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A. Preliminaries
Lemma A.1. (Lemma 11 of Abbasi-Yadkori et al., 2011) Let {Xt}Tt=1 be a sequence in Rd with ||Xt||2 ≤ 1, Q a d× d
positive definite matrix with det(Q) ≥ 1 and A(t) =

∑t−1
τ=1XτX

T
τ . Then, we have

T∑
t=1

XT
t {Q+A(t)}−1Xt ≤ 2log

(det(Q+A(T + 1))

det(Q)

)
.

Lemma A.2. (Lemma 2.1 of Bercu and Touati, 2008) Let x be a square integrable random variable with mean 0 and
variance σ2 > 0. Then,

E
[
exp
(
x− 1

2
x2 − 1

2
σ2
)]
≤ 1.

Lemma A.3. (Lemma 7 of de la Peña et al., 2009) Let Xτ ∈ Rd be Fτ -measurable for some filtration {Fτ}tτ=1,
E
[
Xτ |Fτ−1

]
= 0, and ||Xτ ||2 ≤ B for some constant B, τ = 1, · · · , t. Let cτ ∈ R be Fτ -measurable, |cτ | ≤ 1 and

Xτ ⊥ cτ |Fτ−1. Then for any λ ∈ Rd,

E
[
exp
{
λT

t∑
τ=1

Xτ cτ −
1

2
λT
( t∑
τ=1

XτX
T
τ +

t∑
τ=1

E
[
XτX

T
τ |Fτ−1

])
λ
}]
≤ 1.

Proof. Taking x = λTXτ cτ , we have from Lemma A.2,

E
[
exp
{
λTXτ cτ −

1

2
λT
(
c2τXτX

T
τ + E

[
c2τXτX

T
τ |Fτ−1

])
λ
}∣∣∣Fτ−1

]
≤ 1.

Since c2τ ≤ 1 and XτX
T
τ is positive semi-definite,

E
[
exp
{
λTXτ cτ −

1

2
λT
(
XτX

T
τ + E

[
XτX

T
τ |Fτ−1

])
λ
}∣∣∣Fτ−1

]
≤ 1.

Lemma A.4. (Abramowitz and Stegun, 1964) If Z ∼ N (m,σ2), for any z ≥ 1,

1

2
√
πz

exp
(
− z2

2

)
≤ P

(
|Z −m| > zσ

)
≤ 1√

πz
exp
(
− z2

2

)
.

B. Proof of Theorem 4.2
The proof of Theorem 4.2 follows the proof sketch of Section 4.2.
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B.1. Proof of (14)

Take cτ =
(
ν(τ)+b̄(τ)Tµ

2

)
. Since E

[
Xτ |Fτ−1

]
= 0, |cτ | ≤ 1, and Xτ ⊥ cτ |Fτ−1, we can apply Lemma A.3, i.e., for any

λ ∈ Rd,

E
[
exp
{
λT

t−1∑
τ=1

Xτ cτ −
1

2
λT
( t−1∑
τ=1

XτX
T
τ +

t−1∑
τ=1

E[XτX
T
τ |Fτ−1]

)
λ
}]
≤ 1.

B.2. Proof of Lemma 4.4

By Lemma A.3, for any λ ∈ Rd,

E
[
exp
{
λT

t−1∑
τ=1

1√
2
Yτ −

1

2
λT
(1

2

t−1∑
τ=1

YτY
T
τ +

1

2

t−1∑
τ=1

E
[
YτY

T
τ |Fτ−1

])
λ
}]
≤ 1.

Here,

λTYτY
T
τ λ = λTD(τ)µµTD(τ)λ

=
{(
D(τ)λ

)T
µ
}2

≤ µTµ
(
D(τ)λ

)T (
D(τ)λ

)
(∵ Cauchy-Schwarz inequality)

≤
(
D(τ)λ

)T (
D(τ)λ

)
= λTD(τ)2λ, (1)

and

λTE
[
YτY

T
τ |Fτ−1

]
λ ≤ λTE

[
D(τ)2|Fτ−1

]
λ. (2)

Let L = XτX
T
τ and K = E

[
XτX

T
τ |Fτ−1

]
. Then,

λTD(τ)2λ = λT
(
L−K

)2
λ

= λTL2λ+ λTK2λ+ 2λTL(−K)λ

≤ λTL2λ+ λTK2λ+ 2
√
λTL2λ λTK2λ (∵ Cauchy-Schwarz inequality)

≤ 2λTL2λ+ 2λTK2λ. (3)

Also,

E
[
D(τ)2|Fτ−1

]
= E

[
(L−K)2|Fτ−1

]
= E

[
L2|Fτ−1

]
− E

[
L|Fτ−1

]
K −KE

[
L|Fτ−1

]
+K2

= E
[
L2|Fτ−1

]
−K2 (∵ E

[
L|Fτ−1

]
= K)

⇒ λTE
[
D(τ)2|Fτ−1

]
λ ≤ 2λTE

[
D(τ)2|Fτ−1

]
λ

= 2λTE
[
L2|Fτ−1

]
λ− 2λTK2λ. (4)

Due to (1), (2), (3) and (4),

λT
(
YτY

T
τ + E

[
YτY

T
τ |Fτ−1

])
λ ≤ 2λT

(
L2 + E

[
L2|Fτ−1

])
λ

≤ 2λT
(
XτX

T
τ + E

[
XτX

T
τ |Fτ−1

])
λ,

where the last inequality is due to L = XτX
T
τ and XT

τ Xτ ≤ 1. Therefore, for any λ ∈ Rd,

E
[
exp
{
λT

t−1∑
τ=1

1√
2
Yτ −

1

2
λT
( t−1∑
τ=1

XτX
T
τ +

t−1∑
τ=1

E
[
XτX

T
τ |Fτ−1

])
λ
}]
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≤ E
[
exp
{
λT

t−1∑
τ=1

1√
2
Yτ −

1

2
λT
(1

2

t−1∑
τ=1

YτY
T
τ +

1

2

t−1∑
τ=1

E
[
YτY

T
τ |Fτ−1

])
λ
}]

≤ 1.

C. Proof of Theorem 4.1
The proof of Theorem 4.1 follows the lines of Agrawal and Goyal (2013) with some modifications. We present the whole
proof.

(a) The first stage is the derivation of a high-probability upper bound of |(bi(t) − b̄(t))T (µ̂(t) − µ)|. This is done in
Theorem 4.2, which we restate here for concreteness.

Theorem C.1. Let the event Eµ̂(t) be defined as follows:

Eµ̂(t) =
{
∀i : |

(
bi(t)− b̄(t)

)T
(µ̂(t)− µ)| ≤ l(t)sct,i

}
,

where sct,i =

√(
bi(t)− b̄(t)

)T
B(t)−1

(
bi(t)− b̄(t)

)
and l(t) = (2R + 6)

√
dlog(6t3/δ) + 1. Then for all t ≥ 1, for

any 0 < δ < 1, P(Eµ̂(t)) ≥ 1− δ
t2 .

(b) We next establish a high-probability upper bound for |(bi(t)− b̄(t))T (µ̃(t)− µ̂(t))| in the following Proposition C.2.
The proof is a simple extension of Agrawal and Goyal (2013), which uses Lemma A.4 for gaussian random variables.

Proposition C.2. Let the event Eµ̃(t) be defined as follows:

Eµ̃(t) =
{
∀i : |

(
bi(t)− b̄(t)

)T
(µ̃(t)− µ̂(t))| ≤ m(T )sct,i

}
,

where m(T ) = v
√

4dlog(Td). Then for all t ≥ 0, P(Eµ̃(t)|Ft−1) ≥ 1− 1
T 2 .

Proof. Note that given Ft−1, the values of
(
bi(t)− b̄(t)

)
, B(t) and µ̂(t) are fixed. Then,

|bci (t)T (µ̃(t)− µ̂(t))| = |bci (t)T vB(t)−1/2 1

v
B(t)1/2(µ̃(t)− µ̂(t))|

≤ v
√
bci (t)

TB(t)−1bci (t)
∣∣∣∣∣∣1
v
B(t)1/2(µ̃(t)− µ̂(t))

∣∣∣∣∣∣
2

= vsct,i

∣∣∣∣∣∣1
v
B(t)1/2(µ̃(t)− µ̂(t))

∣∣∣∣∣∣
2

= vsct,i

√√√√ d∑
j=1

||Zj(t)||22,

where Zj(t)|Ft−1
i.i.d.∼ N (0, 1) and the first inequality is due to Cauchy-Schwarz inequality. Due to Lemma A.4, for

fixed j and z ≥ 1,

P
(
|Zj(t)| > z | Ft−1

)
≤ 1√

πz
exp
(
− z2

2

)
≤ exp

(
− z2

2

)
.

Setting exp
(
− z2/2

)
= 1

dT 2 , we have z =
√

2log(dT 2) ≤
√

2log(d2T 2) =
√

4log(dT ). Hence,

P
(
|Zj(t)| >

√
4log(dT ) | Ft−1

)
≤ 1

dT 2

⇒ P
(
∀j : |Zj(t)| >

√
4log(dT ) | Ft−1

)
≤ 1

T 2
.

Thus, with probability at least 1− 1
T 2 , for all i = 1, · · · , N ,

|
(
bi(t)− b̄(t)

)T
(µ̃(t)− µ̂(t))| ≤ vsct,i

√
4dlog(dT ) = m(T )sct,i.
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(c) Before proceeding, we divide the arms at each time into two groups: saturated and unsaturated arms. Let g(T ) =
m(T ) + l(T ). An arm i is saturated at time t if(

bi(t)− b̄(t)
)T
µ+ g(T )sct,i <

(
ba∗(t)(t)− b̄(t)

)T
µ,

and unsaturated otherwise. Note that the optimal arm a∗(t) is unsaturated. Note also that from Stage (a) and Stage (b),
(bi(t)− b̄(t))Tµ+ g(T )sct,i is an upper bound of (bi(t)− b̄(t))T µ̃(t). Hence by definition, the saturated arms are the
arms that have quite accurate values of (bi(t)− b̄(t))T µ̃(t) so that their upper bound is lower than (ba∗(t)(t)− b̄(t))Tµ,
enabling the algorithm to distinguish between them and the optimal arm.

(d) Next, we show in Proposition C.3 that the probability of playing saturated arms is bounded by a function of the
probability of playing unsaturated arms. The proof is a simple extension of Agrawal and Goyal (2013).

Proposition C.3. Let C(t) be the set of saturated arms at time t, i.e., C(t) = {i :
(
bi(t) − b̄(t)

)T
µ + g(T )sct,i <(

ba∗(t)(t)− b̄(t)
)T
µ}. Given any filtration Ft−1 such that Eµ̂(t) is true,

P
(
a(t) ∈ C(t)|Ft−1

)
≤ 1

p
P
(
a(t) /∈ C(t)|Ft−1

)
+

1

pT 2
,

where p = 1
4e
√

2
√
π
.

Proof. Since the algorithm pulls the arm argmax
i
{bi(t)T µ̃(t)}, if ba∗(t)(t)

T µ̃(t) > bj(t)
T µ̃(t) for every j ∈ C(t),

then a(t) /∈ C(t). Hence,

P
(
a(t) /∈ C(t)|Ft−1

)
≥ P

(
ba∗(t)(t)

T µ̃(t) > bj(t)
T µ̃(t), ∀j ∈ C(t)|Ft−1

)
= P

(
bca∗(t)(t)

T µ̃(t) > bcj(t)
T µ̃(t), ∀j ∈ C(t)|Ft−1

)
. (5)

If Eµ̃(t) is additionally true, for ∀j ∈ C(t),

bcj(t)
T µ̃(t) ≤ bcj(t)Tµ+ g(T )sct,j (∵ Eµ̂(t) & Eµ̃(t))

≤ bca∗(t)(t)
Tµ. (∵ definition of C(t))

Therefore,

P
(
bca∗(t)(t)

T µ̃(t) > bcj(t)
T µ̃(t), ∀j ∈ C(t)|Ft−1

)
+
(

1− P
(
Eµ̃(t)|Ft−1

))
≥ P

(
bca∗(t)(t)

T µ̃(t) > bca∗(t)(t)
Tµ|Ft−1

)
. (6)

Given Eµ̂(t), |bca∗(t)(t)
T (µ̂(t)− µ)| ≤ l(T )sct,a∗(t). Thus by Lemma A.4,

(6) = P
( bca∗(t)(t)

T (µ̃(t)− µ̂(t))

vsct,a∗(t)

>
bca∗(t)(t)

T (µ− µ̂(t))

vsct,a∗(t)

∣∣∣Ft−1

)
≥ P

(
Z(t) >

l(T )

v

∣∣∣Ft−1

)
≥ 1

4
√
πz

exp
(
− z2

2

)
≥ p, (7)

where Z(t)|Ft−1 ∼ N (0, 1) and z = l(T )/v. Therefore, due to (5), (6), (7) and Proposition C.2,

P
(
a(t) /∈ C(t)|Ft−1

)
≥ p− 1

T 2
.

⇒
P
(
a(t) ∈ C(t)|Ft−1

)
P
(
a(t) /∈ C(t)|Ft−1

)
+ 1

T 2

≤ 1

p
.
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(e) Next in Proposition C.4, we use Proposition C.3 and the definition of unsaturated arms to show that the regret can be
bounded by a factor of sct,a(t) in expectation.

Proposition C.4. Given any filtration Ft−1 such that Eµ̂(t) is true,

E
[
regret(t)|Ft−1

]
≤ 5g(T )

p
E
[
sct,a(t)|Ft−1

]
+

3g(T )

pT 2
.

Proof. Let ã(t) = argmin
i/∈C(t)

sct,i. This value is determined by Ft−1. Under both Eµ̂(t) and Eµ̃(t),

bca∗(t)(t)
Tµ = bca∗(t)(t)

Tµ− bcã(t)(t)
Tµ+ bcã(t)(t)

Tµ

≤ g(T )sct,ã(t) + bcã(t)(t)
Tµ

≤ g(T )sct,ã(t) + bcã(t)(t)
T µ̃(t) + g(T )sct,ã(t)

≤ 2g(T )sct,ã(t) + bca(t)(t)
T µ̃(t)

≤ 2g(T )sct,ã(t) + bca(t)(t)
Tµ+ g(T )sct,a(t)

⇒ regret(t) ≤ 2g(T )sct,ã(t) + g(T )sct,a(t),

where the first inequality follows from the definition of unsaturated arms, the second and fourth inequalities from Eµ̂(t)
and Eµ̃(t), and the third inequality from the action selection mechanism. Therefore, given Ft−1 such that Eµ̂(t) holds,

E
[
regret(t)|Ft−1

]
≤ 2g(T )sct,ã(t) + g(T )E

[
sct,a(t)|Ft−1

]
+ 1− P(Eµ̃(t)|Ft−1)

≤ 2g(T )sct,ã(t) + g(T )E
[
sct,a(t)|Ft−1

]
+

1

T 2
. (8)

Here,

sct,ã(t) = sct,ã(t)

{
P(a(t) ∈ C(t)|Ft−1) + P(a(t) /∈ C(t)|Ft−1)

}
≤ sct,ã(t)

{2

p
P(a(t) /∈ C(t)|Ft−1) +

1

pT 2

}
=

2

p
E
(
sct,ã(t)I{a(t) /∈ C(t)}

∣∣Ft−1

)
+
sct,ã(t)

pT 2

≤ 2

p
E
(
sct,a(t)I{a(t) /∈ C(t)}

∣∣Ft−1

)
+
sct,ã(t)

pT 2

≤ 2

p
E
(
sct,a(t)

∣∣Ft−1

)
+

1

pT 2
,

where the first inequality is due to Proposition C.3 and the second inequality is due to the definition of ã(t). Combining
this result with (8), we have

E
[
regret(t)|Ft−1

]
≤ 5g(T )

p
E
(
sct,a(t)

∣∣Ft−1

)
+

3g(T )

pT 2
.

(f) Let Mt = regret(t)I(Eµ̂(t)) − 5g(T )
p sct,a(t) −

3g(T )
pT 2 . Then |Mt| is bounded by 9g(T )

p . Also, due to Proposition
C.4, {Mt}Tt=1 is a bounded super-martingale difference process with respect to the filtration {Ft}Tt=1. Hence by
Azuma-Hoeffding’s inequality, for any a ≥ 0,

P
( T∑
t=1

Mt ≥ a
)
≤ exp

(
− a2

2
∑T
t=1 c

2
t

)
,
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where ct = 9
pg(T ). Setting exp

(
− a2

2
∑T

t=1 c
2
t

)
= δ

2 , we have a = 9
pg(T )

√
2T log

(
2
δ

)
. Thus with probability at least

1− δ
2 ,

T∑
t=1

regret(t)I(Eµ̂(t)) ≤ 5g(T )

p

T∑
t=1

sct,a(t) +
3g(T )

pT
+

9

p
g(T )

√
2T log

(2

δ

)
. (9)

In Proposition C.5, we show that
∑T
t=1 s

c
t,a(t) ≤

√
2dT log(1 + T/d) using Lemma A.1.

Proposition C.5.
∑T
t=1 s

c
t,a(t) ≤

√
2dT log(1 + T/d).

Proof. Take Xt = ba(t)(t)− b̄(t), Q = Id, and A(t) =
∑t−1
τ=1XτX

T
τ . Then by Jensen’s inequality and Lemma A.1,

T∑
t=1

sct,a(t) ≤

√√√√T

T∑
t=1

{sct,a(t)}2 (∵ Jensen’s inequality)

=

√√√√T

T∑
t=1

XT
t B(t)−1Xt

≤

√√√√T

T∑
t=1

XT
t {Q+A(t)}−1Xt (∵ B(t) � Q+A(t))

≤

√
2T log

(det(Q+A(T + 1))

det(Q)

)
(∵ Lemma A.1)

≤
√

2dT log
(

1 +
T

d

)
. (∵ determinant-trace inequality.)

Due to (9), Proposition C.5 and the definitions of p and g(T ), we have with probability at least 1− δ
2 ,

T∑
t=1

regret(t)I(Eµ̂(t)) ≤ O
(
d3/2
√
T
√

log(Td)log(T/δ)
(√

log(1 + T/d) +
√

log(1/δ)
))
.

Since Eµ̂(t) holds for all t with probability at least 1− δ
2 (Theorem C.1), regret(t)I(Eµ̂(t)) = regret(t) for all t with

probability at least 1− δ
2 . Hence, with probability at least 1− δ,

R(T ) ≤ O
(
d3/2
√
T
√

log(Td)log(T/δ)
(√

log(1 + T/d) +
√

log(1/δ)
))
.
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