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Abstract
As machine learning algorithms move into real-
world settings, it is crucial to ensure they are
aligned with societal values. There has been
much work on one aspect of this, namely the
discriminatory prediction problem: How can
we reduce discrimination in the predictions them-

selves? While an important question, solutions to
this problem only apply in a restricted setting, as
we have full control over the predictions. Often
we care about the non-discrimination of quanti-
ties we do not have full control over. Thus, we
describe another key aspect of this challenge, the
discriminatory impact problem: How can we
reduce discrimination arising from the real-world

impact of decisions? To address this, we describe
causal methods that model the relevant parts of
the real-world system in which the decisions are
made. Unlike previous approaches, these mod-
els not only allow us to map the causal pathway
of a single decision, but also to model the effect
of interference–how the impact on an individual
depends on decisions made about other people.
Often, the goal of decision policies is to maxi-
mize a beneficial impact overall. To reduce the
discrimination of these benefits, we devise a con-
straint inspired by recent work in counterfactual
fairness (Kusner et al., 2017), and give an efficient
procedure to solve the constrained optimization
problem. We demonstrate our approach with an
example: how to increase students taking college
entrance exams in New York City public schools.

1. Introduction
Machine learning (ML) is used by companies, governments,
and institutions to make life-changing decisions about indi-
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viduals, such as how much to charge for insurance (Peters,
2017), how to target job ads (Yang et al., 2017), and who
may likely commit a crime (Zeng et al., 2017).

However, the number of recent examples where ML algo-
rithms have made discriminatory decisions against individu-
als because of their race, sex, or otherwise, poses a serious
impediment to their use in the real world. For example,
Google’s advertisement system was more likely to show ads
implying a person had been arrested when the search term
was a name commonly associated with African Americans
(Sweeney, 2013). In another case, algorithms that learn
word embeddings produced embeddings with sexist associa-
tions such as “woman” being associated with “homemaker”
(Bolukbasi et al., 2016).

In response to these and other examples, there has been
much recent work aimed at quantifying and removing
discrimination (Berk et al., 2017; Bolukbasi et al., 2016;
Chouldechova, 2017; Dwork et al., 2012; 2018; Edwards &
Storkey, 2015; Hardt et al., 2016; Kamiran & Calders, 2009;
Kamishima et al., 2012; Kilbertus et al., 2017; Kleinberg
et al., 2016; Kusner et al., 2017; Larson et al., 2016; Liu
et al., 2018; Nabi & Shpitser, 2018; Pleiss et al., 2017; Zafar
et al., 2017; Zemel et al., 2013; Zhang & Bareinboim, 2018).
All of these works focus on what we call the discrimina-
tory prediction problem: how to reduce discrimination of
the predictions themselves. While important, the prediction
problem isolates the problem of discrimination to the predic-
tions: as long as we adjust them to agree with our definition
of reduced discrimination we have solved the problem. Im-
portantly, we have full control over what the predictions are.
But frequently, we care about reducing the discrimination of
quantities, which we call impact, that depend both on a deci-
sion we make and upon other real-world factors we cannot
control. For instance, imagine a university with the power
to make law school admission decisions. How do these deci-
sions impact on: a person’s salary 5 years later, whether the
person graduates, or how able the person is to pay back any
loans? Each of these has significant life-changing effects.
Crucially, we define an impact as follows:

Definition 1. An impact is a real-world event that is caused

jointly by controllable (algorithmic) decisions, and other un-

controllable real-world factors (e.g., societal factors, human

decision-makers) that may themselves be biased.
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This leads us to the discriminatory impact problem: how
to reduce the discrimination of the real-world impact of

decisions. As a large number of cases of discrimination
are due to real-world mechanisms (e.g., income, voting,
housing)1, it is a crucial step to understand and correct for
these mechanisms that alter the impact of decision-making.

Related Work. The importance of impact has recently
been highlighted by the work of Liu et al. (2018). They
showed how solutions to the discriminatory prediction prob-
lem may lead to worse impact, compared to a normal ML
classifier. Green & Chen (2019) provide further evidence
that when algorithmic risk assessments are shown to human
decision-makers the final impact is fraught with unaddressed
biases. These works suggest that a general framework for
“algorithms-in-the-loop” are needed. The goal of this paper
is to present such a general framework. Two recent works
aim at specific settings where algorithms interact with un-
controllable real-world factors. The first, by Kannan et al.
(2018), formulates a two-stage model where (a) applicants
are admitted to college by an exam and (b) college students
can be hired by an employer based on their exam, grades,
and protected attributes (i.e., race, sex). They describe how
to ensure the hiring impact satisfies a fairness criterion,
while only being able to algorithmically control admission
decisions. The second work is by Madras et al. (2018) who
consider a model where some algorithmic predictions can
be deferred to a black-box decision maker (e.g., a human,
proprietary software). Both works describe how to address
the discriminatory impact problem, however their models
are highly tailored to the settings described above. Other
recent works (Komiyama & Shimao, 2018; Elzayn et al.,
2018; Dwork & Ilvento, 2018) consider related problems
about social outcomes, allocating resources, and the effects
of multiple discrimination-free predictors. However, they
define discrimination purely as functions of decisions, and
so do not address the impact problem. Here we present a
general framework based on causal modeling to address the
discriminatory impact problem. Our framework naturally
generalizes to scenarios outside of those we consider in this
work. Most similar to our work are Heidari et al. (2019),
who use a social dynamics model to create an ‘impacted
dataset’ which represents how individuals respond to an al-
gorithm, and (Nabi et al., 2019), who design policies using
Q-learning and value search to make certain causal paths
give the same impact across different counterfactuals, simi-
lar to (Nabi & Shpitser, 2018; Kusner et al., 2017). Although
the motivation of these works are similar, the algorithmic
framework in the first work, and the fairness criteria and
optimization techniques of the second are all very different
from our work, and can be regarded as complimentary.

1https://www.theatlantic.com/magazine/archive/2014/06/the-
case-for-reparations/361631/

To target the impact problem we propose to use causal meth-
ods (Pearl, 2000) to model how decisions and existing dis-
crimination cause impact. Causal models describe how
different real-world quantities are related by modeling in-
teractions via a directed acyclic graph (DAG).2 Given this
model, we describe the impact of decisions using the frame-
work of interventions. Interventions allow us to model how
quantities change when another is decided (intervened on).

In this work, we not only want to describe the impact of
decisions, we want to make decisions that reduce discrimi-
natory impact, addressing the impact problem. Often these
decisions are made to maximize beneficial impact overall
(or equivalently minimize harm): increase the number of
students applying to college, increase families in the middle-
class, increase overall access to health care, even increase
profits. Inspired by work on counterfactual fairness (Kus-
ner et al., 2017) we design counterfactual quantities that
measure how much a decision gives beneficial impact to
an individual purely because of attributes legally protected

against discrimination (e.g., race, sex, disability status). We
develop an optimization program that constrains these quan-
tities, while maximizing the overall beneficial impact. We
demonstrate our method on a real-world dataset to assess
the impact of funding advanced classes on college-entrance
exam-taking. Concretely our contributions are:

• We formalize the discriminatory impact problem,
within the framework of structural causal models
(SCMs) where decisions (interventions) may interfere

with each other.

• We describe an integer program for maximizing the
overall beneficial impact, such that they are not benefi-
cial purely because of legally-protected attributes.

• We show how this IP can be encoded as a mixed-integer
linear program (MILP) and demonstrate our method
on allocating school funding for advanced courses in
the New York City Public School District.

2. Background
Before detailing our method, we describe counterfactual
fairness, causal models, causal interventions, and interfer-
ence. We use upper-case letters to denote random variables,
lower-case letters for scalars or functions (this will be clear
from context), upper-case bold letters for matrices, and
lower-case bold letters for vectors.

2Here we also allow interactions between individuals them-
selves, as decisions made about an individual may affect other
related individuals. Such models are an extension of typical causal
models called interference models (E. L. Ogburn, 2014).
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Figure 1. (a) A simple causal graph with two features X1, X2, protected attribute A, and outcome Y . Variables U represent hidden
variables. (b) A counterfactual system representing the fixing A to some value a0, explicitly showing new vertices where necessary:
vertices “V (a0)” are labeled “V ” whenever they are not descendants of A. (c) The same graph, augmented by a choice of Ŷ that does not
change across counterfactual levels.

Counterfactual Fairness. Counterfactual fairness (Kus-
ner et al., 2017) is a property of predictors based in causal
models. Let A be a (set of) protected attribute(s) that are
legally protected against discrimination (for instance in the
U.S. these include: race, sex, disability status, among other
things), Y a decision of interest and X a set of other fea-
tures. A predictor ˆY of Y satisfies counterfactual fairness if
it satisfies the following:

P (

ˆY (a) = y | A = a, X = x) (1)

= P (

ˆY (a0
) = y | A = a, X = x),

for all a, a0, y, x in the domains of A, Y , and X . The no-
tation V (a0

) refers to a counterfactual version of a factual

variable V .3 It represents the counterfactual statement “the
value of V had A = a0 instead of the factual value”. As
used by (Kusner et al., 2017), counterfactuals are defined by
Pearl’s Structural Causal Model (SCM) framework (Pearl,
2000). This framework defines a causal model by a set
of structural equations V

i

= g
i

(pa
i

, U
i

). These equations
describe how variables affect one another within a causal
directed acyclic graph (DAG) G (pa

i

are the observable par-
ents of V

i

in G, and U
i

is a (set of) parent-less unobserved
latent causes of V

i

). The counterfactual “world” is gener-
ated by fixing A to a0, removing any edges into vertex A,
and propagating the change to all descendants of A in the
DAG, as shown in Figure 1 (a), (b). Any variables in the
model that are not in A [ X , and are not descendants of
A, can be inferred given the event {A = a, X = x}, as the
remaining set of equations defines a joint distribution.

The motivation behind (1) is that the protected attribute A
should not be a cause of the prediction ˆY for anyone, other
things (the non-descendants of A in the DAG) being equal.
Informally, this translates to “we would not make a differ-
ent prediction for this person had this person’s protected
attribute been different, given what we know about them”.
This is in contrast to non-causal definitions which enforce
observational criteria such as Y ?? A | ˆY (calibration (Flo-

3Our notation is equivalent to that used in (Kusner et al., 2017).

res et al., 2016)), or ˆY ?? A | Y (equalized odds (Hardt
et al., 2016)). As discussed by Chouldechova (2017); Klein-
berg et al. (2016), in general it is not possible to enforce
both conditions, particularly if A 6?? Y (which happens if A
is a cause of Y ). To ensure ˆY is not a cause of A (neither di-
rect or indirect), counterfactual fairness adds ˆY to the graph
independently of A, as in Figure 1 (c), while maximizing
the predictive accuracy of ˆY . For more information about
causality and fairness see the survey (Loftus et al., 2018).

In this formulation, the original decision Y might be unfair
as Y is caused by protected attribute A, but we have the
freedom to set our new decision ˆY so it is not causally
affected by A. However, we often do not have the freedom
to directly decide a quantity Y (i.e., an impact). Instead,
we may only be able to control a decision Z that partially
decides this impact. This idea of partial control of real-world
quantities is formalized by causal interventions.

Interventions. Causal modeling defines an operation for
a decision that influences an impact in the real world, called
an intervention. Interventions are a causal primitive in the
SCM framework: they describe how deciding a quantity Z
affects other quantities in the causal graph.4

Perfect interventions are often impossible in real problems.
For example, a school cannot decide an individual’s post-
graduation salary Y . If they could, decreasing discrimina-
tion would reduce to the discriminatory prediction problem.
Instead, our goal is to consider imperfect interventions that
diminish the relationship between protected attribute A and
impact Y . As commonly done in the literature (Spirtes et al.,
1993; Pearl, 2000; Dawid, 2002), we can represent interven-
tions as special types of vertices in a causal graph. These ver-
tices index particular counterfactuals. For instance, if each
individual i is given a particular intervention Z(i)

= z(i),
we can represent their counterfactual impacts as Y (i)

(z(i)
),

and the corresponding causal graph will include a vertex
4From now on we will use the term ‘intervention’ in place of

the less formal term ‘decision’ (interventions being more general).
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Z pointing to Y . This vertex represents the index of the
intervention. For simplicity, we will assume that each Z(i)

are binary, where Z(i)
=0 means no intervention is given to

i (non-binary interventions are possible in our framework,
the optimization is just trickier). In contrast to the original
definition of counterfactual fairness which has a single coun-
terfactual, we will also write Y (i)

(a(i), z(i)
) to denote the

doubly-counterfactual impact for individual i with a fixed
A(i)

= a(i) and intervention Z(i)
=z(i).

Interference. Because interventions applied to one in-
dividual i often affect other individual j, we consider a
generalization of SCMs called interference models (So-
bel, 2006; E. L. Ogburn, 2014). As in Aronow & Samii
(2017), we are not concerned about direct causal connec-
tions between different impacts {Y (i), Y (j)}. We focus
exclusively on the intention-to-treat effects of interventions
{Z(1), Z(2), . . . , Z(n)} on impacts {Y (1), Y (2), . . . , Y (n)},
where n is the number of individuals. In these models,
each impact Y (i) is now a function of the full interven-
tion set z ⌘ [z(1), z(2), . . . , z(n)

]

>, i.e., Y (i)
(a(i), z), be-

cause of possible interference. The form of interference
we consider in this work is neighbor-based: a pre-defined
set of “neighbors” of i, defined as N(i) ⇢ {1, 2, . . . , n},
influence i. Specifically, their interventions will influence
the impact of i: Y (i). This is represented as causal edges
{Z(j)}

j2N(i) ! Y (i) (such edges can also be indirect).

Beneficial Impacts. Finally, alongside reducing the dis-
crimination in impacts many decision-makers are interested
in maximizing the beneficial impact across individuals: max-
imizing graduation rate, maximizing loan repayment, max-
imizing voter registration. Thus, in this work we will con-
sider impacts Y that are beneficial: i.e., higher values are
better. How can we make interventions so that not only is
this overall beneficial impact maximized, but that an indi-
vidual does not recieve significant benefit because of their
protected attributes A? We formalize and answer this ques-
tion in the next two sections.

3. The Discriminatory Impact Problem
Imagine we have a dataset of n individuals, and we have
the following information about each of them: A a pro-
tected attribute (or a set of them), X real-world features
that influence an impact of interest Y , and a causal graph
that describes how these quantities and an intervention Z
are causally related (there are many ways to discover this
causal graph and we direct readers to the excellent survey
Peters et al. (2017) for more details about this). We show an
example graph in Figure 2. This figure describes the causal
graph of two interfering individuals: red vertices correspond
to individual 1, blue to individual 2. A few clarifications: i)
we have described features X(i) as quantities that happen
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Figure 2. An example causal diagram with interventions Z, im-
pacts Y , real-world features X , and protected attribute A. Here,
individuals 1, 2 interfere with each other: their interventions may
alter the impact of each other.

before the intervention and are thus not directly impacted
by it. However, our framework does allow for quantities to
be impacted by the intervention along the path to Y . Our
experiment will describe such an example; ii) note that there
are no edges from A(i), X(i) to Z because intervening on
Z removes them (by definition); iii) for simplicity we omit
edges between A and X (our framework allows for this as
long as structural equations are defined, see appendix for
more details), and describe direct interference between Z(1)

and Y (2), and vice versa (our framework also allows for
indirect interference).

3.1. An Example

For more intuition about the discriminatory impact problem
we describe a real-world example of housing relocation
subsidies in the green box on the following page.

3.2. Learning Impacts

Before addressing discrimination we will start by learning
how to maximize beneficial impact Y . As Y is a random
variable we propose to maximize a summary of Y : its ex-
pected value E[Y ]. Then our goal is to assign interventions
z to maximize the sum of expected benefits. As in the ex-
ample, it is often unreasonable to assume we can assign
everyone an intervention. Thus, the maximization is subject
to a maximum budget b which we formalize as follows:

max

z2{0,1}n

nX

i=1

E[Y (i)
(a(i), z) | A(i)

=a(i), X(i)
=x(i)

],

(2)

s.t.,

nX

i=1

z(i)  b

where a(i), x(i) are the factual realizations of A(i) and X(i).
Recall that this conditional expectation is given by a causal
model with interference. We note that it is always well-
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Example: Housing Relocation Subsidies

Consider two individuals that live in the same neighborhood, such that {A(1), A(2)} are their races, {X(1), X(2)}
are their professional qualifications, {Y (1), Y (2)} are their annual incomes in 5 years, and {Z(1), Z(2)}, are
interventions: if Z(i)

=1 person i gets a subsidy to move to a neighborhood with better transport links. Figure 2
shows a causal graph for this scenario: A(i) and X(i) have effects on Y (i), as does the intervention Z(i). For a
moment, imagine there is no interference between the intervention of one individual Z(i) and the impact of the other
individual Y (j) (i.e., the crossing arrows are removed in Figure 2).

Imagine that US Department of Housing and Urban Development only has the budget to grant an intervention to
one individual. Imagine that both individuals are nearly identical: they have the same professional qualifications
{X(1), X(2)} but different races {A(1), A(2)}. Individual 1 is a member of a majority race and is privileged because
of it. Specifically, given the intervention Z(1)

=1 their impact Y (1)
([z(1)

=1, z(2)
=0])=$100, 000 is larger than

that of individual 2 if they had received the intervention Y (2)
([z(1)

=0, z(2)
=1])=$50, 000.

Now consider that there is also interference: if one individual i receives a subsidy, their moving out causes
others to move out and property prices to fall in their old neighborhood. This negatively affects the impact Y (j) of
individual j who did not get the intervention. With this interference we have:

Y (1)
([z(1)

=1, z(2)
=0])=$100, 000 Y (2)

([z(1)
=1, z(2)

=0])=$10, 000

Y (1)
([z(1)

=0, z(2)
=1])=$60, 000 Y (2)

([z(1)
=0, z(2)

=1])=$50, 000

Even though these individuals have identical qualifications {X(1), X(2)} the benefits they receive are different:
individual 1 has larger benefit Y (1) than individual 2, Y (2), in all cases. In fact, the difference seems purely based
on race: based on their similarity, it seems that if individual 1 had the race of individual 2 their benefit would go
down, whereas in the reverse case, the benefit of individual 2 would go up. How can we ensure that interventions are
beneficial overall while limiting the benefit that is due purely to protected attributes such as race?

defined, regardless of the neighborhood of each individual
(Arbour et al., 2016; Aronow & Samii, 2017).

In the housing example, if we make interventions purely to
maximize overall benefit, then it doesn’t matter if we give
the intervention to individual 1 or 2, the overall benefit is
$110, 000. However, giving the intervention to individual
1 severely harms individual 2 just because of their race. In
the next section we describe a method to not only maximize
overall benefit, but to constrain the amount of individual
benefit that is due to race (or any protected A).

4. Our Solution
To bound the impact due to discrimination, we propose
constraints on counterfactual privilege:

E[Y (i)
(a(i), z) | A(i)

=a(i), X(i)
=x(i)

] (3)

�E[Y (i)
(a0, z) | A(i)

=a(i), X(i)
=x(i)

] < ⌧,

for some ⌧ �0, all a0 in the domain of A, and i2{1, . . . , n}.
The first term of the constraint is the actual benefit received
by individual i for interventions z. The second term is
the counterfactual benefit they would have received had
they had attribute A = a0. The intuition here is that these
constraints prevent interventions that allow an individual i

to gain more than ⌧ units in expected benefit Y (i)
due a(i).

Consider what this means for the housing example for ⌧ =

$0. Because individuals 1 and 2 are identical except for their
race A, they are reasonable approximations to counterfactual
versions of each other. Thus, if the intervention is given to
individual 1 the left-hand side of eq. (3) equals Y (1)

([z(1)
=

1, z(2)
=0]) � Y (2)

([z(1)
=1, z(2)

=0])=$90, 000, which
doesn’t satisfy the constraint (⌧ = $0). If however, the
intervention is given to individual 2 we have Y (2)

([z(1)
=

0, z(2)
=1])�Y (1)

([z(1)
=0, z(2)

=1])=�$10, 000 which
does satisfy the constraint. Thus, this constraint ensures
interventions create impacts that aren’t due to A.

Comparing with a counterfactual is inspired by counter-
factual fairness eq. (1). To be more similar to eq. (1) we
could have bounded the absolute difference in the above
equation. We intentionally did not do this for the following
reason: it penalizes individuals who would have a better

impact had their race been different. Thus, it harms already-
disadvantaged individuals. In the above example, the second
intervention would now not have satisfied the constraint as
$10, 000⌅⌧ . As our goal is to improve impacts for already-
disadvantaged individuals, we use the constraint in eq. (3).

A Formulation with Fewer Assumptions. One down-
side to the constraint in eq. (3) is that in general it requires
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full-knowledge of the specific form of all structural equa-
tions.5 This is because if some feature X

k

is a descendant
of A, then in general X

k

(a) 6= X
k

(a0
). However, assuming

we know the structural equations is usually a very strong
assumption. To avoid this, we propose to consider X that
are not descendants of A (as shown in Figure 2) and fit a
model that will not require any structural equation except for
E[Y ]. Thus we propose a variation of the above constraint:

EM� [Y (i)
(a(i), z) | A(i)

= a(i), X
(i)
� = x

(i)
� ] (4)

�EM� [Y (i)
(a0, z) | A(i)

= a(i), X
(i)
� = x

(i)
� ]

| {z }
cia0

< ⌧,

where X
(i)
� is the subset of X(i) that are non-descendants

of A(i) in the causal graph, and M� is a causal model that
omits any observed descendants of A except for Y . (note
that A and X� can still non-linearly interact to cause Y , as
in our experiments). Without eq. (4), in general, one requires
assumptions that cannot be tested even with randomized
controlled trials (Loftus et al., 2018; Kusner et al., 2017).
In contrast, the objective function (2) and constraints (4)
can in principle be estimated by experiments. Note that
the objective function (2) can use all information in X(i),
since there is no need to propagate counterfactual values of
A(i). Hence, we use two structural equations for the impact
Y : one with X(i), and one with X

(i)
� . The full constrained

optimization problem is therefore:

max

z2{0,1}n

nX

i=1

E[Y (i)
(a(i), z) | A(i)

=a(i), X(i)
=x(i)

] (5)

s.t.,

nX

i=1

z(i)  b

c
ia

0  ⌧ 8a0 2 A, i 2 {1, . . . , n},

where A is the domain of A and ⌧ �0. We stress that using
non-descendants of A is not necessary for our formulation.
In the appendix we describe a setup that uses structural
equations with arrows from A to X .

4.1. The Optimization Framework

We propose a procedure to solve eq. (5) optimally. As eq. (5)
is NP-hard, our procedure will run in exponential time in
the worst case. However, in practice it runs extremely fast
(see Figure 6). Our formulation is general enough to ac-
commodate any functional form for the structural equation
for Y . To do so, we reformulate eq. (5) as a mixed-integer-
linear-program (MILP). To avoid fractional solutions from
the MILP for intervention set z, we use integer constraints
to enforce that each intervention z(i) is binary in the final

5Depending on the graph, it is possible to identify the function-
als without the structural equations (Nabi & Shpitser, 2018).

solution. Recall that for each individual i there are a set of
neighbor individuals N(i) whose interventions interfere on
their impact Y (i). Specifically, we let N(i) be the nearest K
neighbors. Let these interventions be called zN(i). We begin
by introducing a fixed auxiliary matrix E 2 {0, 1}(2K

,K).
Each row e

j

corresponds to one of the possible values that
zN(i) can take (i.e, all possible K-length binary vectors).

Additionally we introduce a matrix H 2 [0, 1]

(n,2K) where
each row h

i

indicates for individual i, which of the 2

K

possible neighbor interferences affect Y (i) (i.e., each row
is a 1-hot vector). We will optimize H jointly with z. This
allows us to rewrite the objective of eq. (5) as:

nX

i=1

2kX

j=1

h
ij

E[Y (i)
(a(i), zN(i)

=e
j

) | A(i)
=a(i), X(i)

=x(i)
]

| {z }
⇠

ij(a(i))

.

Note that we introduce a sum over all possible zN(i) and use
H to indicate which element of this sum is non-zero. We can
rewrite the constraints in a similar way. To ensure that each
row h

i

agrees with the actual zN(i) we enforce the following
constraints: I[e

j

= 1]h
ij

 zN(i) and I[e
j

= 0]h
ij

 1 �
zN(i), where I is the indicator function that operates on
each element of a vector. The first constraint ensures that
the non-zero entries of e

j

are consistent with zN(i) via
h

ij

, and the second ensures the zero entries agree. Finally,
to ensure that each row of H is 1-hot we introduce the
constraint

P2K

j=1 h
ij

= 1 for all i. This yields the following
optimization program:

max

z2{0,1}n

H2[0,1](n,2K )

nX

i=1

2KX

j=1

h
ij

⇠ij

(a(i)
) (6)

s.t.,

2KX

j=1

h
i,j

h
⇠ij

� (a(i)
) � ⇠ij

� (a0
)

i
< ⌧, 8a0, i

I[e
j

= 1]h
ij

 zN(i), 8i, j

I[e
j

= 0]h
ij

 1 � zN(i), 8i, j

2KX

j=1

h
ij

= 1, 8i

nX

i=1

z(i)  b.

Here ⇠ij

� (a(i)
) means the expectation is conditioned on X

(i)
�

as in eq. (4), and ⇠ij

� (a0
) means we’re taking the expectation

of counterfactual Y (i)
(a0, zN(i)

=e
j

).

Other Fairness Constraints. Our formulation eq. (5) and
our optimization framework eq. (6) is general enough to
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Figure 3. The model for the NYC school dataset.

handle any fairness constraint that can be phrased as an
(in)equality. In the appendix we detail how our framework
can handle for example (a) parity constraints, and (b) opti-
mizing purely for minority outcomes.

5. Results
We now demonstrate our technique on a real-world dataset.

Dataset. We compiled a dataset on 345 high schools from
the New York City Public School District, largely from the
Civil Rights Data Collection (CRDC)6. The CRDC collects
data on U.S. public primary and secondary schools to ensure
that the U.S. Department of Education’s financial assistance
does not discriminate ‘on the basis of race, color, national
origin, sex, and disability.’ This dataset contains the distri-
bution of race (A), Full-time Counselors (F ): the number
of full-time counselors employed (fractional values indicate
part-time work), AP/IB (P ): if the school offers Advanced
Placement or International Baccalaureate classes, Calcu-

lus (C): whether the school offers Calculus courses, and
SAT/ACT-taking (Y ): the percent of students who take the
college entrance examinations, the SAT and/or the ACT.

Setup. In this experiment, we imagine that the U.S. De-
partment of Education wishes to intervene to offer financial
assistance to schools to hire a Calculus teacher, a class that

6https://ocrdata.ed.gov/

is commonly taken in the U.S. at a college level. The goal is
to increase the number of students that are likely to attend
college, as measured by the fraction of students taking the
entrance examinations (via SAT/ACT-taking). It is reason-
able to assume that this intervention is exact. Specifically, if
the intervention is given to school i, i.e., Z(i)

=1, then we
assume that the school offers Calculus, i.e., C(i)

=1. With-
out considerating discrimination, the Department would
simply assign interventions to maximize the total expected
percent of students taking the SAT/ACT until they reach
their allocation budget B. However, to ensure we allocate
interventions to schools that will benefit independent of their

societal privilege due to race we will learn a model using
the discrimination-reducing constraints described in eq. (5).
We begin by formulating a causal model that describes the
relationships between the variables.

Causal Model. The structure of the causal model we pro-
pose is shown in Figure 3 (a subset of the graph is shown
for schools i and j). Recall that technically Z(i) does not di-
rectly cause observable variables. C(i) is hidden to the
extent that its value is only observable after the action
takes place. All variables directly affect the impact Y (i)

(SAT/ACT-taking). Frequently schools will allow students
from nearby schools to take classes that are not offered at
their own school. Thus we model both the Calculus class
variables C and the AP/IB class variables P as affecting
the impact of students at neighboring schools. Specifically,
we propose the following structural equations for Y with
interference:

E[Y (i)
(a, z) | A(i)

=a(i), P (i)
=p(i), F (i)

=f (i)
] =

↵>a max

j2N(i)

s.t.,z

(j)=1

s(i, j)C(j)
(z) (7)

+ �>a max

j2N(i)

s.t.,z

(j)=1

s(i, j)p(j)

+ �>af (i)
+ ✓>a.

To simplify notation we let N(i) refer to the nearby schools
of school i and also i. This way the max terms are also
able to select i (if z(i)

= 1). Further, C(j)
(z) = z(j)

and s(i, j) is the similarity of schools i and j. We con-
struct both N(i) and s(i, j) using GIS coordinates for
each school in our dataset7: N(i) is the nearest K = 5

schools to school i and s(i, j) is the inverse distance in
GIS coordinate space. The vector a(i) is the proportion
of (black, Hispanic, white) students at school i. We fit
the parameters ↵,�,�,✓ via maximum likelihood using an
observed dataset {c(i),a(i), p(i), f (i), y(i)}n

i=1. For counter-
factuals a0 our goal is to judge the largest impact due to
race, so we consider the extreme counterfactuals: where

7https://data.cityofnewyork.us/Education/School-Point-
Locations/jfju-ynrr
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Figure 4. The resulting interventions for the NYC school dataset with and without discrimination-reducing constraints. See text for details.
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Figure 5. The left-most plot shows the locations of the 345 New York City High Schools, and their majority race. The remaining plots
show the allocations of interventions for each policy.

each school consists of students of a single race, either
(black, Hispanic, white) students. Thus, to plug these
three counterfactuals into eq. (7), we encode them as one-
hot vectors, e.g., a0

= [1, 0, 0] signifies the majority black
school counterfactual.

Results. To evaluate the effect on SAT/ACT-taking when
allocating Calculus courses we start with the null allocation
vector z=0 (i.e., no school has a Calculus course). We then
solve the optimization problem in eq. (5) (using the MILP
framework in Section 3.3) with the structural equation for Y
in eq. (7), and a budget b of 25 schools. We use the Python
interface to the Gurobi optimization package to solve the
MILP8. The results of our model is shown in Figure 4. The
left plot shows the number of interventions allocated to
schools by the majority race of each school. The right plot
shows the objective value achieved by the constrained and
unconstrained models. On the far right of the left plot is the
unconstrained allocation. In this case, all interventions but
2 are given to majority white schools. When ⌧ is small both
majority black and Hispanic schools receive allocations,
indicating that these schools benefit the least from their race.
As ⌧ is increased, Hispanic school allocations increase, then
decrease as majority white schools are allocated.

Figure 5 shows how each policy allocates these interven-
tions on a map of New York City. The constrained policy

8https://github.com/mkusner/reducing_discriminatory_impact

(⌧ =0.034, the first set of bars in Figure 4) assigns interven-
tions to majority Hispanic and majority black schools that
have high utility because of things not due to race. As ⌧ is
increased (⌧ =0.097, the eleventh set of bars in Figure 4)
the allocation includes more majority white schools, less
Hispanic schools, and roughly the same number of major-
ity black schools, with more allocations in Staten Island.
The unconstrained policy assigns interventions to schools in
lower Manhattan and Brooklyn, and all allocations except
two are to white schools. See the appendix for results on
the run-time of the MILP (under 5 minutes for all settings)
and different fairness constraints.

6. Conclusion
In this paper we describe the discriminatory impact problem,
a problem that has gained much recent attention, but for
which no general solution exists. We argue that causal
models are a perfect tool to model how impact is affected by
decisions and real-world factors. We then propose a solution
to the problem: an optimization problem with counterfactual
constraints from a causal model of the impact. We give an
efficient procedure for solving this optimization problem
and demonstrate it on a course allocation problem for New
York City schools. We believe this is just the tip of the
iceberg; there are many possibilities for future work around
designing new constraints, optimization procedures, and
causal models, while reducing necessary assumptions.
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