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Abstract

We present POLITEX (POLicy ITeration with EX-
pert advice), a variant of policy iteration where
each policy is a Boltzmann distribution over the
sum of action-value function estimates of the pre-
vious policies, and analyze its regret in continuing
RL problems. We assume that the value func-
tion error after running a policy for τ time steps
scales as ε(τ) = ε0 + Õ(

√
d/τ), where ε0 is the

worst-case approximation error and d is the num-
ber of features in a compressed representation of
the state-action space. We establish that this con-
dition is satisfied by the LSPE algorithm under
certain assumptions on the MDP and policies. Un-
der the error assumption, we show that the regret
of POLITEX in uniformly mixing MDPs scales
as Õ(d1/2T 3/4 + ε0T ), where Õ(·) hides loga-
rithmic terms and problem-dependent constants.
Thus, we provide the first regret bound for a fully
practical model-free method which only scales in
the number of features, and not in the size of the
underlying MDP. Experiments on a queuing prob-
lem confirm that POLITEX is competitive with
some of its alternatives, while preliminary results
on Ms Pacman (one of the standard Atari bench-
mark problems) confirm the viability of POLITEX
beyond linear function approximation.

1. Introduction
We study online no-regret model-free algorithms for infi-
nite horizon reinforcement learning (RL) problems, which
capture long-horizon tasks such as routing problems and
game playing. Model-based reinforcement learning (RL)
algorithms estimate a model of the transition dynamics and
plan according to the model, while model-free algorithms
(e.g., Mnih et al. 2015) directly optimize the objective of in-
terest. Model-free algorithms can often be competitive with
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model-based algorithms, and theoretical evidence suggests
that this is not completely accidental (Strehl et al., 2006;
Azar et al., 2017; Jin et al., 2018; Abbasi-Yadkori et al.,
2019). However, existing theory either applies to settings
with no function approximation (Strehl et al., 2006; Azar
et al., 2017; Jin et al., 2018), or to systems with particular
structure where action-value functions are known to belong
to a known linear function space (Abbasi-Yadkori et al.,
2019). In this paper we ask the following question: Can
we design computationally-efficient, provable model-free
algorithms for infinite horizon RL problems with value func-
tion generalization? To this end, we propose POLITEX, a
variant of policy iteration (PI), and analyze its performance
for infinite-horizon average-cost problems in terms of high-
probability regret with respect to a fixed reference policy.

PI algorithms alternate between estimating the value of a
policy and generating a new policy, typically based on the
most recent value estimate (Bertsekas, 2011). In POLITEX,
the policy in each phase is a Boltzmann distribution over
the sum of value function estimates of all previous policies.
POLITEX is simple and efficient to implement whenever
an effective value function estimation method is available.
Importantly, no confidence sets or posterior distributions
for transition dynamics or value functions are needed. We
discuss and empirically evaluate versions of POLITEX that
rely on (1) linear value functions estimated using the least-
squares policy evaluation (LSPE) method of Bertsekas &
Ioffe (1996) and (2) deep neural networks and the nonlinear
TD(0) algorithm. Preliminary experimental results demon-
strate the benefits of POLITEX over several baselines, both
with linear and neural function approximation.

The algorithm and analysis are based on a reduction of
the control of MDPs to expert prediction problems (Even-
Dar et al., 2009), where we have an expert algorithm in
each state, and the losses fed to the algorithm are value
functions. The Boltzmann policy arises as a result of using
the exponential weights algorithm in each state. The regret
of POLITEX depends on the value function error. In the case
of linear function approximation, we show that the LSPE
error is controlled for uniformly mixing MDPs whenever a
certain “feature excitation” condition is met. Interestingly,
our results do not depend on the size of the MDP.
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1.1. Related work

Model-based RL: Model-based online RL has been a
topic of intense research in recent years. Algorithms typi-
cally either (1) construct confidence sets for transition dy-
namics and the reward function, and find policies using the
optimism principle (Auer et al., 2010; Bartlett & Tewari,
2009; Abbasi-Yadkori & Szepesvári, 2011; Abbasi-Yadkori,
2012), or (2) maintain a posterior distribution over the un-
known quantities and use Thompson sampling (Osband &
Van Roy, 2014; Osband et al., 2016; 2017; Russo et al.,
2018). While such algorithms are well-understood and
have strong theoretical guarantees in the case of tabular
MDPs (Auer et al., 2010; Bartlett & Tewari, 2009; Strehl
& Littman, 2008) and linear continuous systems (Abbasi-
Yadkori & Szepesvári, 2011; Abbasi-Yadkori, 2012), they
are difficult to apply to general RL problems with large
state spaces, in part because the construction of appropriate
confidence sets or posteriors can be challenging in practice.

Model-free RL: Model-free RL algorithms avoid estimat-
ing transition dynamics, and instead find optimal policies by
directly optimizing estimated value functions (Sutton, 1988).
In the case of tabular MDPs, regret bounds are typically ob-
tained by constructing confidence sets for value functions
and using the optimism principle. Constructing confidence
sets for value functions can be challenging due to recur-
sive nature of Bellman equations, and becomes significantly
more complicated in large problems with non-realizable
value function approximation. As a result, theoretical analy-
sis of existing algorithms are limited to finite-horizon tabular
MDPs, where confidence intervals can be propagated back-
wards and there are only a finite number of stages (Osband
et al., 2016; 2017; Wen & Van Roy, 2017; Jin et al., 2018).
For MDPs with rich observations and function approxima-
tion, Jiang et al. (2017) introduce a complexity measure
called Bellman rank, and propose an optimistic algorithm
for episodic RL with PAC guarantees for MDPs with low
Bellman rank. However, the algorithm involves an elimina-
tion step which has no known efficient implementation.

Reduction to expert prediction: Our approach is based
on a reduction of MDP control to an expert prediction
problem. The reduction was first proposed by Even-Dar
et al. (2009) for the online control of finite-state MDPs with
changing cost functions. A similar approach is also pre-
sented by Yu et al. (2009). It has since been extended
to structured prediction (Daumé III et al., 2009; Ross
et al., 2011), finite MDPs with known dynamics and ban-
dit feedback (Neu et al., 2014), LQ tracking with known
dynamics (Abbasi-Yadkori et al., 2014), linearly solvable
MDPs (Neu & Gómez, 2017), and adaptive control of LQ
systems (Abbasi-Yadkori et al., 2019). The work of Abbasi-
Yadkori et al. (2019) served as the starting point for the
current paper. The main difference to this work is that in

LQR problems the value functions are quadratic and there
is no approximation error (which simplifies the analysis),
while the state-action space is continuous and unbounded
(which poses different analysis challenges). Here, we con-
sider MDPs with finite but possibly large state spaces, and
linear value function approximation. Our algorithm is a
version of policy iteration, where the policy in each phase is
a Boltzmann distribution over the sum of all previous value
function estimates, as opposed to the most recent one. This
is a direct consequence of using an expert algorithm, in this
case the exponentially-weighted average forecaster.

Value function approximation: Many existing works at-
tempt to extend count-based exploration methods to settings
with rich observations and function approximation using
heuristics. Such approaches include those of Ostrovski et al.
(2017); O’Donoghue et al. (2018); Fortunato et al. (2018);
Machado et al. (2017; 2018); Bellemare et al. (2016); Taïga
et al. (2018). Our regret analysis relies on finite-sample
bounds for linear value function estimation; in particular,
we analyze the LSPE algorithm of Bertsekas & Ioffe (1996),
and adapt the asymptotic convergence analysis of Yu &
Bertsekas (2009) to the finite-sample case. Convergence
analysis of various temporal difference learning methods
has a rich history (Tsitsiklis & Van Roy, 1997; 1999; Antos
et al., 2008; Sutton et al., 2009; Maei et al., 2010; Lazaric
et al., 2012; Geist & Scherrer, 2014; Farahmand et al., 2016;
Liu et al., 2012; 2015). Yu & Bertsekas (2009) have shown
almost-sure convergence of on-policy average-cost LSPE.
A finite-time analysis of the LSTD algorithm for discounted
problems has been shown by Lazaric et al. (2012), and
sharpened for the LQ problem by Tu & Recht (2017).

Similar algorithms: POLITEX can be seen as a softened
and averaged version of policy iteration. Most existing per-
formance bounds for policy iteration, such as that of Lazaric
et al. (2012), apply to the discounted setting and involve
a concentrability coefficient term, which is the result of
using an argument based on the contraction-mapping theo-
rem (Szepesvári, 2010). Our results do not depend on this
term or on the size of the MDP. Two recent algorithms with
a similar form to POLITEX are MPO (Abdolmaleki et al.,
2018) and Quinoa (Degrave et al., 2018), which optimize a
relative entropy-regularized objective.

2. Problem definition and background
2.1. Definitions and notation

For an integer d, we let [d] = {1, 2, . . . , d} denote the first
d positive integers. We use ∆S to denote the space of prob-
ability distributions µ defined on the set S . For finite S , we
also identify µ ∈ ∆S with the corresponding probability
mass function and will thus write µ(s) for the probability
of set {s} ⊂ S. We will also treat µ as a vector by fixing a
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canonical ordering of the elements in S. This convention
will be used extensively and we will also identify matri-
ces with transition kernels, as usual in the Markov chain
literature. For a vector v ∈ Rd, we use ‖v‖∞, ‖v‖, and
‖v‖1 to denote its `∞, `2, and `1 norms, respectively. For a
distribution µ ∈ ∆[d], we define the distribution-weighted
norm ‖v‖2µ =

∑d
i µ(i)v[i]2. The corresponding 1-norm for

functions f is denoted by ‖f‖L1(µ) =
∫
|f(x)|µ(dx). We

let 1 denote the all-ones vector of an appropriate dimension,
and for f, g : X → R, 〈f, g〉 =

∑
x f(x)g(x). We use

log to denote the natural logarithm function. For a function
f : X → R and a function g : R→ R, g(f) stands for the
X → R function that maps x to g(f(x)) (i.e., g is applied
pointwise). We use a, b ≤ c to denote a ≤ c and b ≤ c.

2.2. Problem definition

We model the interaction between the agent (i.e. algorithm)
and the environment as Markov decision process (MDP). An
MDP is a tuple 〈X ,A, c, P 〉, where X is a finite state space
of cardinality S, A is a finite action space of cardinality A,
c : X × A → [0, 1] is a cost function, and P : X × A →
∆X is the transition probability distribution that maps each
state-action pair to a distribution over the states.1 At each
time step t = 1, 2, . . . , the agent receives the state of the
environment xt ∈ X , chooses an action at ∈ A, and suffers
a cost c(xt, at). The environment then transitions to the next
state according to xt+1 ∼ P (·|xt, at). Initially, the agent
does not know P and c. We also assume that x1, the initial
state, is chosen at random from some unknown distribution.

A (stationary Markov) policy is a mapping π : X → ∆A
from a state to a distribution over actions. Following a
policy means that in any time step, upon receiving state x,
an action a ∈ A is chosen with probability π(a|x). Let π∗

be an unknown baseline policy and let {(x∗t , a∗t )}t=1,2,...

denote the state-action sequence that results from following
policy π∗. The regret of the algorithm with respect to π∗ is
defined as

RT =

T∑
t=1

c(xt, at)−
T∑
t=1

c(x∗t , a
∗
t ) . (1)

Our goal is to design a learning algorithm that guarantees a
small regret with high probability.

2.3. Value functions

We will assume that the following holds throughout:

Assumption A1 (Single recurrent class) The states of
the MDP under any policy form a single recurrent class.

1To simplify the presentation, we consider the finite state
MDPs, but our arguments can be extended to infinite and con-
tinuous MDPs under appropriate conditions.

MDPs satisfying this condition are also known as unichain
MDPs (Section 8.3.1 Puterman, 1994).

Under Assumption A1, the states under π form a Markov
chain that has a unique stationary distribution over the states,
denoted by µπ . The same holds for the state-action pairs un-
der π, whose stationary distribution we denote by νπ . Note
that νπ satisfies νπ(x, a) = µπ(x)π(a|x) for any (x, a). Let
{(xπt , aπt )}t=1,2,... be the sequence of state-action pairs that
result from following policy π. The average cost of a policy
π is defined as

λπ := lim
T→∞

E

[
1

T

T∑
t=1

c(xπt , a
π
t )

]
.

The corresponding bias (or value) function associated with
a stationary policy π is given by

Vπ(x) := lim
T→∞

E

[
T∑
t=1

(c(xπt , a
π
t )− λπ) | xπ1 = x

]
when the state-chain is aperiodic, and is the Cesaro-limit,
limT→∞E

[
1
T

∑T
m=1

∑m
t=1(c(xπt , a

π
t )− λπ) | xπ1 = x

]
,

otherwise. The state-action value function of a policy
corresponds to the value of taking an action a in state x and
then following the policy, and is given by

Qπ(x, a) = c(x, a)− λπ + E[Vπ(x′)|x, a] , (2)

where x′ ∼ P (·|x, a). Define the SA × SA transition
matrix Hπ by (Hπ)(x,a),(x′,a′) = P (x′|x, a)π(a′|x′). For
convenience, we will interchangeably write Hπ(x′, a′|x, a)
to denote this value. We will also do this for other transition
matrices/kernels. Under our assumption, up to addition of a
scalar multiple of 1, Qπ (viewed as a vector) is the unique
solution to the Bellman equation

Qπ = c− λπ1 +HπQπ . (3)

Any Boltzmann policy π(a|x) ∝ exp(−ηQ(x, a)) is invari-
ant to shifting Q by a constant.

3. The POLITEX algorithm
Our proposed algorithm, POLITEX (POLicy ITeration with
EXpert advice) is shown in Algorithm listing 1. In each
phase i, POLITEX executes policy πi and at the end of the
phase computes an estimate Q̂i of Qπi , the state-action
value function of πi (a policy evaluation step). The next
policy is a Boltzmann distribution over the sum of all past
state-action value estimates:

πi+1(a|x) ∝ exp

(
− η

i∑
j=1

Q̂j(x, a)

)
, (4)

where η > 0 is a learning rate. Thus, POLITEX can also
be viewed as a “softened” and “averaged” version of policy
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Algorithm 1 POLITEX: POLicy ITeration using EXperts
Input: phase length τ > 0, initial state x0

Set Q̂0(x, a) = 0 ∀x, a
for i := 1, 2, . . . , do

Set πi(a|x) ∝ exp
(
−η
∑i−1
j=0 Q̂j(x, a)

)
Execute πi for τ time steps and collect data

Zi = {(xt, at, ct, xt+1)}τit=τ(i−1)+1

Compute Q̂i from Z1, . . . ,Zi, π1, . . . , πi
end for

iteration. Intuitively, averaging reduces noise, allowing for
noisier estimates (Q̂j)j and thus switching to a new policy
faster, while the exponential weighting increases robustness.
The choice of the Boltzmann policy is not arbitrary: The
motivation will become clear in the regret analysis, where,
following Even-Dar et al. (2009), we connect learning in
MDPs to online learning. Based on its form, POLITEX can
be thought of as a generalization of the MDP-E algorithm
of Even-Dar et al. (2009).

We leave the choice of how Q̂i is estimated to the user
(thus, POLITEX is better viewed as a learning schema). We
expect longer phase lengths τ to lead to better estimates,
and we make this more precise in the next section. While
Algorithm 1 suggests that all data should be collected and
stored, this is only for the sake of being clear which data
can be used to estimate Q̂i. In practice, one may use any
incremental algorithms (e.g., TD-learning of Sutton (1988)).
Similarly, one may use either on-policy methods (thus, re-
stricting the data used to estimate Q̂i to Zi), or off-policy
methods (using all past data).

Eq. (4) suggests that the computation cost grows over
time with the number of past phases. With linear func-
tion approximators of the form Q̂j(x, a) = 〈ψ(x, a), ŵj〉,
this can be avoided by noting that

∑i−1
j=0 Q̂j(x, a) =

〈ψ(x, a),
∑i
j=0 ŵj〉. With other forms of function approxi-

mators, one can either truncate the sum (removing all but the
last, say, p) terms, or use approximator-specific solutions.
One possibility is to directly estimate πi based on πi−1,
exploiting that πi(x, a) ∝ πi−1(x, a) exp(−ηQ̂i−1(x, a)),
which makes MPO (Abdolmaleki et al., 2018) and Quinoa
(Degrave et al., 2018) a special case of POLITEX.

4. The regret of POLITEX: General results
Consider any learning agent that produces the state-action
sequence {(xt, at)}t=1,2,... while interacting with an MDP.
For a fixed time step t, let π(t) denote the policy that is used
to generate at: Thus, π(t) depends on the past observations

of the learner, and at has distribution π(t)(·|xt) given the
past observations up to time step t− 1 and xt. Then,

RT = RT + VT +WT , where (5a)

RT =

T∑
t=1

(λπ(t)
− λπ∗) , (5b)

VT =

T∑
t=1

(c(xt, at)− λπ(t)
) , (5c)

WT =

T∑
t=1

(λπ∗ − c(x∗t , a∗t )) . (5d)

In line with the literature, we call RT the pseudo-regret.
This term depends on the difference between the average
cost of the followed policies and that of the reference policy,
and it can be viewed as a noise-reduced measure of how
good the policies are compared to the reference. The terms
VT and WT capture the deviations of the individual costs
from their long-term averages. If the policies are changing
slowly, or they are kept fixed for extended periods of time,
we expect VT and WT to capture the noise in the costs.

Our first result is a bound on RT . For a probability dis-
tribution µ on X and a stochastic policy π, define µ ⊗ π
to be the distribution on X × A that puts the probability
mass µ(x)π(a|x) on pair (x, a) ∈ X ×A. Recall also that
µ∗ is the stationary distribution of π∗ over the states, while
ν∗ = µ∗ ⊗ π∗ is the same over the state-action pairs.

Theorem 4.1. Let E = bT/τc and fix 0 < δ < 1. Let
ε(δ, τ) > 0 and Qmax > 0 and b ∈ R be such that for any
i ∈ [E], with probability 1− δ,

‖Qπi − Q̂i‖ν∗ , ‖Qπi − Q̂i‖µ∗⊗πi ≤ ε(δ, τ) (6)

and Q̂i(x, a) ∈ [b, b + Qmax] for any (x, a) ∈ X × A.
Letting η =

√
8 log(A)/E/Qmax, with probability 1 − δ,

the regret of POLITEX relative to the reference policy π∗

satisfies

RT ≤ 2T ε(δ/(2E), τ) + E1/2τQmaxSδ(A,µ
∗) ,

where

Sδ(A,µ
∗) =

√
log(A)

2
+

〈
µ∗,

√
log(2/δ) + log(1/µ∗)

2

〉
.

Note that in the definition of Sδ , 0 log(1/0) is interpreted as
zero. In general, we expect ε(δ, τ) to increase as δ decreases
to 0 and decrease as τ increases. Thus, increasing τ (the
length of the phases) decreases the first term, but because
E ≈ T/τ , it increases the other terms.

The proof requires a result on the so-called prediction with
expert advice problem (hence, explaining the letters ‘EX’
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in POLITEX). In this problem setting, a learner and an
environment interact sequentially for T rounds as follows.
At the beginning of round t = 1, 2, . . . , T , the environment
picks a loss vector `t ∈ [0, 1]A, while simultaneously the
learner picks an expert index It ∈ [A]. Both can use their
respective past information in their choices. After both made
their choices, the learner observes the loss vector `t, while
the environment observes It. The goal of the learner is to
minimize its regret RT,j relative to some choice j ∈ [A],
where RT,j =

∑T
t=1 `t,It −

∑T
t=1 `t,j . Since both are

allowed to randomize, the regret is random.

The so-called exponentially weighted average (EWA) fore-
caster in round t chooses It = i with probability πt(i) ∝
exp(−η

∑t−1
s=1 `s,i). Note that this is just the Boltzmann

policy in RL parlance. The parameter η is called the learn-
ing rate of EWA.

Theorem 4.2 (Corollary 4.2, Cesa-Bianchi & Lugosi
(2006)). Set η =

√
8 log(A)/T . Then, regardless of how

the environment plays, for any 0 < δ < 1 and i ∈ [A], with
probability 1− δ, the regret of EWA with the above choice
of η satisfies RT,i ≤

√
T log(A)/2 +

√
T log(1/δ)/2.

We will need a slightly modified version of this result
when performance is measured using the “pseudo-regret”:
RT,π∗ =

∑T
t=1〈πt, `t〉 −

∑T
t=1〈π∗, `t〉, where πt is the

distribution over [A] chosen by EWA as described above
and π∗ is an arbitrary distribution over [A]. By checking the
proof, it is easy to see that the theorem holds when RT,i is
replaced by RT,π∗ . With this, we are ready to present the
proof.

Proof of Theorem 4.1. For Q : X × A → R and policy
π, let Q(x, π) =

∑
a π(a|x)Q(x, a). By the performance

difference formula (Cao, 1999, Eq. (10)),

λπ(t)
− λπ∗ = 〈µπ∗ , Qπ(t)

( · , π(t))−Qπ(t)
( · , π∗)〉 .

By adding and subtracting empirical estimates, we write
RT = RT,1 + RT,2, where

RT,1 =

T∑
t=1

〈µπ∗ , Q̂π(t)
( · , π(t))− Q̂π(t)

( · , π∗)〉

RT,2 =

T∑
t=1

〈µπ∗ , Qπ(t)
( · , π(t))− Q̂π(t)

( · , π(t))〉

+

T∑
t=1

〈µπ∗ , Q̂π(t)
( · , π∗)−Qπ(t)

( · , π∗)〉 .

Note that for any t ∈ [T ] and i ∈ [E] such that t ∈ {τ(i−
1)+1, . . . , τ i}, π(t) = πi. Thus, by Eq. (6), with probability
1− Eδ, for all t ∈ [T ],

‖Qπ(t)
− Q̂t‖ν∗ , ‖Qπ(t)

− Q̂t‖µ∗⊗π(t)
≤ ε(δ, τ)

and thus RT,2 ≤ 2Tε(δ, τ) on the same event when the
previous inequality holds.

Fix a state x ∈ X and assume that A = {1, . . . , A}.
If we set η =

√
8 log(A)/T/Qmax in POLITEX, then

π(i)(·|x) becomes the distribution that would be chosen
by the EWA forecaster with environment losses `i,a =

(Q̂i(x, a) − b)/Qmax, a ∈ A, and EWA stepsize η as in
Theorem 4.2. Thus, by the note after Theorem 4.2,

R̃T (x) :=

E∑
i=1

〈πi(·|x), `i〉 − 〈π∗(·|x), `i〉

≤
√
E log(A)/2 +

√
E log(1/δ)/2.

By a union bound, simultaneously for all x ∈ X such that
µ∗(x) > 0,

R̃T (x) ≤
√
E log(A)/2 +

√
E log(1/µ∗(x)δ)/2 ,

〈µ∗, R̃T 〉 ≤
√
E log(A)/2 + 〈µ∗,

√
E log(1/δµ∗)/2〉 .

Noting that RT,1 ≤ τQmax〈µ∗, R̃T 〉 and using another
union bound gives the final result.

Theorem 4.1 immediately implies the following corollary
which discusses the performance of POLITEX in cases where
the value functions can be computed exactly. The proof is
in Appendix C.
Corollary 4.3. When we can compute value functions ex-
actly (known MDP), after n policy updates with POLI-
TEX with parameters τ = 1 and E = n, a policy se-
lected uniformly at random from policies computed so far is
O(Qmax

√
log(A)/n) close to the optimal average cost.

To get a regret bound for POLITEX, we also need a bound on
VT and WT . We bound these terms under the assumption
that all policies mix at the same speed. Obviously, this
assumption implies Assumption A1.

Assumption A2 (Uniformly fast mixing) There exists a
constant κ > 0 such that for any distribution ν′,

sup
π
‖(νπ − ν′)>Hπ‖1 ≤ exp(−1/κ)‖νπ − ν′‖1 .

Under this assumption, the following bound holds:
Lemma 4.4. Let Assumption A2 hold. With probability at
least 1− δ, we have that

|WT | ≤ κ+ 4κ
√

2T log (2/δ) ,

|VT | ≤ Eκ+ 4Eκ
√

2τ log (2T/δ).

The proof can be found in Appendix A. While the size of VT
is independent of the algorithm, decreasingE (longer, fewer
phases) will decrease WT . Putting everything together, we
get the main result of the paper:
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Theorem 4.5. Let the assumptions of Theorem 4.1 hold and
in addition let Assumption A2 hold. Then, with probability
1− 2δ,

RT ≤ (E + 1)κ+ 2T ε
(
δ

2E , τ
)

+ E
1
2 τQmaxSδ(A,µ

∗)

+ 4T 1/2κ
√

2 log (2/δ) + 4Eτ1/2κ
√

2 log (2T/δ) ,

where Sδ(A,µ∗) is defined in Theorem 4.1.

In the next section, we will see that in a special case we can
choose

ε(δ, τ) = ε0 + C

√
log(1/δ)

τ
(7)

for some ε0 > 0 that captures the irreducible error of the
value estimation method (“approximation error”) andC > 0
is some constant. In this case, balancing the various terms
gives the following result:

Corollary 4.6. Let the conditions postulated in Theorem 4.5
hold. In addition, assume that Eq. (7) holds. Then, for
some universal constant C ′ > 0, for T larger than another
universal constant, for any δ ∈ (0, 1), with probability at
least 1− δ,

RT ≤ C ′T 3/4 ·
(
QmaxSδ(A,µ

∗) + (κ+ C)
√

log (T/δ)
)

+ 2ε0T .

The proof can be found in Appendix B, where a more precise
expression is also given which is valid for any T > 1.

5. POLITEX with linear value function
approximation

In this section we consider POLITEX with linear value func-
tion approximation, i.e., when the action-value function
approximation is of the form (x, a) 7→ 〈ψ(x, a), w〉, where
ψ : X × A → Rd is a fixed map chosen by the user, and
w ∈ Rd is a weight vector to be learned from data. We
consider this case to uncover conditions (e.g., on ψ) un-
der which POLITEX can perform well while using a non-
trivial function approximation technique. The estimation
method we use is the so-called “least-squares policy evalua-
tion” (LSPE) method by Bertsekas & Ioffe (1996). LSPE
can be seen as solving a sample-based approximation to a
projected version of the Bellman equation underlying the
policy to be evaluated, as detailed in the next subsection.
The version of LSPE we analyze is given in Section 5.2.
Unlike the version studied by Yu & Bertsekas (2009), we
consider a non-incremental, “batch” version of LSPE, which
is easier to analyze and may be more sample-efficient than
the incremental LSPE method that processes all examples
(transitions) once.

5.1. Projected Bellman equation

Given the map ψ as above, we can form the SA×dmatrix Ψ
whose rows correspond to ψ(x, a)> for a canonical ordering
of the state-action pairs.

Our analysis will consider weighted value function errors
‖Ψw −Qπ‖νπ , where νπ is a distribution over state-action
pairs. Let span(Ψ) = {Ψw : w ∈ Rd} denote the span of
Ψ. We make the following assumption on Ψ:

Assumption A3 (Linearly independent features) The
columns of the matrix [Ψ 1] are linearly independent.

This assumption is necessary as we are solving the average-
cost Bellman equations. Let Ππ : RSA → RSA be the
projection defined by Ππx = argminy∈span(Ψ) ‖y − x‖2νπ .
As is well-known, Ππ is a linear operator which, in matrix
form, can be written as Ππ = Ψ(Ψ>DπΨ)−1Ψ>Dπ where
Dπ is the (SA) × (SA) diagonal matrix with νπ on its
diagonal. As mentioned, LSPE aims at finding a solution to
the so-called projected Bellman equation (PBE),

Q̃π = Ππ(c− λπ1 +HπQ̃π) . (8)

Clearly, any solution to this equation lies in span(Ψ). Under
Assumptions A1 and A3, Prop. 4 of Yu & Bertsekas (2009)
and a simple argument show that this equation has a unique
solution. Under Assumption A3, this gives rise to a unique
weight vector w̃π so that Q̃π = Ψw̃π . It also follows that I−
ΠπHπ is nonsingular. Let ρ = ‖(I −ΠπHπ)−1ΠπHπ(I −
Ππ)‖2νπ . Theorem 2.2 of Yu & Bertsekas (2010) shows that
if ρ is not too large, solving Eq. (8) is reasonable in the
sense that one loses at most by a multiplicative factor of√

1 + ρ:

‖Qπ − Q̃π‖νπ ≤
√

1 + ρ min
Q∈span(Ψ)

‖Qπ −Q‖νπ . (9)

5.2. The LSPE algorithm

The LSPE algorithm is derived from the damped version
of the projected Bellman equation. For a damping factor γ,
this takes the form

Q̃π = (1− γ)Q̃π + γΠπ(c− λπ +HπQ̃π) , (10)

which can also be read as an update rule, where the left-hand
side is assigned to the right-hand side in an iterative fashion.
Let ψi = ψ(xi, ai), ai ∼ π(·|xi), xi+1 ∼ P (·|xi, ai),
ci = c(xi, ai), i = 1, . . . , τ be the data available from
executing policy π. Let λ̂π = 1

τ

∑τ
i=1 ci be the empirical

average cost. The (batch) LSPE update rule underlying
Eq. (10) in weight-space is as follows:

w(k+1) = (1− γ)w(k)+ (11)

γ
( τ∑
i=1

ψiψ
>
i

)−1
τ∑
j=1

ψj
(
ψj+1

>w(k) + cj − λ̂π
)
,
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where k = 0, 1, . . . and (say) w(0) = 0.

In Appendix D, we prove the following bound on the esti-
mation error ‖Ψw(k) − Q̃π‖νπ = ‖Ψw(k) −Ψw̃‖νπ :

Theorem 5.1. Let σ = λmin(Ψ>DπΨ). With probability
at least 1 − δ, for a problem-specific constant α ∈ (0, 1)
and universal constant C > 0, for τ big enough, for any
k > 0, we have

‖Ψ(w(k) − w̃)‖νπ ≤ αk−1‖Ψ(w(0) − w̃)‖νπ

+
C‖w̃‖

√
d κ polylog(d, k/δ)√
τ(1− α)σ3

.

The proof relies in part on the contractiveness of the operator
Fπ,γ := (1− γ)I + γΠπHπ . In particular, by Prop. 4 of Yu
& Bertsekas (2009), under assumptions A1 and A3, for any
γ ∈ (0, 1) there exists απ ∈ [0, 1) such that ‖Fγ‖νπ ≤ απ.
To get a policy-independent but MDP specific constant, we
let α := supπ απ .

Since we have no control of what policies POLITEX will
come up with, we make the following assumption:

Assumption A4 (Uniformly excited features) There
exists a positive real σ such that for any policy π,
λmin(Ψ>DπΨ) ≥ σ.

The assumption states that any policy generates a station-
ary distribution under which the features span all directions
in the feature space uniformly well. This condition is a
close relative of the condition of persistent excitation from
the control literature (Narendra & Annaswamy, 1987). As-
sumption A4 can be restrictive. For example, it is violated
by deterministic policies when learning with finite MDPs
with a tabular representation (i.e., when a separate feature
is assigned to each state-action pair). Appendix F outlines
a way to relax this assumption, so that in the tabular case
we only require policies to visit every state rather than every
state-action pair.

5.3. POLITEX with LSPE

Let us now return to the problem of bounding the regret of
POLITEX when used with LSPE and linear function approx-
imation. By Eq. (6), in order to state a result for POLITEX,
we need to control ‖Qπi − Q̂i‖ν∗ and ‖Qπi − Q̂i‖µ∗⊗πi .
First, note that for any policy π,

‖Qπi − Q̂i‖µ∗⊗π ≤ ‖Qπi − Q̃i‖µ∗⊗π + ‖Q̃i − Q̂i‖µ∗⊗π .

Here, the first term is the irreducible approximation error
due to solving the projected Bellman equation induced by
πi using the feature-map ψ. To control the second term,
note that for any w, ‖Ψ(w− w̃)‖2νπ ≥ σ

−1‖w− w̃‖2. Thus,

‖Ψ(w − w̃)‖2µ∗⊗π ≤ C2
Ψ‖w − w̃‖2 ≤ σC2

Ψ‖Ψ(w − w̃)‖2νπ ,

where CΨ = maxx,a ‖ψ(x, a)‖. Combining this with The-
orem 5.1 gives a bound as required by Eq. (6).

To bound Qmax, we show in Appendix D.3 that for any
C ′ ≥ 2 + 2CΨα

σ , and for some constants C3 and C4 and for
τ ≥ ((C3/C2 + C ′C4)/(1 − α))2, with high probability,
for any i the LSPE estimate satisfies ‖w(i)‖ ≤ C ′C2. Here,
C2 is a constant such that ‖w̃‖ ≤ C2, ‖w(0)‖ ≤ C2 for
all policies. Along with feature boundedness, this gives a
bound on Qmax. Thus we have the following theorem.

Theorem 5.2. Under Assumptions A1, A3, A2, and A4, for
some constant C, for any fixed T large enough, the regret
of POLITEX with LSPE with respect to a reference policy
π∗ is bounded with probability at least 1− δ as

RT ≤ 2ε0T + CT 3/4 ·
(√

2 logA+ κ
√

log (4T/δ)

+ 〈µ∗,
√

log(1/δµ∗)/2〉+
κ

σ3

√
d log (4d/δ)

)
.

6. Experiments
6.1. Queueing networks

We first study the performance of POLITEX with linear func-
tion approximation on the 4-dimensional and 8-dimensional
queueing network problems described in de Farias &
Van Roy (2003) (Figures 6 and 7). A queueing network
contains K servers, each server s has Ns queues, and can
process at most one queue at each time step. If a queue q is
selected for processing, one of its jobs departs to the next
queue (or out of the system) with probability dq. A subset
of the queues receive new jobs with probability α at each
time step. The system state is a vector xt with the number of
jobs in each queue, and the cost is ‖xt‖1. A policy selects a
non-empty queue for each server to process.

We use the similar features as de Farias & Van Roy (2003),
including bias, state x, binary indicator features for each
pair and triplet of queues, indicating that all are non-empty.
We learn separate weights on these features for each ac-
tion using LSPE, for which we regularize the projection
matrix as Ππ,β = Ψ>(Ψ>DπΨ + βI)−1Ψ>Dπ. We com-
pare POLITEX to the following: (1) Standard least-squares
policy iteration (LSPI), where the policy πi in phase i a
Boltzmann distribution using the most recent value func-
tion estimate Q̂i−1. We use the same estimation procedure
as for POLITEX. (2) A version of RLSVI (Osband et al.,
2017) where we randomize the value function parameters.
In particular, we update the posterior mean and covariance
of a regression-based estimate of parameters w after each
step. At the beginning of each phase i, we sample parame-
ters wi from this posterior, and act greedily with respect to
Qi = Ψwi.

We initialize to empty queues and run policies forE = 2000
phases of length τ = E. For all policies, we bias the
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Figure 1. Average cost at the end of each phase for the 4-queue and
8-queue environments (mean and standard deviation of 50 runs),
for different values of η.
covariance of the value functions with β = 0.1. For
LSPI and POLITEX, experiment with η = k/

√
T , for

k ∈ {1, 5, 10, 20, 100, 500, 1000, 2000, 4000}; the value
k = 1 was best. Fig. 1 shows the running average cost
for each policy. For the best choice of η, POLITEX and
LSPI achieve similar performance, and slightly outperform
RLSVI. LSPI performance deteriorates for higher values of
η (corresponding to greedier policies with less exploration),
suggesting that it is more sensitive to value estimation error.

6.2. Atari with deep neural networks
In the next experiment, we examine whether the promising
theoretical results presented in this paper lead to a practical
algorithm when applied in the context of neural networks.
We compare a version of POLITEX to DQN (Mnih et al.,
2013) on a standard Atari environment running Ms Pacman.
We approximate state-action value functions using neural
networks and use SOLO FTRL by Orabona & Pál (2015) for
tuning the learning rate η, which makes POLITEX adapt to
the range of the action-value function estimates. We execute
policies that are based only on the most recent n neural
networks, where n is a parameter to be chosen. Further
implementation details are given in Appendix G. Rather
than evaluating learned policies after training (as in (Mnih
et al., 2013)), in line with the setting of this paper, we plot
the rewards obtained by the agents against the total number
of frames of gameplay. Fig. 2 shows that POLITEX achieves
higher game scores with seemingly more stable learning
than DQN, indicating the viability of the method. Note that
we expect POLITEX to be more stable (due to the averaging
that it uses), and we speculate that the higher scores are a
consequence of this stability.

7. Discussion and future work
Policy iteration: We highlight an advantage of our ap-
proach compared to existing results for approximate PI
methods. Let πk be the policy generated by a PI method af-
ter k iterations. Lazaric et al. (2012) bound the performance
error ‖Vπ∗−Vπk‖µ for the LSPI algorithm, where µ is a dis-

Figure 2. Ms Pacman game scores obtained by the agents at the
end of each game. The plots are based on three runs of each
algorithm with different random seeds.

tribution over the states. The bound involves a term known
as the concentrability coefficient, which can be very large if
µ is far from the distribution used to generate the samples
at each iteration, and is present even in the realizable case.
This term is an artifact of contraction-based arguments for
analyzing policy iteration methods. Since our regret-based
analysis avoids contraction arguments, such terms do not
appear in our performance bounds. We emphasize that a re-
gret objective is fundamentally very different than the above
weighted difference between Vπ∗ and Vπk .

Nonlinear value functions. POLITEX produces a policy in
each phase based on all past value functions. With linear
function approximation, once can keep simply average the
weight vectors obtained in each phase. However, with non-
linear functions such as deep neural networks, we may need
to store all past value functions, which might be memory
intensive. In practice, we can only maintain a fixed number
networks, as in our Atari experiment, or learn features in
the first phase and only update the weights of the last layer
in the subsequent phases, similarly to Levine et al. (2017).
An alternative is to keep an explicit function approximator
to represent policies, similarly to the concurrent work of
Abdolmaleki et al. (2018) or Degrave et al. (2018).

Contributions and future work. We have presented PO-
LITEX, a practical model-free algorithm with function ap-
proximation for continuing RL problems. Under a uniform
mixing assumption and with linear function approximation,
the regret of POLITEX scales as Õ(d1/2T 3/4 + ε0T ). We
have also provided a new finite-sample analysis of the LSPE
algorithm. Preliminary experimental results demonstrate
the effectiveness of POLITEX both with linear and neural
function approximation. Future work may include relaxing
assumptions and finding computationally efficient ways to
use POLITEX with non-linear function approximators.
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A. Proof of Lemma 4.4
In this section we prove Lemma 4.4.

We start with a lemma that will be useful in a later proof as well.

Lemma A.1. Let Assumption A2 hold and let {(xt, at)}mt=1 be the state-action sequence obtained when following a policy
π from initial distribution ν0 (i.e., (x0, a0) ∼ ν0) and for t ∈ [m], let Xt be a binary indicator vector with a non-zero at the
linear index of the state-action pair (xt, at). Define for i = 1, . . . ,m,

Bi = E

[
m∑
t=1

Xt|X1, ..., Xi

]
, and B0 = E

[
m∑
t=1

Xt

]
.

Then, (Bi)
m
i=0 is a vector-valued martingale (E[Bi −Bi−1|B0, . . . , Bi−1] = 0 for i = 1, . . . ,m) and ‖Bi −Bi−1‖1 ≤ 4κ

holds for i ∈ [m].

The martingale constructed in the lemma is known as the Doob martingale underlying the sum
∑m
t=1Xt.

Proof. That (Bi)i is a martingale follows from the definitions. It remains to show that the bound on its increments. Let H be
the transition matrix for the state-action pairs under π. Define X0 = ν0. Then, for t = 0, . . . ,m− 1, E[Xt+1|Xt] = H>Xt

and by the Markov property, for any i ∈ [m],

Bi =

i∑
t=1

Xt +

m∑
t=i+1

E[Xt|Xi] =

i∑
t=1

Xt +

m−i∑
t=1

(Ht)>Xi , and

B0 =

m∑
t=1

(Ht)>X0 .

Fix some i ∈ [m]. We have,

Bi −Bi−1 =

i∑
t=1

Xt −
i−1∑
t=1

Xt +

m−i∑
t=1

(Ht)>Xi −
m−i+1∑
t=1

(Ht)>Xi−1

=

m−i∑
t=0

(Ht)>Xi −
m−i∑
t=0

(Ht)>HXi−1

=

m−i∑
t=0

(Ht)>(Xi −HXi−1) .

Letting ν denote the stationary distribution of π, by the triangle inequality and the uniform mixing assumption, for any
t ≥ 0,

‖(Ht)>(Xi −HXi−1)‖1 ≤ ‖(Ht)>(Xi − ν)‖1 + ‖(Ht)>(ν −HXi−1‖1
≤ exp(−t/κ)(‖Xi − ν‖1 + ‖ν −HXi−1‖1)

≤ 4 exp(−t/κ) .

Thus, using another triangle inequality, ‖Bi −Bi−1‖1 ≤ 2
∑∞
t=0 exp(−t/κ) ≤ 4κ.

Proof of Lemma 4.4. We begin with a bound on WT =
∑T
t=1(λπ∗ − c∗t ). We decompose the term WT as follows:

WT =

T∑
t=1

λπ∗ − c∗t =

T∑
t=1

λπ∗ −E[c∗t ] +

T∑
t=1

E[c∗t ]− c∗t =

T∑
t=1

(ν∗ − ν∗t )>c︸ ︷︷ ︸
WT,1

+

T∑
t=1

E[c∗t ]− c∗t︸ ︷︷ ︸
WT,2

, (12)
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where ν∗ denotes the stationary distribution of the policy π∗ and ν∗t is the state-action distribution after t time steps and we
used that E[c∗t ] = ν>t c. We bound WT,1 in the equation above using the uniform mixing assumption:∣∣∣∣∣

T∑
t=1

(ν∗ − ν∗t )>c

∣∣∣∣∣ ≤
T∑
t=1

‖ν∗ − ν∗t ‖1‖c‖∞ ≤
T∑
t=1

exp(−t/κ) ≤ κ. (13)

Let (Bt)t=0,...,T be the Doob martingale from Lemma A.1 for (xt, at) = (x∗t , a
∗
t ) and π = π∗. Then B0 =

∑T
t=1 ν

∗
t and

BT =
∑T
t=1Xt where Xt(x, a) = I {(x∗t , a∗t ) = (x, a)}. It follows from the definitions that WT,2 = 〈B0 − BT , c〉. By

Lemma A.1, |〈Bi −Bi−1, c〉| ≤ ‖Bi −Bi−1‖1‖c‖∞ ≤ 4κ. Hence, by Azuma’s inequality, with probability at least 1− δ,

WT,2 ≤ 4κ
√

2T log
(

2
δ

)
. Summing the bounds on WT,1 and WT,2 gives the desired result.

The bound for VT follows similarly by noticing that POLITEX makes E−1 policy switches and each one of them is executed
for τ rounds. Using a union bound over all E − 1 events, we get with probability at least 1− δ,

|VT | ≤ Eκ+ 4Eκ

√
2τ log

(
2T

δ

)
. (14)

B. Proof of Corollary 4.6
In this section we prove Corollary 4.6.

By Theorem 4.5, we have

RT ≤ (E + 1)κ+ 2T ε(δ/(2E), τ)

+ E1/2τQmaxSδ(A,µ
∗)

+ 4κ
√

2T log (2/δ) + 4Eκ
√

2τ log (2T/δ) .

On the other hand, by (7),

ε(δ, τ) = ε0 + C

√
log(1/δ)

τ
.

Combining this equation with the previous bound and T ≤ Eτ gives

RT ≤ 2Tε0 + κ+ 4κ
√

2T log (2/δ)

+ E1/2τ QmaxSδ(A,µ
∗)

+ Eτ1/2
(√

(4C)2 log(2E/δ) + κ
√

32 log (2T/δ)
)

+ Eκ .

Choosing E = τ = T 1/2 gives

RT ≤ 2Tε0

+ T 3/4
(
QmaxSδ(A,µ

∗) +
(

4C + 4
√

2κ
)√

log(2T/δ)
)

+ T 1/2κ
(

1 + 4
√

2 log (2/δ)
)

+ κ .

Thus, for some constant C ′ universal constant, for T larger than a universal constant,

RT ≤ C ′T 3/4 ·
(
QmaxSδ(A,µ

∗) + (κ+ C)
√

log (T/δ)
)

+ 2ε0T .
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C. Proof of Corollary 4.3
By Theorem 4.1,

RT =

n∑
t=1

(λπ(t)
− λπ∗) = Õ(

√
n) .

Thus,
1

n

n∑
t=1

λπ(t)
≤ λπ∗ + Õ(1/

√
n) .

D. Finite-time analysis of LSPE
In this section we prove the bound on the LSPE estimation error given in Theorem 5.1. For simplicity we will drop the π
subscripts in this section; for example instead of Qπ , Ππ , Dπ , we will write Q, Π, D.

Proof. For the purpose of analysis, it will be convenient to express the above update in terms of empirical estimates of the
matrices H,D ∈ [0, 1]SA×SA computed from counts of state-action pairs and transitions, which we denote by Ĥτ and D̂τ .
Letting Π̂τ = Ψ(Ψ>D̂τΨ)−1Ψ>D̂τ , the update rule satisfies

Ψw(k+1) = (1− γ)Ψw(k) + γΠ̂τ

(
ĤτΨw(k) + c− λ̂τ1

)
.

Next, we rewrite this update as a deterministic update plus stochastic noise:

Ψw(k+1) =
(
(1− γ)I + γΠ̂τ Ĥτ

)
Ψw(k) + γΠ̂τ (c− λ̂τ1)

= ((1− γ)I + γΠH)Ψw(k) + γΠ(c− λ1) + γΨ(ZτΨw(k) + ζτ )

= FγΨw(k) + γΠ(c− λ1) + γ(ZτΨw(k) + ζτ ) , (15)

where Fγ := Π((1− γ)I + γH), and the noise terms Zτ and ζτ are defined as

Zτ = Π̂τ Ĥτ −ΠH , (16)

ζτ = Π̂τ (c− λt1)−Π(c− λ1) (17)

Note that the true parameters w̃ satisfy

Ψw̃ = ΠH(Ψw̃) + Π(c− λ1) = FγΨw̃ + γΠ(c− λ1) . (18)

As discussed in Section 5.1, w̃ exists and is unique. Subtracting (15) from (18) and recursing we get

Ψ(w̃ − w(k+1)) = FγΨ(w̃ − w(k)) + γ(ZτΨw(k) + ζτ )

= F kγ Ψ(w̃ − w(0)) + γ
k∑
i=0

F k−iγ (ZτΨw(i) + ζτ ) .

By Prop. 4 of Yu & Bertsekas (2009), under assumptions A1 and A3, for any γ ∈ (0, 1) there exists α ∈ [0, 1) such that
‖Fγ‖ν ≤ α. Taking the ν-weighted norm of both sides gives us the following error bound:

‖Ψ(w̃ − w(k+1))‖ν ≤ αk‖Ψ(w̃ − w(0))‖ν +
C

1− α

(
max
i
‖ZτΨŵ(i)‖ν + ‖ζτ‖ν

)
.

In Appendix D.1 we show that with probability at least 1− δ, the noise terms scale as

‖ZτΨŵ‖ν = O
(√

1/τσ−2‖ŵ‖C5
Ψκpolylog(d, 1/δ)

)
‖ζτ‖ν = O

(√
d/τκσ−2C3

Ψ‖Ψ‖maxpolylog(d, 1/δ)
)

where CΨ = maxx,a ‖ψ(x, a)‖, and ‖Ψ‖max is the maximum absolute entry of Ψ. Appendix D.3 provides an upper bound
on ‖ŵ(k)‖. Combining these with a union bound over i ∈ {1, . . . , k} finishes the proof.
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D.1. Bounding ‖ZτΨw‖ν and ‖ζτ‖ν

In this section, we will construct upper bounds on the norm of d× d matrices Ψ>BΨ for several different choices of B. Let
ψi be the feature vector corresponding to the i row of Ψ, and let CΨ = maxx,a ‖ψ(x, a)‖. For any matrix B, we have

‖Ψ>BΨ‖ = ‖
SA∑
i=1

SA∑
j=1

Bijψiψ
>
j ‖ ≤

SA∑
i=1

SA∑
j=1

|Bij |‖ψiψ>j ‖ ≤ C2
Ψ

SA∑
i=1

SA∑
j=1

|Bij | = C2
Ψ‖B‖1,1 . (19)

Thus ‖Ψ>DΨ‖ ≤ C2
Ψ and ‖Ψ>DHΨ‖ ≤ C2

Ψ. We will also consider the case where B is the average of τ zero-mean
random matrices. We show in Appendix D.2 that ‖Ψ>(D̂τ −D)Ψ‖, ‖Ψ>D(Ĥτ −H)Ψ‖, and ‖Ψ>(D̂τ −D)HΨ‖ scale
as O(τ−1/2κCΨ

2polylog(d, 1/δ)).

D.1.1. BOUNDING ‖ZτΨw‖ν

We first bound ‖ZτΨw‖ν , which can be decomposed as

‖ZτΨw‖ν = ‖D1/2(Π̂τ Ĥτ −ΠH)Ψw‖ ≤ ‖D1/2Π(Ĥτ −H)Ψw‖+ ‖D1/2(Π̂τ −Π)ĤτΨw‖ . (20)

For the first term in (20),

‖D1/2Π(Ĥτ −H)Ψw‖ ≤ ‖D1/2Ψ‖‖(Ψ>DΨ)−1‖‖Ψ>D(Ĥτ −H)Ψw‖

≤ CΨσ
−1‖Ψ>D(Ĥτ −H)Ψ‖‖w‖

= O
(
τ−1/2κCΨ

3σ−1‖w‖polylog(d, 1/δ)
)
.

For the second term in (20), letting M = Ψ(Ψ>DΨ)−1Ψ> and M̂ = Ψ(Ψ>D̂τΨ)−1Ψ>, we have

‖D1/2(Π̂τ −Π)ĤτΨw‖ = ‖D1/2(M̂D̂τ −MD)ĤτΨw)‖

≤ ‖D1/2M(D̂τ −D)ĤτΨw‖+ ‖D1/2(M̂ −M)D̂τ ĤτΨw‖ . (21)

For the first term in (21), we have

‖D1/2Ψ(Ψ>DΨ)−1Ψ>(D − D̂τ )ĤτΨw‖ ≤ CΨσ
−1‖Ψ>(D − D̂τ )ĤτΨ‖‖w‖

= O
(
τ−1/2κCΨ

3σ−1‖w‖polylog(d, 1/δ)
)
. (22)

For the remaining term, using the matrix inversion lemma,

(Ψ>D̂τΨ)−1 = (Ψ>DΨ−Ψ>(D − D̂τ )Ψ)−1

= (Ψ>DΨ)−1 + (Ψ>DΨ)−1(Ψ>(D − D̂τ )Ψ)(Ψ>D̂τΨ)−1

M̂ −M = Ψ(Ψ>DΨ)−1(Ψ>(D − D̂τ )Ψ)(Ψ>D̂τΨ)−1Ψ> .

Thus,

‖D1/2(M̂ −M)D̂τ ĤτΨw‖ = ‖D1/2Ψ(Ψ>DΨ)−1Ψ>(D − D̂τ )Ψ(Ψ>D̂τΨ)−1Ψ>D̂τ ĤτΨw‖

≤ C3
Ψσ
−1‖w‖‖(Ψ>D̂τΨ)−1‖‖Ψ>(D − D̂τ )Ψ‖

= O
(
τ−1/2κCΨ

5σ−2‖w‖polylog(d, 1/δ)
)
. (23)

In the last step, we have used that given exponentially fast mixing, for large enough τ , we will have ‖Ψ>D̂τΨ‖ ≥ σ/2.
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D.1.2. BOUNDING ‖ζτ‖ν

The noise term ζτ can be decomposed as

‖ζτ‖ν ≤ |λ̂τ − λ|‖Π̂τ1‖ν + ‖(Π̂τ −Π)(c− λ1)‖ν (24)

For the first term, by Lemma 4.4 (the bound on WT with π∗ = π, T = τ ), |λ̂τ − λ| scales as O(τ−1/2). Furthermore,

‖Π̂τ1‖ν = ‖D1/2Ψ(Ψ>D̂τΨ)−1Ψ>D̂τ1‖ ≤ C2
Ψ‖(Ψ>D̂τΨ)−1‖‖D̂1/2

τ 1‖ .

We bound the second term similarly to the second term in (20), with c− λ1 in place of ĤτΨw. Thus, instead of having a
factor ‖Ψ>D̂τ ĤτΨw‖ ≤ C2

Ψ‖w‖, we now have a factor ‖Ψ>D̂τ (c− λ1)‖. Each entry of Ψ>D̂τ (c− λ1) is bounded by
2‖Ψ‖max, and so ‖Ψ>D̂τ (c− λ1)‖ ≤ 2

√
d‖Ψ‖max. Thus with probability at least 1− δ,

‖ζτ‖ν = O
(
τ−1/2κC3

Ψσ
−2
√
d‖Ψ‖maxpolylog(d, 1/δ)

)
.

D.2. Bounding ‖Ψ>(D̂τ −D)Ψ‖, ‖Ψ>(D̂τ −D)ĤτΨ‖, and ‖Ψ>D(Ĥτ −H)Ψ‖

In this subsection, we will rely on the following version of the matrix Azuma inequality. Let (Fk)k be a filtration and define
Ek[·] := E[·|Fk].

Theorem D.1 (Matrix Azuma (Tropp, 2012)). Consider a finite (F)k-adapted sequence {Xk} of Hermitian matrices of
dimension d, and a fixed sequence {Ak} of self-adjoint matrices that satisfy Ek−1Xk = 0 and X2

k � A2
k almost surely. Let

v = ‖
∑
k A

2
k‖. Then for all t ≥ 0, with probability at least δ,

‖
∑
k

Xk‖ ≤ 2
√

2v ln(d/δ) .

A version of the inequality for non-Hermitian matrices of dimension d1 × d2 can be obtained by applying the theorem to a
Hermitian dilation of X , D(B) =

[
0 X
X∗ 0

]
, which satisfies λmax(D(X)) = ‖X‖ and D(X)2 =

[
XX∗ 0

0 X∗X

]
. In this case,

we have that v = max (‖
∑
kXkX

∗
k‖, ‖

∑
kX
∗
kXk‖).

D.2.1. BOUNDING ‖Ψ>(D̂τ −D)Ψ‖ AND ‖Ψ>(D̂τ −D)ĤτΨ‖

We start by bounding ‖Ψ>(D̂τ − D)Ψ‖. Let (Bi)i be the Doob martingale defined in Lemma A.1. By this lemma,
‖Bi −Bi−1‖1 ≤ 4κ.

Note that D̂τ = τ−1Bτ . We decompose ‖Ψ>(D̂τ −D)Ψ‖ as follows:

‖Ψ>(D̂τ −D)Ψ‖ ≤ τ−1‖Ψ> diag(Bτ −B0)Ψ‖+ ‖Ψ>(τ−1B0 −D)Ψ‖ .

Since Ψ>BiΨ is a matrix-valued martingale, we bound the first term by applying the matrix Azuma inequality to its
difference sequence, which satisfies ‖(Ψ> diag(Bi −Bi−1)Ψ)2‖ ≤ C4

Ψ‖Bi −Bi−1‖21 ≤ 16C4
Ψκ

2 . Thus we get

‖Ψ> diag(Bτ −B0)Ψ‖ ≤ 8C2
Ψκ
√

2τ ln(2d/δ).

We bound the second term using the fast mixing assumption:

‖Ψ>(τ−1B0 −D)Ψ‖ ≤ τ−1
τ∑
t=1

‖Ψ> diag(νt − ν)Ψ‖ ≤ τ−1C2
Ψ ‖ν0 − ν‖1κ .

The same bounds apply to ‖Ψ>(D̂τ −D)ĤτΨ‖ by observing that since rows of Ĥτ sum to 1,

‖Ψ> diag(Bi −Bi−1)ĤτΨ‖2 ≤ C4
Ψ‖ diag(Bi −Bi−1)Ĥτ‖21,1 ≤ C4

Ψ‖Bi −Bi−1‖21 .
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D.2.2. BOUNDING ‖Ψ>D(Ĥτ −H)Ψ‖

Next we bound ‖Ψ>D(Ĥτ −H)Ψ‖. We decompose this quantity as

‖Ψ>D(Ĥτ −H)Ψ‖ ≤ ‖Ψ>(D̂τ −D)ĤτΨ‖+ ‖Ψ>(D̂τ Ĥτ −DH)Ψ‖ .

We already have a bound for the first term, and bound the second term next. Notice that we can write τD̂τ Ĥτ =∑τ
t=2Xt−1X

>
t . We define the martingale sequence

Yi = E
[
τD̂τ Ĥτ |X1, .., Xi

]
=

i∑
t=2

Xt−1X
>
t +

τ∑
t=i+1

E[Xt−1X
>
t |Xi] =

i∑
t=2

Xt−1X
>
t +

τ−i∑
t=1

diag(X>i H
t−1)H (25)

Y0 =

τ∑
t=1

diag(ν>0 H
t−1)H . (26)

The difference sequence can again be bounded using the fast mixing assumption:

‖Yi − Yi−1‖1,1 = ‖
τ−i−1∑
t=0

diag(X>i H
t −X>i Ht+1)H‖1,1

≤
τ−i−1∑
t=0

‖ diag(X>i H
t − ν)H‖1,1 + ‖ diag(X>i−1H

t+1 − ν)H‖1,1

≤ (‖Xi−1 − ν‖1 + ‖Xi − ν‖1)(1− exp(−1/κ))−1 ≤ 4κ .

We decompose ‖Ψ>(D̂τ Ĥτ −DH)Ψ‖ as follows:

‖Ψ>(D̂τ Ĥτ −DH)Ψ‖ = τ−1‖Ψ>(Yτ − Y0)Ψ‖+ ‖Ψ>(τ−1Y0 −DH)Ψ‖ .

We use the matrix Azuma inequality for the first part, where v ≤ τ‖Ψ>(Yi − Yi−1)Ψ‖2 ≤ τ16C2
Ψκ

2. Thus,

‖Ψ>(Yτ − Y0)Ψ‖ ≤ 8C2
Ψκ
√

2τ ln(2d/δ) .

For the second part, we have

‖Ψ>(τ−1Y0 −DH)Ψ‖ ≤ τ−1C2
Ψ‖

τ∑
t=1

diag(νt−1 − ν)H‖1,1 ≤ τ−1C2
Ψκ‖ν0 − ν‖1

Putting all terms together, we have the following bounds:

‖Ψ>(D̂τ −D)Ψ‖ ≤ τ−1/2C2
Ψκ
(

8
√

2 ln(2d/δ) + τ−1/2‖ν0 − ν‖1
)
, (27)

‖Ψ>(D̂τ −D)ĤτΨ‖ ≤ τ−1/2C2
Ψκ
(

8
√

2 ln(2d/δ) + τ−1/2‖ν0 − ν‖1
)
, (28)

‖Ψ>D(Ĥτ −H)Ψ‖ ≤ 2τ−1/2C2
Ψκ
(

8
√

2 ln(2d/δ) + τ−1/2‖ν0 − ν‖1
)
. (29)

D.3. Bounding Q̂(x, a) and ‖ŵ‖

We have that
w̃ = −(Ψ>Dπ(Hπ − I)Ψ)−1Ψ>Dπ(c− λπ1) .

Let the constant C2 be such that

sup
π
‖(Ψ>Dπ(Hπ − I)Ψ)−1Ψ>Dπ(c− λπ1)‖ ≤ C2, ‖w(0)‖ ≤ C2 .

Let constant CΨ > 1 be such that maxx,a ‖ψ(x, a)‖ ≤ CΨ. We show that for some small constant C ′ > 1, for any
i, the estimate of LSPE algorithm satisfies ‖w(i)‖ ≤ C ′C2. We prove by induction. The induction base holds because
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‖w(0)‖ ≤ C2. Next, assume the statement holds for all i ∈ {0, . . . , k}. By the argument in Appendix D.1, for some positive
constants C3, C4, with high probability,

‖ζτ‖ν ≤ C3 , ‖ZtΨw(i)‖ν ≤
C ′C2C4√

τ
.

Given LSPE iteration

Ψ(w̃ − w(k+1)) = F kγ Ψ(w̃ − w(0)) + γ

k∑
i=0

F k−iγ (ZτΨw(i) + ζτ ) ,

we get

σ‖w̃ − w(k+1)‖ ≤ ‖Ψ(w̃ − w(k+1))‖ν ≤ αk(2CΨC2) +
C3 + C ′C2C4

(1− α)
√
τ

.

Thus,

‖w(k+1)‖ ≤ C2 + αk
2CΨC2

σ
+
C3 + C ′CΨC4

(1− α)σ
√
τ

.

For any C ′ ≥ 2 + 2CΨα
σ , for τ ≥ ((C3/C2 + C ′C4)/(1− α))2, it follows that ‖w(k+1)‖ ≤ C ′C2.

E. Guaranteeing supπ απ < 1

We will need a perturbation bound for the stationary distribution of Markov chains. Let P be the set of n× n irreducible
transition matrices. For P ∈ P , let µ(P ) be the unique stationary distribution underlying P .
Lemma E.1. There exist a function κ : P → [0,∞) such that ‖µ(P )−µ(P ′)‖ ≤ κ(P )‖P −P ′‖ holds for any P, P ′ ∈ P .

The norm in the lemma can be chosen freely (this only changes the definition of κ) Cho & Meyer (2001) list and compare
several functions κ (by fixing various norms), which are expressed as some algebraic function of P . It follows from this
lemma that the map P 7→ µ(P ) is continuous over P .

Fix 0 < γ < 1. Recall that (by slightly changing the notation), απ = ‖Fπ‖νπ where

Fπ := Ππ((1− γ)I + γHπ ),

where Hπ(x, a; y, b) = π(b|y)P (y|x, a),

Ππ = ΨG−1
π ΨTDπ ,

Gπ = Ψ>DπΨ ,

and Dπ = diag(νπ). Let ΠS be the set of stationary (randomizing) policies, Π+
S be the subset of these which select all

actions with positive probability at every state, Θ ⊂ Rd, π : Θ→ Π+
S be a map.

Proposition E.2. Let Π = π(Θ), Θ compact, the map π : Θ→ Π+
S continuous, assumptions A1, A3 hold and assume that

is Gπ nonsingular for any policy π ∈ Π. Then, supπ∈Π απ < 1.

Note that the condition that Gπ is nonsingular for any policy π follows from assumption A4.

Proof. Note that A1 and the fact that Π ⊂ Π+
S imply that for any π ∈ Π, νπ is fully supported on X ×A. Then, thanks to

A3, Prop. 4 of Yu & Bertsekas (2009) applies to the Markov chain of state-action pairs that results from using π in the MDP
implies that απ < 1 holds for any policy π ∈ Π.

We claim that (a) N := {νπ : π ∈ Π} ⊂ [0, 1]X×A is compact and that (b) f : N → R, νπ 7→ ανπ := απ is well-defined
and is continuous. The result then follows by Weierstrass’ theorem that shows that continuous functions on compacta take
on their extreme values.

Compactness of N follows from the continuity of the π : Θ→ ΠS, that Π = π(Θ) ⊂ Π+
S and Lemma E.1.

That f is well-defined can be seen because if ν is a stationary distribution over X ×A with full support over the states, an
underlying policy can be extracted from ν as the collection of conditional {ν(x, a)/

∑
b ν(x, b)}x. As a result, thanks to its

structure, Fπ can be expressed as a function of νπ alone. The continuity of f follows because the composition of continuous
maps is continuous.
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Input: Trajectory length T , initial state x0

Let E = τ =
√
T and set Q0(x, a) = 0 ∀x, a

for i := 1, 2, . . . , E do
Set πi(a|x) ∝ exp

(
−η
∑i−1
j=0 Q̂j(x, a)

)
Execute πi for τ rounds and collect data Zi = {(xt, at, ct, xt+1)}τit=τ(i−1)

Compute V̂i from Zi
Collect data Z ′i = {(xt, at, ct, xt+1)}τit=τ(i−1) where xt is sampled from µi , at
is sampled randomly and (ct, xt+1) are sampled from dynamics
Compute Q̂i from V̂i and Z ′i

end for

Figure 3. A version of the POLITEX algorithm with two-stage value estimation.

F. A two stage algorithm
POLITEX estimatesQπ(x, a) directly without estimating Vπ(x). This simplifying design choice comes at a cost; for example,
Assumption A4 is violated by deterministic policies under tabular representation. One way to relax A4 is via a two-stage
algorithm which first estimates state value functions Vπ(x), and then estimates Qπ(x, a) using V̂π(x) and exploratory data.
Such an algorithm is presented in 3. The analysis of this variant will require milder conditions as follows. Assume we
use linear function approximation of the form V̂π = Φθ̂π to estimate state value of policy π, where Φ is a S × d feature
matrix and V̂π is the value estimate. In this case, Assumption A4 can be replaced by the requirement that for any policy π,
λmin(Φ>DµπΦ) ≥ σ. In the tabular setting, this condition requires that any policy has a non-zero probability of visiting
any state.

G. Atari experiment setup
Our implementation of the Atari experiment is based on Horgan et al. (2018), which is a distributed implementation of
DQN Mnih et al. (2015), featuring Dueling networks Wang et al. (2015), N-step returns Asis et al. (2017), Prioritized replay
Schaul et al. (2015), and Double Q-learning van Hasselt et al. (2015). We used Q-learning and epsilon-greedy exploration
for DQN with a portfolio of epsilon values ranging from 0.04 to 0.0006. For POLITEX, we used TD learning and Boltzmann
exploration with the learning rate η set according to SOLO FTRL by (Orabona & Pál, 2015): For a given state x,

η = α
√

2.75

√
log d

Pt
,

where α = 10 is a tuneable constant multiplier (chosen based on preliminary experiments); d is the number of actions in the
game and

Pt = min
c∈R

t∑
i=1

‖Qi(x, ·)− c1‖2∞ ,

where Qi(x, ·) are the state-action values for all past Q-networks indexed from 1 to the current timestep t, 1 is a vector of all
ones and the minimisation over c achieves robustness against the changing ranges of state-action values. The minimisation
is one-dimensional convex optimisation problem which we solve numerically.

Both methods used the same neural network architecture of 3 convolutional layers followed by 1 fully connected layer. Each
learner step samples a batch of 128 experiences from the experience replay memory, prioritised by TD-error. The actors
take 16 game steps in total for each learning step. For DQN, the target network is updated with the online network every
2500 steps; for POLITEX, we enter a new phase and terminate the current phase when the number of learning steps taken
in the current phase reaches 100 times the square root of the total learning steps taken. When a new phase is started, the
freshly learned neural network is copied in a circular buffer of size 10, which is used by the actors to calculate the averaged
Q-values, weighted by the length of each phase. Since the phase length are also unequal, we use a weighted sum where the
weight corresponding to a network is the number of samples used to train that networks.


