
GAE PARAMETER (λ) 0.95 0.95 0.95
HORIZON 2048 2048 8192
ADAM STEPSIZE (KTH POLICY) ω1−k × 3× 10−4 ω1−k × 3× 10−4 OR ω1−k × 3× 10−5 ω1−k × 10−4

VF COEFFICIENT 0.5 0.5 0.5
# EPOCHS PER UPDATE 10 10 6
# MINIBATCHES 64 64 32
NEURON TYPE RELU RELU RELU
WIDTH HIDDEN LAYER 1 64 64 64
WIDTH HIDDEN LAYER 2 64 64 64
ADAM β1 0.9 0.9 0.9
ADAM β2 0.999 0.999 0.999
# HIDDEN POLICIES 7 7 7
ω1,2 1 1 0.25
ω 4 4 4
β (POL.CONS.) 0.5 0.5 0.1
ADAPTIVE KL dtarg 0.01 0.01 0.01
# ENVIRONMENTS 1 1 16

C. Task switching schedule effects
Figure S2 shows the effects of changing the frequency of
task switching in the alternating task setting for both the
PC model and one of the baselines (fixed-KL with β = 10).
An interesting point to note is that in the baseline runs with
slower task-switching schedules, the performances on both
tasks decrease over time, with the agent unable to reach
previously attained highs. In other words, the agent not
only catastrophically forgets, but learning one task puts the
network in a state that it struggles to (re)learn the other task
at all.
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(a) DKL (πkold ||πk)
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Figure S1. Reward over time using the (a) DKL (πkold ||πk) and (b) DKL (πk||πkold) constraints.
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(a) PC model
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(b) Fixed-KL β = 10

Figure S2. Reward over time for (a) PC model and (b) fixed-KL baseline with β = 10 for different task-switching schedules between
the HumanoidSmallLeg-v0 and HumanoidBigLeg-v0 tasks.
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