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A. Asymmetric Numeral Systems (ANS)
We will describe a version of Assymetric Numeral Systems
that we have assumed access to throughout the paper and
used in the experiments, namely the range variant (rANS).
All the other versions and interpretations can be found in
(Duda, 2009).

ANS encodes a (sequence of) data point(s) into a natural
number s ∈ N, which is called the state. We will use uncon-
ventional notation, yet consistent with our work: x to denote
a single datapoint and s to denote the state. The goal is to
obtain a state s whose length of the binary representation
grows with a rate that closely matches the entropy of the
data distribution involved.

Suppose we wish to encode a datapoint x that can take on
two symbols {x1, x2} that have equal probability. Starting
with s = 1. A valid scheme for this distribution is

x1 : s→ 2s

x2 : s→ 2s+ 1.
(11)

This simply assigns 0 to x0 and 1 to x1 in binary. Therefore,
it appends 1 or 0 to the right of the binary representation
of the state s. Note that this scheme is fully decodable:
if the current state is s′, we can read of the last encoded
symbol by telling if the state s′ is even (last symbol was x1)
or odd (last symbol was x2). Consequently, after figuring
out which symbol x was last encoded, the state s before
encoding that symbol is obtained by

x1 (s
′ even) : s→ s′

2

x2 (s
′ odd) : s→ s′ − 1

2
.

(12)

Now, for the general case, suppose that the datapoint x
can take on a multitude of symbols x ∈ {x1 = 1, x2 =
2, ..., xI = I} with probability {p1, p2, ..., pI}. In order to
obtain a scheme analogous to the case with two symbols
{x1, x2}, we have to assign every possible symbol xi to a
specific subset of the natural numbers Si ⊂ N, that par-
titions the natural numbers. Consequently, N is a disjoint
union of the subsets Si. Also, the elements in the subset
s ∈ Si corresponding to xi must be chosen such that they
occur in N with probability pi.

This is accomplished by choosing a multiplier M , called
the precision of ANS, that scales up the probabilities
{p1, p2, ..., pI}. The scaled up probability pi is denoted
by F [i] and the F ’s are chosen such that

∑I
i=1 F [i] = M .

We also choose subsets {K1,K2, ...} that form intervals of
length M and partition the natural numbers. That means,
the first M numbers belong to K1, the second M numbers
belong to K2, and so on. Then, in every partition Kn, the

first Mp1 numbers are assigned to symbol x1 and form
the subset Sn1, the second Mp2 numbers are assigned to
symbol x2 and form the subset Sn2, and so on.

Now, we define Si = ∪∞n=1Sni. The resulting subsets Si
partition the natural numbers N. Furthermore, the elements
of Si occur with probability approximately equal to pi in N.

Now, suppose we are given an initial state s. The scheme
rANS can be interpreted as follows. Encoding a symbol
xi is done by converting the state s to a new state s′ that
equals the sth occurrence in the set Si. This operation is
made concrete in the following formula:

C(x, s) =M

⌊
s

F [x]

⌋
+B[x] + s (mod F [x])

= s′ (13)

where B[x] =
∑x−1
i=1 F [i], R = s′ (mod M) and b c de-

notes the floor function.

Furthermore, suppose we are given a state s′ and we wish
to know which number was last encoded (or in other words,
we wish to decode from s′). Note that the union of the
subsets Si partitions the the natural numbers N, so every
number can be uniquely identified with one of the symbols
xi. Afterwards, if we know what the last encoded symbol xi
was, we can figure out the state s that preceded that symbol
by doing a look-up for xi in the set Si. The index of xi
in Si equals the state s that preceded s′. This operation is
made concrete in the following formula, which returns a
symbol-state (x, s) pair.

D(s′) =

(
argmax{B[x] < R}, F [x]b s

′

M
c+R−B[x]

)
= (x, s) (14)

The new state s′ after encoding xi using this scheme is ap-
proximately equal to s

pi
. Consequently, encoding a sequence

of symbols x1, x2, ..., xT onto the initial state s results in a
state sT approximately equal to sT ≈ s

p1p2···pT . Thus, the
resulting codelength is

log sT ≈ log s+
∑
t

log
1

pT
(15)

If we divide by T , we obtain an average codelength which
approaches the entropy of the data.

B. The bits-back argument
We will present a detailed explanation of the bits-back ar-
gument that is fitted to our case. Again, suppose that a
sender would like to communicate a sample x to a receiver
through a code that comprises the minimum amount of bits
on average over pdata. Now suppose that both the sender
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and receiver have access to the distributions qθ(z|x), p(x|z)
and p(z), which parameters are optimized such that pθ(x)(
=
∫
pθ(x|z)p(z)dz

)
approximates pdata(x) well. Further-

more, both the sender and receiver have access to an entropy
encoding technique like ANS. A naive compression scheme
for the sender is

1. Sample z ∼ qθ(z|x)

2. Encode x using pθ(x|z)

3. Encode z using p(z).

This would result in a bitrate equal to Ntotal =
− log pθ(x|z)− log p(z). The resulting bitstream gets sent
over and the receiver would proceed in the following way:

1. Decode z using p(z)

2. Decode x using pθ(x|z).

Consequently, the sample x is recovered in a lossless man-
ner at the receiver’s end. However, we can do better us-
ing the bits-back argument, which lets us achieve a bitrate
of log qθ(z|x)− log pθ(x|z)− log p(z), which is equal to
Ntotal − log qθ(z|x). To understand this, we have to clarify
what decoding means. If the model fits the true distribu-
tions perfectly, entropy encoding can be understood as a
(bijective) mapping between datapoints and uniformly ran-
dom distributed bits. Therefore, assuming that the bits are
uniformly random distributed, decoding information x or z
from the bitstream can be interpreted as sampling x or z.

Now, assume the sender has access to an arbitrary bitstream
Ninit that is already set in place. This can be in the form of
previously compressed datapoints or other auxilary infor-
mation. Looking at the naive compression scheme, we note
that the step ’Sample z ∼ qθ(z|x)’ can be substituted by
’Decode z using qθ(z|x)’. Consequently, the compression
scheme at the sender’s end using the bits-back argument is

1. Decode z using qθ(z|x)

2. Encode x using pθ(x|z)

3. Encode z using p(z).

This results in a total bitrate equal to Ntotal = Ninit +
log qθ(z|x) − log pθ(x|z) − log p(z). The total resulting
bitstream gets sent over, and the receiver now proceeds as:

1. Decode z using p(z).

2. Decode x using pθ(x|z)

3. Encode z using qθ(z|x)

and, again, the sample x is recovered in a lossless manner.
But now, in the last step, the receiver has recovered the Ninit
bits of auxiliary information that were set in place, thus
gaining Ninit bits “back”. Ignoring the initial bits Ninit, the
net number of bits regarding x is

Ntotal−Ninit = log qθ(z|x)− log pθ(x|z)− log p(z) (16)

which is on average equal to the negative ELBO −L(θ).

If the Ninit bits consist of relevant information, the receiver
can then proceed by decompressing that information after
gaining these ”bits back”. As an example, Townsend et al.
(2019) point out that it is possible to compress a sequence
of datapoints {x1:N}, where every datapoint xi (except for
the first one x1) uses the bitstream built up thus far as ini-
tial bitstream. Then, at the receiver’s end, the datapoints
{x1:N} get decompressed in reverse order. This way the
receiver effectively gains the “bits back” after finishing the
three decompression steps of each datapoint xi, such that
decompression of the next datapoint xi−1 can proceed. The
only bits that can be irrelevant or redundant are the ini-
tial bits needed to compress the first datapoint x1, though
this information gets amortized when compressing multiple
datapoints.

C. AC and ANS: Queue vs. Stack
Entropy encoding techniques make lossless compression
possible given an arbitrary discrete distribution p(x) over
data. There exist several practical compression schemes, of
which the most common flavors are

1. Arithmetic Coding (AC) (Witten et al., 1987)

2. Asymmetric Numeral Systems (ANS). (Duda, 2009)

Both schemes operate by encoding the data into single num-
ber (in its binary representation equivalent to a sequence
of bits or bitstream) and decoding the other way around,
where the single number serves as the message to be sent.
By doing so, both schemes result in a message length with
a small overhead of around 2 bits. That is, in case of com-
pressing x, sending/receiving a corresponding codelength
of approximately

E [− log p(x)] + 2 bits. (17)

However, AC and ANS differ in how they operate on the
bitstream. In AC, the bitstream is treated as a queue struc-
ture, where the first bits of the bitstream are the first to be
decoded (FIFO).
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Figure 7: Arithmetic Coding (AC) operates on a bitstream
in a queue-like manner. Symbols are decoded in the same
order as they were encoded.

In ANS, the bitstream is treated as a stack structure, where
the last bits of the bitstream are the first to be decoded
(LIFO).
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Figure 8: Asymmetric Numeral Systems (ANS) operates on
a bitstream in a stack-like manner. Symbols are decoded in
opposite order as they were encoded.

AC and ANS both operate on one discrete symbol xd at the
time. Therefore, the compression schemes are constrained
to a distribution p(x) that encompasses a product of discrete
directed univariate distributions in order to operate. Further-
more, both the sender and receiver need to have access to
the compression scheme and the model in order to be able
to communicate.

Frey & Hinton (1996) implement the bits-back theory on
a single datapoint x using AC. Then the net codelength is
equal to the ELBO, given the fact that we have access to
an initial random bitstream. However, we must consider
the length of the initial bitstream, which we call the initial
bits, from which we decode z when calculating the actual
codelength, in which case the codelength degenerates to
Eqθ(·|x)[− log pθ(x, z)] bits. So implementing bits-back
on a single datapoint will not result in the advantage of
getting “bits back”.

By communicating a sequence of datapoints D, only the
first datapoint x1 needs to have an initial random bitstream
set in place. Afterwards, a subsequent datapoint xi may just
use the existing bitstream build up thus far to decode the
corresponding latent variable zi. This procedure was first
described by (Frey, 1998), and was called bits-back with
feedback. We will use the shorter and more convenient term
chaining, which was introduced by (Townsend et al., 2019).

Chaining is not directly possible with AC, because the ex-
isting bitstream is treated as a queue structure. Whereas
bits-back only works if the latent variable z ∼ p(z) is de-
coded earlier than the corresponding datapoint x ∼ pθ(x|z),
demanding z to be ’stacked’ on top of x when decoding.

Table 7: Hyperparameters of the model architecture of
MNIST, CIFAR-10 and ImageNet (32× 32). The first three
rows denote the dimensions of x, zi and the output of the
used Residual blocks respectively. The fourth row marks
the amount of latent layers L used. The fifth and sixth row
denote the amount of ’processing’ Residual blocks P and
the ’ordinary’ Residual blocks B respectively, as explained
in D

.

MNIST CIFAR-10 ImageNet (32× 32)

Dimension x (C,H,W ) (1, 28, 28) (3, 32, 32) (3, 32, 32)
Dimension zi (C,H,W ) (1, 16, 16) (8, 16, 16) (8, 16, 16)
Dimension Residual (C,H,W ) (64, 16, 16) (256, 16, 16) (256, 16, 16)
Latent Layers (L) {1, 2, 4, 8} {1, 2, 4, 8} {1, 2, 4}
’Processing’ Residual (P ) 4 4 4
’Ordinary’ Residual (B) 8 8 8
Dropout Rate (p) 0.2 0.3 0.0
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Figure 9: A schematic representation of the networks cor-
responding to qθ(z1|x) (left) and qθ(zi|zi−1) (right) of the
inference model. The arrows show the direction of the
forward propagation.

Frey solves this problem by reversing the order of bits of
the encoded (z,x) before adding it to the bitstream. This
incurs a cost between 2 to 32 bits to the encoding procedure
of each datapoint x ∈ D, depending on implementation.

D. Model Architecture
For all three datasets (MNIST, CIFAR-10 and ImageNet
(32× 32)), we chose a Logistic distribution (µ = 0, σ = 1)
for the prior p(zL) and conditional Logistic distributions
for qθ(zi|zi−1), qθ(z1|x) and pθ(zi|zi+l). The distribution
pθ(x|z1) is chosen to be a discretized Logistic distribution
as defined in (Kingma et al., 2016). We modeled the Lo-
gistic distributions by a neural network for every pair of
parameters (µ, σ). A schematic representation of the differ-
ent networks is shown in Figure 9 and 10. The σ parameter
of pθ(x|z1) is modeled unconditionally, and optimized di-
rectly. We chose Residual blocks (He et al., 2015) as hidden
layers. We also used Dropout (Srivastava et al., 2014) to pre-
vent overfitting, Weight Normalization and Data-Dependent
Initialization (Salimans & Kingma, 2016), Polyak averaging
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Figure 10: A schematic representation of the networks cor-
responding to pθ(x|z1) (left) and pθ(zi|zi+l) (right) of the
generative model. The arrows show the direction of the
forward propagation.

(Polyak & Juditsky, 1992) of the model’s parameters and
the Adam optimizer (Kingma & Ba, 2015).

To make a fair comparison between the different latent
layer depths L for one dataset, we used B ‘ordinary’ Resid-
ual blocks for the entire inference model and B for the
generative model, that is kept fixed for all latent layer
depths L. The blocks are distributed over the L networks
that make up the inference model and L networks that
make up the generative model. In addition, we added P
‘processing’ Residual blocks at the beginning/end of the
network corresponding to qθ(z1|x) and pθ(x|z1) respec-
tively. Finally, we decreased the channel dimension of
the output of all the Residual blocks in order to ensure
that the parameter count stays constant (or regresses) as
we add more latent layers. All the chosen hyperparame-
ters are shown in Table 7. We refer to the code https:
//github.com/fhkingma/bitswap for further de-
tails on the implementation.

E. Usefulness of Latent Layers & Posterior
Collapse

Posterior collapse is one of the drawbacks of using varia-
tional auto-encoders (Chen et al., 2016). Especially when
using deep hierarchies of latent variables, the higher latent
layers can become redundant and therefore unused (Zhao
et al., 2017). We will counter this problem by using the
free-bits technique as explained in (Chen et al., 2016) and
(Kingma et al., 2016). As a result of this technique, all
latent layers across all models and datasets are used. To
demonstrate this, we generated stack plots of the number
of bits/dim required per stochastic layer to encode the test
set over time shown in Figure 11. The bottom-most (white)
area corresponds to the bottom-most (reconstruction of x)
layer, the second area from the bottom denotes the first la-
tent layer, the third area denotes the second latent layer, and

so on.

F. Discretization of z1:L
In order to perform lossless compression with continuous
latent distributions, we need to determine how to discretize
the latent space zi for every corresponding distribution
pθ(zi|zi+1), qθ(zi|zi−1) and p(zL). In (Townsend et al.,
2019), based on (MacKay, 2003), they show that if the bins
δz of z ∼ p(z) match the bins δz of z ∼ qθ(z|x), con-
tinuous latents can be discretized up to arbitrary precision,
without affecting the net compression rate as a result of
getting ”bits back”. We generalize this result to hierarchical
latent variables by stating that the bins δzi of the latent con-
ditional generative distributions (z1, .., zL) ∼ pθ(z1, .., zL)
have to match the bins δzi

of the inference distributions
(z1, .., zL) ∼ qθ(z1, .., zL|x) in order to avoid affecting
the compression rate. Nonetheless, the length of the initial
bitstream needed to decode latent sample z1 ∼ qθ(z1|x)
(or possibly samples (z1, .., zL) ∼ qθ(z1, .., zL|x)) is still
dependent on the corresponding bin size(s) δzi

. Therefore,
we cannot make the bin sizes δzi

too small without affecting
the total codelength too much.

There are several discetization techniques we could use.
One option is to simply discretize uniformly, which means
dividing the space into bins of equal width. However, given
the constraint that the initial bitstream needed increases
with larger precision, we have to make bin sizes reasonably
large. Accordingly, uniform discretization of non-uniform
distributions could lead to large discretization errors and
this could lead to inefficient codelengths.

An option is to follow the discretization technique used in
(Townsend et al., 2019) by dividing the latent space into bins
that have equal mass under some distribution (as opposed
to equal width). Ideally, the bins δzi of zi ∼ pθ(zi|zi+1)
match the bins δzi of zi ∼ qθ(zi|zi−1) and the bins δzi

have equal mass under either pθ(zi|zi+1) or qθ(zi|zi−1).
However, when using ANS with hierarchical latent vari-
able models it is not possible to let the discretization of
zi ∼ qθ(zi|zi−1) depend on bins based on pθ(zi|zi+1),
because zi+1 is not yet available for the sender when de-
coding zi. Conversely, discretization of zi ∼ pθ(zi|zi+1)
cannot depend on bins based on qθ(zi|zi−1), since zi−1 is
not yet available for the receiver decoding zi. Note that
the operations of the compression scheme at the sender end
have to be the opposite of the operations at the receiver end
and we need the same discretizations for both ends. Under
this conditions, it is not possible to use either pθ(zi|zi+1)
or pθ(zi|zi−1) for the bin sizes δzi

and at the same time
match the bins δzi

of zi ∼ pθ(zi|zi+1) with the bins δzi
of

zi ∼ qθ(zi|zi−1).

So, we sampled a batch from the latent generative model

https://github.com/fhkingma/bitswap
https://github.com/fhkingma/bitswap
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Figure 11: Stack plots of the number of bits/dim required per stochastic layer to encode the test set over time. The
bottom-most (white) area corresponds to the bottom-most (reconstruction of x) layer, the second area from the bottom
denotes the first latent layer, the third area denotes the second latent layer, and so on.

pθ(z1, .., zL) by ancestral sampling and a batch from the
latent inference model (using the training dataset) right after
learning. This gives us unbiased estimates of the statistics
of the marginal distributions pθ(z1), .., p(zL), defined in
Equation 5, which we can save as part of the model. Con-
sequently, we used the marginal distributions to determine
the bin sizes for discretization of zi ∼ pθ(zi|zi+1) and
zi ∼ qθ(zi|zi−1). Note that we only have to perform this
sampling operation once, hence this process does not affect
the compression speed.

However, we found that using uniform discretization for
all latent layers L except for the top one (corresponding
to the prior) gives the best discretization and leads to the
best compression results. Nevertheless, the top layer is
discretized with bins that have equal mass under the prior,
following Townsend et al. (2019).

G. General Applicability of Bit-Swap
Our work only concerns a very particular case of hierar-
chical latent variable models, namely hierarchical latent
variable models in which the sampling process of both the
generative- and inference model corresponding variational

autoencoder obey Markov chains of the form

zL → zL−1 → · · · → z1 → x

and
zL ← zL−1 ← · · · ← z1 ← x

respectively. It might seem very restrictive to only be able to
assume this topology of stochastic dependencies. However,
the Bit-Swap idea can in fact be applied to any latent vari-
able topology in which it is possible to apply the bits-back
argument in a recursive manner.

To show this we present two hypothetical latent variable
topologies in Figure 12. Figure 12(a) shows an asymmet-
rical tree structure of stochastic dependencies and Figure
12(b) shows a symmetrical tree structure of stochastic de-
pendencies where the variables of one hierarchical layer can
also be connected. In Figure 12(c) and 12(d) we show the
corresponding Bit-Swap compression schemes.

The more general applicability of Bit-Swap allows us to
design complex stochastic dependencies and potentially
stronger models. This might be an interesting direction
for future work.
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(a) Asymmetrical tree structure
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(b) Symmetrical tree structure including dependencies
within a hierarchical layer
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(c) Bit-Swap executed on 12(a)
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(d) Bit-Swap executed on 12(b)

Figure 12: The top left Figure shows an asymmetrical tree structure of stochastic dependencies and the top right Figure
shows a symmetrical tree structure of stochastic dependencies where the variables of one hierarchical layer can also be
connected. The black arrows indicate the direction of the generative model and the gray dotted arrows show the direction of
the inference model. The black dotted arrows show where the prior(s) is/are defined on. In the bottom left and the bottom
right we show the corresponding Bit-Swap compression schemes. In the right column of every Figure, we show the variables
that are being operated on. On the left of every Figure we show the operations that must be executed by the sender and in
the middle we show the operations executed by the receiver. The operations must be executed in the order that is dictated by
the direction of the corresponding arrow. The sender always uses the inference model for decoding and the generative model
for encoding. The receiver always uses the generative model for decoding and the inference model for encoding.


