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Appendix

A. Adding Fairness Constraints to Normalized Spectral Clustering
In this section we derive a fair version of normalized spectral clustering (similarly to how we proceeded for unnormalized
spectral clustering in Sections 2 and 3 of the main paper).

Normalized spectral clustering aims at partitioning V into k clusters with minimum value of the NCut objective function as
follows (see von Luxburg, 2007, for details): for a clustering V = C1∪̇ . . . ∪̇Ck we have

NCut(C1, . . . , Ck) =

k∑
l=1

Cut(Cl, V \ Cl)
vol(Cl)

, (15)

where vol(Cl) =
∑
i∈Cl

di =
∑
i∈Cl,j∈[n]Wij . Encoding a clustering V = C1∪̇ . . . ∪̇Ck by a matrix H ∈ Rn×k with

Hil =

{
1/
√

vol(Cl), i ∈ Cl,
0, i /∈ Cl

, (16)

we have NCut(C1, . . . , Ck) = Tr(HTLH). Note that any H of the form (16) satisfies HTDH = Ik. Normalized spectral
clustering relaxes the problem of minimizing Tr(HTLH) over all H of the form (16) to

min
H∈Rn×k

Tr(HTLH) subject to HTDH = Ik. (17)

Substituting H = D−1/2T for T ∈ Rn×k (we need to assume that G does not contain any isolated vertices since otherwise
D−1/2 does not exist), problem (17) becomes

min
T∈Rn×k

Tr(TTD−1/2LD−1/2T ) subject to TTT = Ik.

Similarly to unnormalized spectral clustering, normalized spectral clustering computes an optimal T by computing the k
smallest eigenvalues and some corresponding eigenvectors of D−1/2LD−1/2 and applies k-means clustering to the rows
of H = D−1/2T (in practice, H can be computed directly by solving the generalized eigenproblem Lx = λDx, x ∈ Rn,
λ ∈ R; see von Luxburg, 2007).

Now we want to derive our fair version of normalized spectral clustering. The first step is to show that Lemma 1 holds true
if we encode a clustering as in (16):

Lemma 2 (Fairness constraint as linear constraint on H for normalized spectral clustering). For s ∈ [h], let f (s) ∈ {0, 1}n

be the group-membership vector of Vs, that is f (s)i = 1 if i ∈ Vs and f (s)i = 0 otherwise. Let V = C1∪̇ . . . ∪̇Ck be a
clustering that is encoded as in (16). We have, for every l ∈ [k],

∀s ∈ [h− 1] :

n∑
i=1

(
f
(s)
i −

|Vs|
n

)
Hil = 0 ⇔ ∀s ∈ [h] :

|Vs ∩ Cl|
|Cl|

=
|Vs|
n
.

Proof. This simply follows from

n∑
i=1

(
f
(s)
i −

|Vs|
n

)
Hil =

|Vs ∩ Cl|√
vol(Cl)

− |Vs| · |Cl|
n
√

vol(Cl)

and |Cl| =
∑h
s=1 |Vs ∩ Cl|.

Lemma 2 suggests that in a fair version of normalized spectral clustering, rather than solving (17), we should solve

min
H∈Rn×k

Tr(HTLH) subject to HTDH = Ik and FTH = 0(h−1)×k, (18)



Appendix to Guarantees for Spectral Clustering with Fairness Constraints

Algorithm 3 Normalized SC with fairness constraints
Input: weighted adjacency matrix W ∈ Rn×n (the underlying graph must not contain any isolated vertices); k ∈ N;
group-membership vectors f (s) ∈ {0, 1}n, s ∈ [h]

Output: a clustering of [n] into k clusters

• compute the Laplacian matrix L = D −W with the degree matrix D

• build the matrix F that has the vectors f (s) − |Vs|
n · 1n, s ∈ [h− 1], as columns

• compute a matrix Z whose columns form an orthonormal basis of the nullspace of FT

• compute the square root Q of ZTDZ
• compute some orthonormal eigenvectors corresponding to the k smallest eigenvalues (respecting multiplicities) of
Q−1ZTLZQ−1

• let X be a matrix containing these eigenvectors as columns
• apply k-means clustering to the rows of H = ZQ−1X ∈ Rn×k, which yields a clustering of [n] into k clusters

where F ∈ Rn×(h−1) is the matrix that has the vectors f (s) − (|Vs|/n) · 1n, s ∈ [h− 1], as columns (just as in Section 3).
It is rank(F ) = rank(FT ) = h − 1 and we need to assume that k ≤ n − h + 1 since otherwise (18) does not have any
solution. Let Z ∈ Rn×(n−h+1) be a matrix whose columns form an orthonormal basis of the nullspace of FT . We substitute
H = ZY for Y ∈ R(n−h+1)×k, and then problem (18) becomes

min
Y ∈R(n−h+1)×k

Tr(Y TZTLZY ) subject to Y TZTDZY = Ik. (19)

Assuming that G does not contain any isolated vertices, ZTDZ is positive definite and hence has a positive definite square
root, that is there exists a positive definite Q ∈ R(n−h+1)×(n−h+1) with ZTDZ = Q2. We can substitute Y = Q−1X for
X ∈ R(n−h+1)×k, and then problem (19) becomes

min
X∈R(n−h+1)×k

Tr(XTQ−1ZTLZQ−1X) subject to XTX = Ik. (20)

A solution to (20) is given by a matrix X that contains some orthonormal eigenvectors corresponding to the k smallest
eigenvalues (respecting multiplicities) of Q−1ZTLZQ−1 as columns. This gives rise to our fair version of normalized
spectral clustering as stated in Algorithm 3.

B. Computational Complexity of our Algorithms
The costs of standard spectral clustering (e.g., Algorithm 1) are dominated by the complexity of the eigenvector computations
and are commonly stated to be, in general, in O(n3) regarding time and O(n2) regarding space for an arbitrary number of
clusters k, unless approximations are applied (Yan et al., 2009; Li et al., 2011). In addition to the computations performed in
Algorithm 1, in Algorithm 2 and Algorithm 3 we have to compute an orthonormal basis of the nullspace of FT , perform
some matrix multiplications, and (only for Algorithm 3) compute the square root of an (n− h+ 1)× (n− h+ 1)-matrix
and the inverse of this square root. All these computations can be done in O(n3) regarding time and O(n2) regarding space
(an orthonormal basis of the nullspace of FT can be computed by means of an SVD; see, e.g., Golub & Van Loan, 2013),
and hence our algorithms have the same worst-case complexity as standard spectral clustering. On the other hand, if the
graph G, and thus the Laplacian matrix L, is sparse or k is small, then the eigenvector computations in Algorithm 1 can
be done more efficiently than with cubic running time (Bai et al., 2000). This is not the case for our algorithms as stated.
However, one could apply one of the techniques suggested in the existing literature on constrained spectral clustering to
speed up computation (e.g., Yu & Shi, 2004, or Xu et al., 2009; see Section 5 of the main paper). With the implementations
as stated, in our experiments in Section 6 of the main paper we observe that Algorithm 2 has a similar running time as
standard normalized spectral clustering while the running time of Algorithm 3 is significantly higher.
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C. Proof of Theorem 1
We split the proof of Theorem 1 into four parts. In the first part, we analyze the eigenvalues and eigenvectors of the expected
adjacency matrixW and of the matrix ZTLZ, where L is the expected Laplacian matrix and Z is the matrix computed
in the execution of Algorithm 2 or Algorithm 3. In the second part, we study the deviation of the observed matrix ZTLZ
from the expected matrix ZTLZ. In the third part, we use the results from the first and the second part to prove Theorem 1
for Algorithm 2 (unnormalized SC with fairness constraints). In the fourth part, we prove Theorem 1 for Algorithm 3
(normalized SC with fairness constraints).

Notation For x ∈ Rn, by ‖x‖ we denote the Euclidean norm of x, that is ‖x‖ =
√
x21 + . . .+ x2n. For A ∈ Rn×m, by

‖A‖ we denote the operator norm (also known as spectral norm) and by ‖A‖F the Frobenius norm of A. It is

‖A‖ = max
x∈Rm:‖x‖=1

‖Ax‖ =
√
λmax(ATA), (21)

where λmax(ATA) is the largest eigenvalue of ATA, and

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

A 2
ij =

√
Tr(ATA). (22)

Note that for a symmetric matrixA ∈ Rn×n withA = AT we have ‖A‖ = max{|λi| : λi is an eigenvalue of A}. It follows
from (21) and (22) that for any A ∈ Rn×m with rank at most r we have

‖A‖ ≤ ‖A‖F ≤
√
r‖A‖. (23)

We use const(X) to denote a universal constant that only depends on X and that may change from line to line.

Part 1: Eigenvalues and eigenvectors ofW and of ZTLZ

Assuming the n vertices 1, . . . , n are sorted in a way such that

1, . . . ,
n

kh
∈ C1 ∩ V1,

n

kh
+ 1, . . . ,

2n

kh
∈ C1 ∩ V2, . . . . . . . . . ,

(h− 1)n

kh
+ 1, . . . ,

n

k
∈ C1 ∩ Vh,

n

k
+ 1, . . . ,

n

k
+

n

kh
∈ C2 ∩ V1, . . . . . . . . . ,

n

k
+

(h− 1)n

kh
+ 1, . . . ,

2n

k
∈ C2 ∩ Vh,

...

(k − 1)n

k
+ 1, . . . ,

(k − 1)n

k
+

n

kh
∈ Ck ∩ V1, . . . . . . . . . ,

(k − 1)n

k
+

(h− 1)n

kh
+ 1, . . . , n ∈ Ck ∩ Vh,

(24)

the expected adjacency matrixW ∈ Rn×n is given by the block matrix

W =



[R] [S] [S] [S] · · · [S] [S]

[S] [R] [S] [S] · · · [S] [S]

[S] [S] [R] [S] · · · [S] [S]
...

. . .
...

[S] [S] [S] [S] · · · [S] [R]


︸ ︷︷ ︸

=:W̃

−aIn, (25)
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where [R] ∈ {a, c}n
k×

n
k and [S] ∈ {b, d}n

k×
n
k are themselves block matrices

[R] =



[a] [c] [c] [c] · · · [c] [c]

[c] [a] [c] [c] · · · [c] [c]

[c] [c] [a] [c] · · · [c] [c]
...

. . .
...

[c] [c] [c] [c] · · · [c] [a]


, [S] =



[b] [d] [d] [d] · · · [d] [d]

[d] [b] [d] [d] · · · [d] [d]

[d] [d] [b] [d] · · · [d] [d]
...

. . .
...

[d] [d] [d] [d] · · · [d] [b]



with [a], [b], [c] and [d] being matrices of size n
kh ×

n
kh with all entries equaling a, b, c and d, respectively. We denote the

matrix W + aIn with W as in (25) by W̃ . If the vertices are not ordered as in (24), the expected adjacency matrix W
is rather given by W = PT W̃P − aIn for some permutation matrix P ∈ {0, 1}n×n with PPT = PTP = In. Note
that v ∈ Rn is an eigenvector of W̃ with eigenvalue λ if and only if PT v is an eigenvector of PT W̃P with eigenvalue λ.
Keeping track of the permutation matrices P and PT throughout the proof of Theorem 1 does not impose any technical
challenges, but makes the writing more complicated. Hence, for simplicity and without loss of generality, we assume in the
following that the vertices are ordered as in (24).

The following lemma characterizes the eigenvalues and eigenvectors of W̃ . Clearly, this also characterizes the eigenvalues
and eigenvectors ofW: v ∈ Rn is an eigenvector of W̃ with eigenvalue λ if and only if v is an eigenvector ofW with
eigenvalue λ− a.

Lemma 3. Assuming that a > b > c > d ≥ 0, the matrix W̃ has rank kh or rank k + h− 1 (the latter is true if and only if
a− c = b− d). It has the following eigenvalues λ1, . . . , λn:

λ1 =
n

kh

[(
a+ (h− 1)c

)
+ (k − 1)

(
b+ (h− 1)d

)]
,

λ2 = λ3 = . . . = λh =
n

kh

[(
a− c

)
+ (k − 1)

(
b− d

)]
,

λh+1 = λh+2 = . . . = λh+k−1 =
n

kh

[(
a+ (h− 1)c

)
−
(
b+ (h− 1)d

)]
,

λh+k, λh+k+1 = . . . = λhk =
n

kh

[(
a− c

)
−
(
b− d

)]
,

λhk+1 = λhk+2 = . . . = λn = 0.

(26)

It is λ1 > λ2 = . . . = λh > 0 as well as λ1 > λh+1 = . . . = λh+k−1 > 0 and λ2 = . . . = λh > |λh+k| = . . . = |λhk| as
well as λh+1 = . . . = λh+k−1 > |λh+k| = . . . = |λhk|.

An eigenvector corresponding to λ1 is given by v1 = 1n. The eigenspace corresponding to the eigenvalue λ2 = . . . = λh is
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spanned by the vectors v2, . . . , vh with

v2 =



[1]

[− 1
h−1 ]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

...

[1]

[− 1
h−1 ]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]



, v3 =



[− 1
h−1 ]

[1]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]



, · · · , vh =



[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

...

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]



,

where for z ∈ R, by [z] we denote a block of size n
kh with all entries equaling z. The eigenspace corresponding to the

eigenvalue λh+1 = . . . = λh+k−1 is spanned by the vectors vh+1, . . . , vh+k−1 with

vh+1 =



[1]

[− 1
k−1 ]

[− 1
k−1 ]
...

[− 1
k−1 ]

[− 1
k−1 ]

[− 1
k−1 ]


, vh+2



[− 1
k−1 ]

[1]

[− 1
k−1 ]
...

[− 1
k−1 ]

[− 1
k−1 ]

[− 1
k−1 ]


, · · · , vh+k−1 =



[− 1
k−1 ]

[− 1
k−1 ]

[− 1
k−1 ]
...

[− 1
k−1 ]

[1]

[− 1
k−1 ]


,

where for z ∈ R, by [z] we denote a block of size n
k with all entries equaling z. The eigenspace corresponding to the
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eigenvalue λh+k = . . . = λhk is spanned by the vectors vh+k, . . . , vhk with



[1]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[− 1
h−1 ]

[−1]

[ 1
h−1 ]

[ 1
h−1 ]

...

[ 1
h−1 ]

[ 1
h−1 ]

[0]
...

[0]

[0]
...

[0]]

...


︸ ︷︷ ︸

=vh+k

,



[− 1
h−1 ]

[1]

[− 1
h−1 ]
...

[− 1
h−1 ]

[− 1
h−1 ]

[ 1
h−1 ]

[−1]

[ 1
h−1 ]

...

[ 1
h−1 ]

[ 1
h−1 ]

[0]
...

[0]

[0]
...

[0]

...


︸ ︷︷ ︸

=vh+k+1

, · · · ,



[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[ 1
h−1 ]

[ 1
h−1 ]

...

[ 1
h−1 ]

[−1]

[ 1
h−1 ]

[0]
...

[0]

[0]
...

[0]

...


︸ ︷︷ ︸
=vh+k+(h−2)︸ ︷︷ ︸

h−1 many

,



[1]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[− 1
h−1 ]

[0]
...

[0]

[−1]

[ 1
h−1 ]

[ 1
h−1 ]

...

[ 1
h−1 ]

[ 1
h−1 ]

[0]
...

[0]

...


︸ ︷︷ ︸
=vh+k+(h−1)

, · · · ,



[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[0]
...

[0]

[ 1
h−1 ]

[ 1
h−1 ]

...

[ 1
h−1 ]

[−1]

[ 1
h−1 ]

[0]
...

[0]

...


︸ ︷︷ ︸
=vh+k+(2h−3)︸ ︷︷ ︸

h−1 many

, · · ·



[1]

[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[− 1
h−1 ]

[0]
...

[0]

...

[0]
...

[0]

[−1]

[ 1
h−1 ]

[ 1
h−1 ]

...

[ 1
h−1 ]

[ 1
h−1 ]


︸ ︷︷ ︸
=vhk−h+2

, · · · ,



[− 1
h−1 ]

[− 1
h−1 ]
...

[− 1
h−1 ]

[1]

[− 1
h−1 ]

[0]
...

[0]

...

[0]
...

[0]

[ 1
h−1 ]

[ 1
h−1 ]

...

[ 1
h−1 ]

[−1]

[ 1
h−1 ]


︸ ︷︷ ︸

=vhk︸ ︷︷ ︸
h−1 many︸ ︷︷ ︸

(k−1)(h−1) many

,

where for z ∈ R, by [z] we denote a block of size n
kh with all entries equaling z.

Proof. The matrix W̃ has only kh different columns and hence rank W̃ ≤ kh and there are at most kh many non-zero
eigenvalues. The statement about the rank of W̃ follows from the statement about the eigenvalues of W̃ .

It is easy to verify that any of the vectors vi is actually an eigenvector of W̃ corresponding to eigenvalue λi, i ∈ [hk]. We
need to show that the vectors v2, . . . , vh, the vectors vh+1, . . . , vh+k−1, as well as the vectors vh+k, . . . , vhk are linearly
independent. For example, let us show that v2, . . . , vh are linearly independent: assume that

∑
j∈{2,...,h} αjvj = 0 for some

αj ∈ R. We need to show that αj = 0, j ∈ {2, . . . , h}. Looking at the n-th coordinate of
∑
j∈{2,...,h} αjvj , we infer that



Appendix to Guarantees for Spectral Clustering with Fairness Constraints

0 = − 1
h−1

∑
j∈{2,...,h} αj . Looking at a coordinate where vi is 1, we infer that

0 = αi −
1

h− 1

∑
j∈{2,...,h}\{i}

αj = αi

(
1 +

1

h− 1

)
− 1

h− 1

∑
j∈{2,...,h}

αj = αi

(
1 +

1

h− 1

)
and hence αi = 0, i ∈ {2, . . . , h}. Similarly, we can show that the vectors vh+1, . . . , vh+k−1 as well as the vectors
vh+k, . . . , vhk are linearly independent.

Since we assume that a > b > c > d ≥ 0, we have(
a+ (h− 1)c

)
+ (k − 1)

(
b+ (h− 1)d

)
>
(
a− c

)
+ (k − 1)

(
b− d

)
> 0

and (
a+ (h− 1)c

)
+ (k − 1)

(
b+ (h− 1)d

)
>
(
a+ (h− 1)c

)
−
(
b+ (h− 1)d

)
= (a− b) + (h− 1)(c− d) > 0,

which shows that λ1 > λ2 = . . . = λh > 0 and λ1 > λh+1 = . . . = λh+k−1 > 0. It is(
a− c

)
+ (k − 1)

(
b− d

)
> (a− c)− (b− d) and

(
a− c

)
+ (k − 1)

(
b− d

)
> −(a− c) + (b− d),

and also (
a+ (h− 1)c

)
−
(
b+ (h− 1)d

)
= (a− b) + (h− 1)(c− d)

≥ (a− b) + (c− d) > (a− b) + (d− c) = (a− c)− (b− d)

and (
a+ (h− 1)c

)
−
(
b+ (h− 1)d

)
= (a− b) + (h− 1)(c− d)

≥ (a− b) + (c− d) > (b− a) + (c− d) = −(a− c) + (b− d),

which shows λ2 = . . . = λh > |λh+k| = . . . = |λhk| and λh+1 = . . . = λh+k−1 > |λh+k| = . . . = |λhk|.

Note that we have

f (s) − |Vs|
n
· 1n = f (s) − 1

h
· 1n =

h− 1

h
v1+s, s ∈ [h− 1], (27)

where f (s) is the group-membership vector of Vs and f (s)− |Vs|
n is the vector encountered in the second step of Algorithm 2

or Algorithm 3.

The next lemma provides an orthonormal basis of the eigenspace associated with eigenvalue λh+1 = . . . = λh+k−1.

Lemma 4. An orthonormal basis of the eigenspace of W̃ corresponding to the eigenvalue λh+1 = . . . = λh+k−1 is given
by {n1, . . . , nk−1} with

n1 =



[(k − 1)q1]

[−q1]

[−q1]

[−q1]
...

[−q1]

[−q1]


, n2 =



[0]

[(k − 2)q2]

[−q2]

[−q2]
...

[−q2]

[−q2]


, . . . , ni =



[0]
...

[0]

[(k − i)qi]

[−qi]
...

[−qi]


, . . . , nk−1 =



[0]

[0]
...

[0]

[0]

[qk−1]

[−qk−1]


, (28)

where for z ∈ R, by [z] we denote a block of size n
k with all entries equaling z and

qi =
1√(

n
k (k − i)2 + n

k (k − i)
) , i ∈ [k − 1]. (29)
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Proof. It is easy to verify that any ni is indeed an eigenvector of W̃ with eigenvalue λh+1 = . . . = λh+k−1, i ∈ [k − 1].
Furthermore, we have

‖ni‖2 = q2i

(n
k

(k − i)2 +
n

k
(k − i)

)
= 1, i ∈ [k − 1],

and

〈ni, nj〉 =
n

k

(
− qi · (k − j)qj

)
+
n

k
(k − j)(qi · qj) = 0, 1 ≤ i < j ≤ n.

LetL be the expected Laplacian matrix. We haveL = D−W , whereD is the expected degree matrix. The expected degree of
vertex i in a random graph constructed according to our variant of the stochastic block model equals

∑
j∈[n]\{i}Wij = λ1−a

(with λ1 defined in (26)) and hence D = (λ1 − a)In.

The following lemma characterizes the eigenvalues and eigenvectors of ZTLZ, where Z ∈ Rn×(n−h+1) is the matrix
computed in the execution of Algorithm 2 or Algorithm 3.

Lemma 5. Let Z ∈ Rn×(n−h+1) be any matrix whose columns form an orthonormal basis of the nullspace of FT , where
F is the matrix that has the vectors f (s) − |Vs|

n · 1n, s ∈ [h− 1], as columns. Then the eigenvalues of ZTLZ are

λ1 − λ1, λ1 − λh+1, λ1 − λh+2, . . . , λ1 − λn

with λi defined in (26). It is

λ1 − λ1 = 0,

λ1 − λh+1 = λ1 − λh+2 = . . . = λ1 − λh+k−1,
λ1 − λh+k = λ1 − λh+k+1 = . . . = λ1 − λhk,
λ1 − λhk+1 = λ1 − λhk+2 = . . . = λ1 − λn = λ1

(30)

with

λ1 − λ1 < λ1 − λh+1 < min{λ1 − λh+k, λ1 − λhk+1}, (31)

so that the k smallest eigenvalues of ZTLZ are λ1 − λ1, λ1 − λh+1, λ1 − λh+2, . . . , λ1 − λh+k−1.

Furthermore, there exists an orthonormal basis {r1, rh+1, rh+2, . . . , rn} of eigenvectors of ZTLZ with ri corresponding to
eigenvalue λ1 − λi such that

Zr1 = 1n/
√
n and Zrh+i = ni, i ∈ [k − 1],

with ni defined in (28).

Proof. Because of ZTZ = I(n−h+1) we have

ZTLZ = ZT (D −W)Z = ZTDZ − ZT (W̃ − aIn)Z = (λ1 − a)In − ZT W̃Z + aIn = λ1In − ZT W̃Z.

Let {u1, . . . , un} be an orthonormal basis of eigenvectors of W̃ with ui corresponding to eigenvalue λi. According to
Lemma 3 and Lemma 4 we can choose u1 = 1n/

√
n and uh+i = ni for i ∈ [k−1]. We can write W̃ as W̃ =

∑n
i=1 λiuiu

T
i .

The nullspace of FT , where F is the matrix that has the vectors f (s) − |Vs|
n · 1n, s ∈ [h − 1], as columns, equals

the orthogonal complement of {f (s) − (|Vs|/n) · 1n, s ∈ [h − 1]}. According to (27), the orthogonal complement of
{f (s) − (|Vs|/n) · 1n, s ∈ [h− 1]} equals the orthogonal complement of {v1+s, s ∈ [h− 1]}, with vi defined in Lemma 3
and being an eigenvalue of W̃ with eigenvalue λi. According to Lemma 3, {v1+s, s ∈ [h− 1]} is a basis of the eigenspace
of W̃ corresponding to eigenvalue λ2 = λ3 = . . . = λh, and hence the orthogonal complement of {v1+s, s ∈ [h − 1]}
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equals the orthogonal complement of {u2, . . . , uh}, which is the subspace spanned by {u1, uh+1, uh+2, . . . , un}. Let
U ∈ Rn×(n−h+1) be a matrix that has the vectors u1, uh+1, uh+2, . . . , un as columns (in this order). It follows that
U = ZR for some R ∈ R(n−h+1)×(n−h+1) with RTR = RRT = I(n−h+1). It is

ZTLZ = λ1In − ZT W̃Z = λ1In −RUT
(

n∑
i=1

λiuiu
T
i

)
URT .

Let r1 be the first column of R, rh+1 be the second column of R, rh+2 be the third column of R, and so on. We have

ZTLZr1 =

[
λ1In −RUT

(
n∑
i=1

λiuiu
T
i

)
URT

]
r1

= λ1r1 −RUT
(

n∑
i=1

λiuiu
T
i

)
Ue1

= λ1r1 −RUT
(

n∑
i=1

λiuiu
T
i

)
u1

= λ1r1 − λ1RUTu1
= λ1r1 − λ1Re1
= (λ1 − λ1)r1,

where e1 denotes the first natural basis vector. Similarly, we obtain ZTLZrh+i = (λ1−λh+i)rh+i, i ∈ [n−h]. This proves
that the eigenvalues of ZTLZ are λ1 − λ1, λ1 − λh+1, λ1 − λh+2, . . . , λ1 − λn. The claims in (30) and (31) immediately
follow from Lemma 3. Clearly, it is Zr1 = u1 = 1n/

√
n and Zrh+i = uh+i = ni for i ∈ [k − 1].

We need one more simple lemma.
Lemma 6. Let T ∈ Rn×k be a matrix that contains the vectors 1n/

√
n, n1, n2, . . . , nk−1, with ni defined in (28), as

columns. For i ∈ [n], let ti denote the i-th row of T . For all i, j ∈ [n], we have ti = tj if and only if the vertices i and j are
in the same cluster Cl. If the vertices i and j are not in the same cluster, then ‖ti − tj‖ =

√
2k/n.

Proof. This simply follows from the structure of the vectors ni. It is, up to a permutation of the entries,

ti =

(
1√
n
,−q1,−q2, . . . ,−ql−1, (k − l)ql, 0, 0, . . . , 0

)
,

with ql defined in (29), for all i ∈ [n] such that vertex i is in cluster Cl, l ∈ [k − 1], and

ti =

(
1√
n
,−q1,−q2, . . . ,−qk−1

)
for all i ∈ [n] such that vertex i is in cluster Ck. It is easy to verify that ‖ti − tj‖2 = 2k/n for all i, j ∈ [n] such that the
vertices i and j are not in the same cluster.

Part 2: Deviation of ZTLZ from ZTLZ

We want to obtain an upper bound on ‖ZTLZ − ZTLZ‖. Because of ZTZ = I(n−h+1), it is ‖Z‖ = ‖ZT ‖ = 1 and hence

‖ZTLZ − ZTLZ‖ ≤ ‖ZT ‖ · ‖L− L‖ · ‖Z‖ ≤ ‖L− L‖. (32)

We have

‖L− L‖ = ‖(D −W )− (D −W)‖ ≤ ‖D −D‖+ ‖W −W‖,

with D = (λ1 − a)In as we have seen in Part 1. We bound both terms separately.
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• Upper bound on ‖W −W‖:

Theorem 5.2 of Lei & Rinaldo (2015) provides a bound on ‖W −W‖: assuming that a ≥ C lnn/n for some C > 0,
for every r > 0 there exists a constant const(C, r) such that

‖W −W‖ ≤ const(C, r)
√
a · n (33)

with probability at least 1− n−r.

• Upper bound on ‖D −D‖:

The matrix D − D is a diagonal matrix and hence ‖D − D‖ = maxi∈[n] |Dii − Dii| = maxi∈[n] |Dii − (λ1 − a)|.
The random variable Dii =

∑
j∈[n]\{i} 1[i ∼ j], where 1[i ∼ j] denotes the indicator function of the event that there

is an edge between vertices i and j, is a sum of independent Bernoulli random variables. It is E[Dii] = λ1 − a. For a
fixed i ∈ [n], we want to obtain an upper bound on |Dii − (λ1 − a)| = |Dii − E[Dii]| and distinguish two cases:

1. a > 1
2 :

Hoeffding’s inequality (e.g., Boucheron et al., 2004, Theorem 1) yields

Pr[|Dii − (λ1 − a)| ≥ t] ≤ 2 exp

(
−2t2

n

)
for any t > 0. Choosing t =

√
2(r + 1)

√
a · n lnn for r > 0, we have with const(r) =

√
2(r + 1) that

Pr
[
|Dii − (λ1 − a)| ≥ const(r) ·

√
a · n lnn

]
≤ 2 exp (−4(r + 1)a lnn) ≤ n−(r+1). (34)

2. a ≤ 1
2 :

Bernstein’s inequality (e.g., Boucheron et al., 2004, Theorem 3) yields

Pr [|Dii − (λ1 − a)| > tn] ≤ 2 exp

− nt2

2
(

Var[Dii]
n + t

3

)


for any t > 0. It is

Var[Dii] =
∑

j∈[n]\{i}

Var [1[i ∼ j]] =
∑

j∈[n]\{i}

Pr[1[i ∼ j]](1− Pr[1[i ∼ j]]) ≤ na(1− a) ≤ na

since the function x 7→ x(1− x) is monotonically increasing on [0, 1/2]. If we choose t = const ·
√
a·n lnn
n for

some const > 0, assuming that a ≥ C lnn/n for some C > 0, we have

Var[Dii]

n
+
t

3
≤ a

(
1 +

const

3
√
C

)
and hence

Pr
[
|Dii − (λ1 − a)| > const ·

√
a · n lnn

]
≤ 2 exp

(
−const2 · lnn

2 + 2 const
3
√
C

)
.

Because of

const2

2 + 2 const
3
√
C

→∞ as const→∞,

for every r > 0 we can choose const = const(C, r) large enough such that const2 /
(
2 + 2 const

3
√
C

)
≥ 2(r+ 1) and

Pr
[
|Dii − (λ1 − a)| > const(C, r) ·

√
a · n lnn

]
≤ n−(r+1). (35)
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Figure 6. Average deviations ‖W −W‖, ‖D−D‖ and ‖L−L‖ as a function of n when a = 0.6, b = 0.5, c = 0.4, d = 0.3 are constant,
k = 5 and h = 2. The average is computed over sampling the graph for 100 times.

Choosing const(C, r) as the maximum of const(r) encountered in (34) and const(C, r) encountered in (35), we see
that there exists const(C, r) such that

Pr
[
|Dii − (λ1 − a)| > const(C, r) ·

√
a · n lnn

]
≤ n−(r+1),

no matter whether a > 1/2 or 1/2 ≥ a ≥ C lnn/n. Applying a union bound we obtain

Pr

[
max
i∈[n]
|Dii − (λ1 − a)| > const(C, r) ·

√
a · n lnn

]
≤ n · n−(r+1) = n−r,

and hence with probability at least 1− n−r we have

‖D −D‖ ≤ const(C, r)
√
a · n lnn. (36)

From (33) and (36) we see that for every r > 0 there exists const(C, r) such that with probability at least 1− n−r we have

‖W −W‖ ≤ const(C, r)
√
a · n and ‖D −D‖ ≤ const(C, r)

√
a · n lnn (37)

and hence

‖ZTLZ − ZTLZ‖ ≤ ‖L− L‖ ≤ ‖D −D‖+ ‖W −W‖ ≤ const(C, r)
√
a · n lnn. (38)

For illustrative purposes, we show empirically that, in general, our upper bounds on ‖W −W‖, ‖D −D‖ and ‖L− L‖ in
(37) and (38), respectively, are tight, up to a factor of at most 4

√
lnn in case of ‖D −D‖ and ‖L− L‖. The plot in Figure 6

shows the observed deviations ‖W −W‖, ‖D−D‖ and ‖L−L‖ as a function of n when a = 0.6, b = 0.5, c = 0.4, d = 0.3
are constant, k = 5 and h = 2. The shown curves are average results, obtained from sampling the graph for 100 times.

Part 3: Proving Theorem 1 for Algorithm 2 (unnormalized SC with fairness constraints)

In the last step of Algorithm 2 we apply k-means clustering to the rows of the matrix ZY , where Y ∈ R(n−h+1)×k contains
some orthonormal eigenvectors corresponding to the k smallest eigenvalues of ZTLZ as columns. We want to show that up
to some orthogonal transformation, the rows of ZY are close to the rows of ZY , where Y ∈ R(n−h+1)×k contains some
orthonormal eigenvectors corresponding to the k smallest eigenvalues of ZTLZ as columns. According to Lemma 5, we
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can choose Y in such a way that ZY = T with T as in Lemma 6, that is T contains the vectors 1n/
√
n, n1, n2, . . . , nk−1,

with ni defined in (28), as columns.

We want to obtain an upper bound on minU∈Rk×k:UTU=UUT=Ik ‖ZY − ZY U‖F . For any U ∈ Rk×k with UTU =
UUT = Ik, because of ZTZ = I(n−h+1) we have

‖ZY − ZY U‖2F = ‖Z(Y − Y U)‖2F = Tr((Y − Y U)TZTZ(Y − Y U)) = ‖Y − Y U‖2F

and hence

min
U∈Rk×k:UTU=UUT=Ik

‖ZY − ZY U‖F = min
U∈Rk×k:UTU=UUT=Ik

‖Y − Y U‖F . (39)

We proceed similarly to Lei & Rinaldo (2015). According to Proposition 2.2 and Equation (2.6) in Vu & Lei (2013) we
have (note that the set of all orthogonal matrices U ∈ Rk×k is a compact subset of Rk×k and hence the infimum is indeed a
minimum)

min
U∈Rk×k:UTU=UUT=Ik

‖Y − Y U‖F ≤
√

2‖YYT (I(n−h+1) − Y Y T )‖F
(23)
≤
√

2
√
k ‖YYT (I(n−h+1) − Y Y T )‖. (40)

According to Lemma 5 the eigenvalues of ZTLZ are λ1 − λ1, λ1 − λh+1, λ1 − λh+2, . . . , λ1 − λn. The k smallest
eigenvalues are λ1−λ1, λ1−λh+1, λ1−λh+2, . . . , λ1−λh+k−1 and the (k+1)-th smallest eigenvalue is either λ1−λh+k
or λ1. Hence, for the eigengap γ between the k-th and the (k + 1)-th smallest eigenvalue we have

γ = min {(λ1 − λh+k)− (λ1 − λh+k−1), λ1 − (λ1 − λh+k−1)} = min
{n
k

(c− d),
n

kh
((a− b) + (h− 1)(c− d))

}
.

It is

n

2k
(c− d) ≤ n(h− 1)

hk
(c− d) ≤ γ ≤ n

k
(c− d). (41)

We want to show that

‖YYT (I(n−h+1) − Y Y T )‖ ≤ 4

γ
‖ZTLZ − ZTLZ‖. (42)

If ‖ZTLZ − ZTLZ‖ > γ
4 , then (42) holds trivially because of

‖YYT (I(n−h+1) − Y Y T )‖ ≤ ‖YYT ‖ · ‖I(n−h+1) − Y Y T ‖ = 1 · 1 = 1.

Assume that ‖ZTLZ − ZTLZ‖ ≤ γ
4 and let µ1 ≤ µ2 ≤ . . . ≤ µn−h+1 be the eigenvalues of ZTLZ. Since L is positive

semi-definite, so is ZTLZ, and hence µ1 ≥ 0. Let λ′1 ≤ λ′2 ≤ . . . , λ′n−h+1 be the eigenvalues λ1 − λ1, λ1 − λh+1, λ1 −
λh+2, . . . , λ1 − λn of ZTLZ in ascending order. According to Weyl’s Perturbation Theorem (e.g., Bhatia, 1997, Corollary
III.2.6) it is

|µi − λ′i| ≤ ‖ZTLZ − ZTLZ‖ ≤
γ

4
, i ∈ [n− h+ 1].

In particular, we have

µ1, . . . , µk ∈
[
0, λ′k +

γ

4

]
, µk+1, . . . , µn ∈

[
λ′k+1 −

γ

4
,∞
)

with
(
λ′k+1 −

γ
4

)
−
(
λ′k + γ

4

)
= γ

2 . The Davis-Kahan sinΘ Theorem (e.g., Bhatia, 1997, Theorem VII.3.1) yields that

‖YYT (I(n−h+1) − Y Y T )‖ ≤ 2

γ
‖ZTLZ − ZTLZ‖

and hence (42). Combining (39) to (42), we end up with

min
U∈Rk×k:UTU=UUT=Ik

‖ZY − ZY U‖F ≤
16
√
k3

n(c− d)
‖ZTLZ − ZTLZ‖. (43)
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Using (38) from Part 2, we see that with probability at least 1− n−r

min
U∈Rk×k:UTU=UUT=Ik

‖ZY − ZY U‖F ≤ const(C, r) ·
√
k3

c− d
·
√
a · lnn
n

. (44)

We use Lemma 5.3 in Lei & Rinaldo (2015) to complete the proof of Theorem 1 for Algorithm 2. Assume that (44) holds
and let U ∈ Rk×k be an orthogonal matrix attaining the minimum, that is we have

‖ZYUT − ZY ‖F = ‖ZY − ZY U‖F ≤ const(C, r) ·
√
k3

c− d
·
√
a · lnn
n

. (45)

As we have noted above, we can choose Y in such a way that ZY = T with T as in Lemma 6. According to Lemma 6, if
we denote the i-th row of T by ti, then ti = tj if the vertices i and j are in the same cluster and ‖ti − tj‖ =

√
2k/n if the

vertices i and j are not in the same cluster. Since multiplying T by UT from the right side has the effect of applying an
orthogonal transformation to the rows of T , the same properties are true for the matrix TUT . Lemma 5.3 in Lei & Rinaldo
(2015) guarantees that for any δ ≤

√
2k/n, if

16 + 8M

δ2
‖TUT − ZY ‖2F < |Cl|︸︷︷︸

=n
k

, l ∈ [k], (46)

with |Cl| being the size of cluster Cl, then a (1 +M)-approximation algorithm for k-means clustering applied to the rows
of the matrix ZY returns a clustering that misclassifies at most

4(4 + 2M)

δ2
‖TUT − ZY ‖2F (47)

many vertices. If we choose δ =
√

2k/n, then for a small enough Ĉ1 = Ĉ1(C, r) the condition (11) implies (46) because
of (45). Also, for a large enough C̃1 = C̃1(C, r), the expression (47) is upper bounded by the expression (12).

Part 4: Proving Theorem 1 for Algorithm 3 (normalized SC with fairness constraints)

According to Part 2, for every r > 0 there exists const(C, r) such that with probability at least 1− n−r we have

‖D −D‖ ≤ const(C, r)
√
a · n lnn. (48)

Condition (13), with a suitable Ĉ2 = Ĉ2(C, r), implies that in this case we also have

‖D −D‖ ≤ λ1 − a
2

. (49)

Let µ′1, . . . , µ
′
n−h+1 denote the eigenvalues of ZTDZ. It is D = (λ1 − a)In (see Part 1) and because of ZTZ = I(n−h+1)

we have ZTDZ = (λ1 − a)I(n−h+1). According to Weyl’s Perturbation Theorem (e.g., Bhatia, 1997, Corollary III.2.6) it is

|µ′i − (λ1 − a)| ≤ ‖ZTDZ − ZTDZ‖ ≤ ‖D −D‖, i ∈ [n− h+ 1], (50)

where the second inequality follows analogously to (32). It follows from (49) that

µ′i ≥
λ1 − a

2

(13)
> 0, i ∈ [n− h+ 1], (51)

In particular, this shows that ZTDZ is positive definite and hence Algorithm 3 is well-defined.

Now we proceed similarly to Part 3. In the last step of Algorithm 3 we apply k-means clustering to the rows of the
matrix ZQ−1X , where Q ∈ R(n−h+1)×(n−h+1) is the positive definite square root of ZTDZ and X ∈ R(n−h+1)×k

contains some orthonormal eigenvectors corresponding to the k smallest eigenvalues of Q−1ZTLZQ−1 as columns. We
want to show that up to some orthogonal transformation, the rows of ZQ−1X are close to the rows of ZQ−1X , where
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Q ∈ R(n−h+1)×(n−h+1) is the positive definite square root of ZTDZ and X ∈ R(n−h+1)×k contains some orthonormal
eigenvectors corresponding to the k smallest eigenvalues of Q−1ZTLZQ−1 as columns. It is ZTDZ = (λ1 − a)I(n−h+1).
Consequently, Q =

√
λ1 − a · I(n−h+1) and Q−1 = 1√

λ1−a
· I(n−h+1) and it is Q−1ZTLZQ−1 = 1

λ1−a · Z
TLZ. Hence,

the eigenvalues of Q−1ZTLZQ−1 are the eigenvalues of ZTLZ rescaled by (λ1 − a)−1 with the same eigenvectors as for
ZTLZ. According to Lemma 5, we can choose X in such a way that ZQ−1X = 1√

λ1−a
· ZX = 1√

λ1−a
· T with T as in

Lemma 6, that is T contains the vectors 1n/
√
n, n1, n2, . . . , nk−1, with ni defined in (28), as columns.

We want to obtain an upper bound on minU∈Rk×k:UTU=UUT=Ik ‖ZQ−1X −ZQ−1XU‖F . Analogously to (39) we obtain

min
U∈Rk×k:UTU=UUT=Ik

‖ZQ−1X − ZQ−1XU‖F = min
U∈Rk×k:UTU=UUT=Ik

‖Q−1X −Q−1XU‖F .

The rank of both Q−1X and Q−1XU equals k and hence the rank of Q−1X −Q−1XU is not greater than 2k. We have

‖Q−1X −Q−1XU‖F
(23)
≤
√

2k · ‖Q−1X −Q−1XU‖ ≤
√

2k · ‖Q−1‖ · ‖X −XU‖+
√

2k · ‖Q−1 −Q−1‖ · ‖XU‖

with ‖Q−1‖ = 1√
λ1−a

and ‖XU‖ = 1 because of XTX = Ik and UTU = Ik. Hence

min
U :UTU=UUT=Ik

‖ZQ−1X − ZQ−1XU‖F ≤
√

2k√
λ1 − a

· min
U :UTU=UUT=Ik

‖X −XU‖+
√

2k · ‖Q−1 −Q−1‖. (52)

Because of (23) we have

min
U∈Rk×k:UTU=UUT=Ik

‖X −XU‖ ≤ min
U∈Rk×k:UTU=UUT=Ik

‖X −XU‖F (53)

and similarly to how we obtained the bound (43) in Part 2, we can show that

min
U∈Rk×k:UTU=UUT=Ik

‖X −XU‖F ≤
16
√
k3(λ1 − a)

n(c− d)
‖Q−1ZTLZQ−1 −Q−1ZTLZQ−1‖. (54)

Before looking at ‖Q−1ZTLZQ−1 − Q−1ZTLZQ−1‖ let us first look at the second term in (52). Because Q−1 is
symmetric and Q−1 = 1√

λ1−a
· I(n−h+1) we have

‖Q−1 −Q−1‖ = max

{∣∣∣∣νi − 1√
λ1 − a

∣∣∣∣ : νi is an eigenvalue of Q−1
}
.

It is Q2 = ZTDZ. Denoting the eigenvalues of ZTDZ by µ′1, . . . , µ
′
n−h+1 (note that all of them are greater than zero

according to (51)), the eigenvalues of Q−1 are 1/
√
µ′1, . . . , 1/

√
µ′n−h+1. For any z1, z2 > 0 we have

|
√
z1 −

√
z2| =

|(√z1 −
√
z2)(
√
z1 +

√
z2)|

√
z1 +

√
z2

=
|z1 − z2|√
z1 +

√
z2
≤ |z1 − z2|√

z2
(55)

and ∣∣∣∣ 1
√
z1
− 1
√
z2

∣∣∣∣ =
|√z1 −

√
z2|√

z1
√
z2

for z1 ≥ z2
2

≤
√

2 · |√z1 −
√
z2|

z2

(55)
≤
√

2 · |z1 − z2|√
z 3
2

. (56)

According to (51) we have µ′i ≥ λ1−a
2 > 0, i ∈ [n− h+ 1], and hence∣∣∣∣∣ 1√

µ′i
− 1√

λ1 − a

∣∣∣∣∣ (56)
≤
√

2 · |µ′i − (λ1 − a)|√
(λ1 − a)3

(50)
≤
√

2 · ‖D −D‖√
(λ1 − a)3

, i ∈ [n− h+ 1],

and

‖Q−1 −Q−1‖ ≤
√

2 · ‖D −D‖√
(λ1 − a)3

. (57)
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Let us now look at ‖Q−1ZTLZQ−1 −Q−1ZTLZQ−1‖. It is

‖Q−1ZTLZQ−1 −Q−1ZTLZQ−1‖ ≤ ‖Q−1 −Q−1‖ · ‖ZTLZ‖ · ‖Q−1‖+
‖Q−1‖ · ‖ZTLZ − ZTLZ‖ · ‖Q−1‖+ ‖Q−1‖ · ‖ZTLZ‖ · ‖Q−1 −Q−1‖.

(58)

It is ‖Q−1‖ = 1√
λ1−a

. According to Lemma 5, the largest eigenvalue of ZTLZ is λ1 or λ1 − λhk, where λ1 − λhk ≤ 2λ1

according to Lemma 3. Consequently, ‖ZTLZ‖ ≤ 2λ1. It is

‖Q−1‖ ≤ ‖Q−1 −Q−1‖+ ‖Q−1‖
(57)
≤
√

2 · ‖D −D‖√
(λ1 − a)3

+
1√

λ1 − a

and

‖ZTLZ‖ ≤ ‖ZTLZ − ZTLZ‖+ ‖ZTLZ‖
(32)
≤ ‖L− L‖+ 2λ1.

It follows that

‖Q−1ZTLZQ−1 −Q−1ZTLZQ−1‖ ≤ 4λ1 · ‖D −D‖
(λ1 − a)2

+

(√
2 · ‖D −D‖
(λ1 − a)2

+
1

λ1 − a

)
· ‖L − L‖+(

2 · ‖D −D‖2

(λ1 − a)3
+

√
2 · ‖D −D‖
(λ1 − a)2

)
· (‖L− L‖+ 2λ1)

≤ 8λ1 · ‖D −D‖
(λ1 − a)2

+

(
4 · ‖D −D‖
(λ1 − a)2

+
1

λ1 − a

)
· ‖L − L‖+

2 · ‖D −D‖2

(λ1 − a)3
· (‖L− L‖+ 2λ1).

(59)

If (37) and (38) hold, then, after combining (52), (53), (54), (57), (59) and using that λ1 − a > λ1/2, which follows from
(13), we end up with

min
U∈Rk×k:UTU=UUT=Ik

‖ZQ−1X − ZQ−1XU‖F ≤
const(C, r) · k2

n(c− d)
√
λ1 − a

(√
a · n lnn+

a · n lnn

λ1 − a
+

(a · n lnn)3/2

(λ1 − a)2

)
+

const(C, r)√
λ1 − a

·
√
k ·
√
a · n lnn

λ1 − a

for some const(C, r). Using that
√
a · n lnn ≤

√
k · a · n lnn ≤ Ĉ2

1+M (λ1 − a) ≤ Ĉ2(λ1 − a) due to (13), for some
Ĉ2 = Ĉ2(C, r) that we will specify shortly (we will choose it smaller than 1), we can simplify this bound such that

min
U∈Rk×k:UTU=UUT=Ik

‖ZQ−1X − ZQ−1XU‖F ≤
const(C, r) · k2

n(c− d)
√
λ1 − a

·
√
a · n lnn+

const(C, r)√
λ1 − a

·
√
k ·
√
a · n lnn

λ1 − a
.

(60)

Similarly to Part 3, we use Lemma 5.3 in Lei & Rinaldo (2015) to complete the proof of Theorem 1 for Algorithm 3.
Assume that (60) holds and let U ∈ Rk×k be an orthogonal matrix attaining the minimum, that is we have

‖ZQ−1XUT − ZQ−1X‖F = ‖ZQ−1X − ZQ−1XU‖F

≤ const(C, r) · k2

n(c− d)
√
λ1 − a

·
√
a · n lnn+

const(C, r)√
λ1 − a

·
√
k ·
√
a · n lnn

λ1 − a
.

(61)

As we have noted above, we can choose X in such a way that ZQ−1X = 1√
λ1−a

· T with T as in Lemma 6. According
to Lemma 6, if we denote the i-th row of 1√

λ1−a
· T by t̃i, then t̃i = t̃j if the vertices i and j are in the same cluster and

‖t̃i − t̃j‖ =
√

2k
n(λ1−a) if the vertices i and j are not in the same cluster. Since multiplying 1√

λ1−a
· T by UT from the right
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Figure 7. Example of a graph for which both standard spectral clustering and our fair versions are able to recover the fair meaningful
ground-truth clustering while a naive approach that runs standard spectral clustering on each group separately fails to do so. It is V = [12],
V1 = {1, 2, 3, 7, 8, 9}, V2 = {4, 5, 6, 10, 11, 12} and the fair ground-truth clustering is V = {1, 2, 3, 4, 5, 6}∪̇{7, 8, 9, 10, 11, 12}.

side has the effect of applying an orthogonal transformation to the rows of 1√
λ1−a

· T , the same properties are true for the

matrix 1√
λ1−a

· TUT . Lemma 5.3 in Lei & Rinaldo (2015) guarantees that for any δ ≤
√

2k
n(λ1−a) , if

16 + 8M

δ2

∥∥∥∥ 1√
λ1 − a

· TUT − ZQ−1X
∥∥∥∥2
F

< |Cl|︸︷︷︸
=n

k

, l ∈ [k], (62)

with |Cl| being the size of cluster Cl, then a (1 +M)-approximation algorithm for k-means clustering applied to the rows
of the matrix ZQ−1X returns a clustering that misclassifies at most

4(4 + 2M)

δ2

∥∥∥∥ 1√
λ1 − a

· TUT − ZQ−1X
∥∥∥∥2
F

(63)

many vertices. If we choose δ =
√

2k
n(λ1−a) , then for a small enough Ĉ2 = Ĉ2(C, r) (chosen smaller than 1 and also so

small that (48) implies (49)), the condition (13) implies (62) because of (61). Also, for a large enough C̃2 = C̃2(C, r) the
expression (63) is upper bounded by the expression (14).

D. Why Running Standard Spectral Clustering on Each Group Vs Separately is not a Good Idea
One might think that the following was a good idea for partitioning V = V1∪̇ . . . ∪̇Vh into k clusters such that every cluster
has a high balance value: we could try to run standard spectral clustering with k clusters on each of the groups Vs, s ∈ [h],
separately and then to merge the k · h many clusters to end up with k clusters.

The graph shown in Figure 7 illustrates that such an approach, in general, fails to recover an underlying fair ground-truth
clustering, even when standard spectral clustering succeeds. We have V = [12] and two groups V1 = {1, 2, 3, 7, 8, 9}
(shown in red) and V2 = {4, 5, 6, 10, 11, 12} (shown in blue). We want to partition V into two clusters. It can be
verified that a clustering with minimum RatioCut value is given by V = {1, 2, 3, 4, 5, 6}∪̇{7, 8, 9, 10, 11, 12} and that this
clustering is found by running standard spectral clustering. This clustering is perfectly fair with balance({1, 2, 3, 4, 5, 6}) =
balance({7, 8, 9, 10, 11, 12}) = 1 and is also returned by our fair versions of spectral clustering. Let us now look at the
idea of running standard spectral clustering on V1 and V2 separately: when running spectral clustering on the subgraph
induced by V1, we obtain the clustering V1 = {1, 2, 3}∪̇{7, 8, 9} as we would hope for. However, in the subgraph induced
by V2 the clustering V2 = {4, 5, 6}∪̇{10, 11, 12} does not have minimum RatioCut value and is not returned by spectral
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clustering. Consequently, no matter how we merge the two clusters for V1 and the two clusters for V2, we do not end up
with the clustering V = {1, 2, 3, 4, 5, 6}∪̇{7, 8, 9, 10, 11, 12}.

Note that for these findings to hold we do not require the specific graph shown in Figure 7. The key is its structure: let
V1 = {1, 2, 3, 7, 8, 9}, V2 = {4, 5, 6, 10, 11, 12}, C1 = {1, 2, 3, 4, 5, 6} and C2 = {7, 8, 9, 10, 11, 12}. Then the graph
looks like a realization of the following random graph model: as in our variant of the stochastic block model introduced in
Section 4, two vertices i and j are connected with an edge with a certain probability Pr(i, j), which is now given by

Pr(i, j) =

{
a, i, j ∈ C1 ∨ i, j ∈ C2 ∨ i, j ∈ V2,
b, else,

with a large and b small.


