
Self-Attention Graph Pooling

Junhyun Lee * 1 Inyeop Lee * 1 Jaewoo Kang 1

Abstract

Advanced methods of applying deep learning to
structured data such as graphs have been proposed
in recent years. In particular, studies have fo-
cused on generalizing convolutional neural net-
works to graph data, which includes redefining
the convolution and the downsampling (pooling)
operations for graphs. The method of generaliz-
ing the convolution operation to graphs has been
proven to improve performance and is widely
used. However, the method of applying down-
sampling to graphs is still difficult to perform
and has room for improvement. In this paper, we
propose a graph pooling method based on self-
attention. Self-attention using graph convolution
allows our pooling method to consider both node
features and graph topology. To ensure a fair
comparison, the same training procedures and
model architectures were used for the existing
pooling methods and our method. The experimen-
tal results demonstrate that our method achieves
superior graph classification performance on the
benchmark datasets using a reasonable number of
parameters.

1. Introduction
The advent of deep learning has led to extensive improve-
ments in technology used to recognize and utilize patterns
in data (LeCun et al., 2015). In particular, convolutional
neural networks (CNNs) successfully leverage the proper-
ties of data such as images, speech, and video on Euclidean
domains (grid structure) (Hinton et al., 2012; Krizhevsky
et al., 2012; He et al., 2016; Karpathy et al., 2014). CNNs
consist of convolutional layers and downsampling (pool-
ing) layers. The convolutional and pooling layers exploit
the shift-invariance (also known as stationary) property and

*Equal contribution 1Department of Computer Science and
Engineering, Korea University, Seoul, Korea. Correspondence to:
Jaewoo Kang <kangj@korea.ac.kr>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

compositionality of grid-structured data (Simoncelli & Ol-
shausen, 2001; Bronstein et al., 2017). As a result, CNNs
perform well with a small number of parameters.

In various fields, however, a large amount of data, such
as graphs, exists on the non-Euclidean domain. For exam-
ple, social networks, biological networks, and molecular
structures can be represented by nodes and edges of graphs
(Lazer et al., 2009; Davidson et al., 2002; Duvenaud et al.,
2015). Therefore, attempts have been made to successfully
use CNNs in the non-Euclidean domain. Most previous
studies have redefined the convolution and pooling layers to
process graph data.

To define graph convolution, studies have used the spectral
(Bruna et al., 2014; Henaff et al., 2015; Defferrard et al.,
2016; Kipf & Welling, 2016) and non-spectral (Monti et al.,
2017; Hamilton et al., 2017; Xu et al., 2018a; Velikovi et al.,
2018; Morris et al., 2018) methods. The application of
graph convolution has resulted in outstanding performance
in a variety of fields which include recommender systems
(van den Berg et al., 2017; Yao & Li, 2018; Monti et al.,
2017), chemical researches (You et al., 2018; Zitnik et al.,
2018), natural language processing (Bastings et al., 2017;
Peng et al., 2018; Yao et al., 2018), and in many tasks as
reported in Zhou et al..

There are fewer methods for graph pooling than for graph
convolution. Previous researches have adopted the pooling
method that considers only graph topology (Defferrard et al.,
2016; Rhee et al., 2018). With growing interest in graph
pooling, several improved methods have been proposed (Dai
et al., 2016; Duvenaud et al., 2015; Gilmer et al., 2017b;
Zhang et al., 2018b). They utilize node features to obtain a
smaller graph representation. Recently, Ying et al.; Gao &
Ji; Cangea et al. have proposed innovative pooling methods
that can learn hierarchical representations of graphs. These
methods allow Graph Neural Networks (GNNs) to attain
scaled-down graphs after pooling in an end-to-end fashion.

However, the above pooling methods have room for im-
provement. For example, the differentiable hierarchical
pooling method of Ying et al. has a quadratic storage com-
plexity and the number of its parameters is dependent on the
number of nodes. Gao & Ji; Cangea et al. have addressed
the complexity issue, but their method does not take graph
topology into account.

Self-Attention Graph Pooling

Here, we propose SAGPool which is a Self-Attention Graph
Pooling method for GNNs in the context of hierarchical
graph pooling. Our method can learn hierarchical repre-
sentations in an end-to-end fashion using relatively few
parameters. The self-attention mechanism is exploited to
distinguish between the nodes that should be dropped and
the nodes that should be retained. Due to the self-attention
mechanism which uses graph convolution to calculate atten-
tion scores, node features and graph topology are considered.
In short, SAGPool, which has the advantages of the previ-
ous methods, is the first method to use self-attention for
graph pooling and achieve high performance. The code is
available on Github 1

2. Related Work
GNNs have drawn considerable attention due to their state-
of-the-art performance on tasks in the graph domain. Stud-
ies on GNNs focus on extending the convolution and pool-
ing operation, which are the main components of CNN, to
graphs.

2.1. Graph Convolution

Convolution operation on graphs can be defined in either
the spectral or non-spectral domain. Spectral approaches
focus on redefining the convolution operation in the Fourier
domain, utilizing spectral filters that use the graph Lapla-
cian. Kipf & Welling proposed a layer-wise propagation
rule that simplifies the approximation of the graph Laplacian
using the Chebyshev expansion method (Defferrard et al.,
2016). The goal of non-spectral approaches is to define the
convolution operation so that it works directly on graphs.
In general non-spectral approaches, the central node aggre-
gates features from adjacent nodes when its features are
passed to the next layer rather than defining the convolution
operation in the Fourier domain. Hamilton et al. proposed
GraphSAGE which learns node embeddings through sam-
pling and aggregation. While GraphSAGE operates in a
fixed-size neighborhood, Graph Attention Network (GAT)
(Velikovi et al., 2018), based on attention mechanisms (Bah-
danau et al., 2014), computes node representations in entire
neighborhoods. Both approaches have improved perfor-
mance on graph-related tasks.

2.2. Graph Pooling

Pooling layers enable CNN models to reduce the number
of parameters by scaling down the size of representations,
and thus avoid overfitting. To generalize CNNs, the pooling
method for GNNs is necessary. Graph pooling methods can
be grouped into the following three categories: topology
based, global, and hierarchical pooling.

1https://github.com/inyeoplee77/SAGPool

Topology based pooling Earlier works used graph coarsen-
ing algorithms rather than neural networks. Spectral cluster-
ing algorithms use eigendecomposition to obtain coarsened
graphs. However, alternatives were needed due to the time
complexity of eigendecomposition. Graclus(Dhillon et al.,
2007) computes clustered versions of given graphs without
eigenvectors because of the mathematical equivalence be-
tween a general spectral clustering objective and a weighted
kernel k-means objective. Even in recent GNN models (Def-
ferrard et al., 2016; Rhee et al., 2018), Graclus is employed
as a pooling module.

Global pooling Unlike the previous methods, global pool-
ing methods consider graph features. Global pooling meth-
ods use summation or neural networks to pool all the rep-
resentations of nodes in each layer. Graphs with different
structures can be processed because global pooling meth-
ods collect all the representations. Gilmer et al. viewed
GNNs as message passing schemes, and proposed a general
framework for graph classification where entire graph repre-
sentations could be obtained by utilizing the Set2Set(Vinyals
et al., 2015) method. SortPool(Zhang et al., 2018b) sorts
embeddings for nodes according to the structural roles of a
graph and feeds the sorted embeddings to the next layers.

Hierarchical pooling Global pooling methods do not learn
hierarchical representations which are crucial for capturing
structural information of graphs. The main motivation of
hierarchical pooling methods is to build a model that can
learn feature- or topology-based node assignments in each
layer. Ying et al. proposed DiffPool which is a differentiable
graph pooling method that can learn assignment matrices in
an end-to-end fashion. A learned assignment matrix in layer
l, S(l) ∈ Rnl×nl+1 contains the probability values of nodes
in layer l being assigned to clusters in the next layer l + 1.
Here, nl denotes the number of nodes in layer l. Specifically,
nodes are assigned by the following equation:

S(l) = softmax(GNNl(A
(l), X(l)))

A(l+1) = S(l)>A(l)S(l) (1)

where X denotes the node feature matrix and A is the adja-
cency matrix.

Cangea et al. utilized gPool(Gao & Ji, 2019) and achieved
performance comparable to that of DiffPool. gPool requires
a storage complexity of O(|V |+ |E|) whereas DiffPool re-
quires O(k|V |2) where V , E, and k denote vertices, edges,
and pooling ratio, respectively. gPool uses a learnable vector
p to calculate projection scores, and then uses the scores to
select the top ranked nodes. Projection scores are obtained
by the dot product between p and the features of all the
nodes. The scores indicate the amount of information of
nodes that can be retained. The following equation roughly
describes the pooling procedure in gPool.

y = X(l)p(l)/‖p(l)‖, idx = top-rank(y, dkNe)

https://github.com/inyeoplee77/SAGPool

Self-Attention Graph Pooling

Figure 1. An illustration of the SAGPool layer.

A(l+1) = A
(l)
idx,idx (2)

As in Equation (2), the graph topology does not affect the
projection scores.

To further improve graph pooling, we propose SAGPool
which can use features and topology to yield hierarchical
representations with a reasonable complexity of time and
space.

3. Proposed Method
The key point of SAGPool is that it uses a GNN to provide
self-attention scores. In Section 3.1, we describe the mecha-
nism of SAGPool and its variants. Model architectures for
the evaluations are described in Section 3.2. The SAGPool
layer and the model architectures are illustrated in Figure 1
and Figure 2, respectively.

3.1. Self-Attention Graph Pooling

Self-attention mask Attention mechanisms have been
widely used in the recent deep learning studies (Parikh
et al., 2016; Cheng et al., 2016; Zhang et al., 2018a; Ve-
likovi et al., 2018). Such mechanisms make it possible to
focus more on important features and less on unimportant
features. In particular, self-attention, commonly referred
to as intra-attention, allows input features to be the criteria
for the attention itself (Vaswani et al., 2017). We obtain
self-attention scores using graph convolution. For instance,
if the graph convolution formula of Kipf & Welling is used,
the self-attention score Z ∈ RN×1 is calculated as follows.

Z = σ(D̃−
1
2 ÃD̃−

1
2XΘatt) (3)

where σ is the activation function (e.g. tanh), Ã ∈ RN×N

is the adjacency matrix with self-connections (i.e. Ã =

A+IN), D̃ ∈ RN×N is the degree matrix of Ã,X ∈ RN×F

is the input features of the graph with N nodes and F -
dimensional features, and Θatt ∈ RF×1 is the only parame-
ter of the SAGPool layer. By utilizing graph convolution to
obtain self-attention scores, the result of the pooling is based
on both graph features and topology. We adopt the node
selection method of Gao & Ji; Cangea et al., which retains
a portion of nodes of the input graph even when graphs of
varying sizes and structures are inputted. The pooling ratio
k ∈ (0, 1] is a hyperparameter that determines the number
of nodes to keep. The top dkNe nodes are selected based
on the value of Z.

idx = top-rank(Z, dkNe), Zmask = Zidx (4)

where top-rank is the function that returns the indices of the
top dkNe values, ·idx is an indexing operation and Zmask is
the feature attention mask.

Graph pooling An input graph is processed by the opera-
tion notated as masking in Figure 1.

X ′ = Xidx,:, Xout = X ′ � Zmask, Aout = Aidx,idx (5)

where Xidx,: is the row-wise (i.e. node-wise) indexed fea-
ture matrix, � is the broadcasted elementwise product, and
Aidx,idx is the row-wise and col-wise indexed adjacency ma-
trix. Xout and Aout are the new feature matrix and the
corresponding adjacency matrix, respectively.

Variation of SAGPool The main reason for using graph
convolution in SAGPool is to reflect the topology as well as
node features. The various formulas of GNNs can be substi-
tuted for Equation (3), if GNNs take the node feature and
the adjacency matrix as inputs. The generalized equation
for calculating the attention score Z ∈ RN×1 is as follows.

Z = σ(GNN(X,A)) (6)

Self-Attention Graph Pooling

where X denotes the node feature matrix and A is the adja-
cency matrix.

There are several ways to calculate attention scores using
not only adjacent nodes but also multi-hop connected nodes.
In Equation (7) and (8), we illustrate examples of using the
two-hop connections which involve the augmentation of
edges and the stack of GNN layers. Adding the square of an
adjacency matrix creates edges between two-hop neighbors.

Z = σ(GNN(X,A+A2)) (7)

The stack of GNN layers allows for the indirect aggregation
of two-hop nodes. In this case, the nonlinearity and the
number of parameters of the SAGPool layer increase.

Z = σ(GNN2(σ(GNN1(X,A)), A)) (8)

Equations (7) and (8) can be applied to the multi-hop con-
nections.

Another variant is to average multiple attention scores. The
average attention score is obtained by M GNNs as follows:

Z =
1

M

∑
m

σ(GNNm(X,A)) (9)

In this paper, the models using Equation (7), (8), and (9)
are referred to as SAGPoolaugmentation, SAGPoolserial , and
SAGPoolparallel, respectively.

3.2. Model Architecture

According to Lipton & Steinhardt, if numerous modifica-
tions are made to a model, it may be difficult to identify
which modification contributes to improving performance.
For a fair comparison, we adopted the model architectures
from Zhang et al. and Cangea et al., and compared the
baselines and our method using the same architectures.

Convolution layer As mentioned in Section 2.1, there are
many definitions for graph convolution. Other types of
graph convolution may improve performance, but we utilize
the widely used graph convolution proposed by Kipf &
Welling for all the models. Equation (10) is the same as
Equation (3), except for the dimension of Θ.

h(l+1) = σ(D̃−
1
2 ÃD̃−

1
2h(l)Θ) (10)

where h(l) is the node representation of l-th layer and
Θ ∈ RF×F ′

is the convolution weight with input feature di-
mension F and output feature dimension F ′. The Rectified
Linear Unit (ReLU) (Nair & Hinton, 2010) function is used
as an activation function.

Readout layer Inspired by the JK-net architecture (Xu et al.,
2018b), Cangea et al. proposed a readout layer that aggre-
gates node features to make a fixed size representation. The

Figure 2. The global pooling architecture (left) and the hierarchical
pooling architecture (right). These architectures are applied to all
the baselines and SAGPool for a fair comparison. In this paper,
the architecture on the left side is referred to as POOLg and the
architecture on the right side is referred to as POOLh with the
POOL method (e.g. SAGPoolg , gPoolh).

summarized output feature of the readout layer is as follows:

s =
1

N

N∑
i=1

xi ||
N

max
i=1

xi (11)

where N is the number of nodes, xi is the feature vector of
i-th node, and || denotes concatenation.

Global pooling architecture We implemented the global
pooling architecture proposed by Zhang et al.. As shown in
Figure 2, the global pooling architecture consists of three
graph convolutional layers and the outputs of each layer are
concatenated. Node features are aggregated in the readout
layer which follows the pooling layer. Then graph feature
representations are passed to the linear layer for classifica-
tion.

Hierarchical pooling architecture In this setting, we im-
plemented the hierarchical pooling architecture from the
recent hierarchical pooling study of Cangea et al.. As shown
in Figure 2, the architecture is comprised of three blocks
each of which consists of a graph convolutional layer and
a graph pooling layer. The outputs of each block are sum-
marized in the readout layer. The summation of the outputs
of each readout layer is fed to the linear layer for classifica-

Self-Attention Graph Pooling

Table 1. Statistics of data sets.

Data set Number of Graphs Number of Classes Avg. # of Nodes per Graph Avg. # of Edges per Graph

D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
FRANKENSTEIN 4337 2 16.90 17.88

Table 2. The grid search space for the hyperparameters. The pool-
ing ratio is used only for the hierarchical pooling architecture
because the the global pooling architecture uses the same node
selection strategy as SortPool. The node selection strategy of
SortPool does not require the pooling ratio.

Hyperparameter Range

Learning rate 1e-2, 5e-2, 1e-3, 5e-3, 1e-4, 5e-4

Hidden size 16, 32, 64, 128

Weight decay 1e-2, 1e-3, 1e-4, 1e-5(L2 regularization)

Pooling ratio 1/2, 1/4

tion.

4. Experiments
We evaluate the global pooling and hierarchical pooling
methods on the graph classification task. In Section 4.1,
we discuss the datasets used for evaluation. Section 4.3
describes how we train the models. The methods compared
in the experiments are introduced in Sections 4.4 and 4.5.

4.1. Datasets

Five datasets with a large number of graphs (> 1k) were
selected among the benchmark datasets (Kersting et al.,
2016). The statistics of the datasets are summarized in
Table 1.

D&D (Dobson & Doig, 2003; Shervashidze et al., 2011)
contains graphs of protein structures. A node represents
an amino acid and edges are constructed if the distance of
two nodes is less than 6 Å. A label denotes whether a pro-
tein is an enzyme or non-enzyme. PROTEINS (Dobson &
Doig, 2003; Borgwardt et al., 2005) is also a set of proteins,
where nodes are secondary structure elements. If nodes
have edges, the nodes are in an amino acid sequence or in
a close 3D space. NCI (Wale et al., 2008) is a biological
dataset used for anticancer activity classification. In the
dataset, each graph represents a chemical compound, with
nodes and edges representing atoms and chemical bonds,
respectively. NCI1 and NCI109 are commonly used as

benchmark datasets for graph classification. FRANKEN-
STEIN (Orsini et al., 2015) is a set of molecular graphs
(Costa & Grave, 2010) with node features containing con-
tinuous values. A label denotes whether a molecule is a
mutagen or non-mutagen.

4.2. Evaluation of GNNs

In addition, the same early stopping criterion and hyper-
parameter selection strategy are used for all the models to
ensure a fair comparison.

4.3. Training Procedures

Shchur et al. demonstrate that different splits of data can
affect the performance of GNN models. In our experiments,
we evaluated the pooling methods over 20 random seeds
using 10-fold cross validation. A total of 200 testing results
were used to obtain the final accuracy of each method on
each dataset. 10 percent of the training data was used for val-
idation in the training session. We used the Adam optimizer
(Kingma & Ba, 2014), early stopping criterion, patience,
and hyperparameter selection strategy for the global pool-
ing architecture and hierarchical pooling architecture. We
stopped the training if the validation loss did not improve
for 50 epochs in an epoch termination condition with a max-
imum of 100k epochs, as done in (Shchur et al., 2018). The
optimal hyperparameters are obtained by grid search. The
ranges of grid search are summarized in Table 2.

4.4. Baselines

We consider the following four pooling methods as base-
lines: Set2Set, SortPool, DiffPool, and gPool. DiffPool,
gPool, and SAGPoolh were compared using the hierarchical
pooling architecture while Set2Set, SortPool, and SAGPoolg
were compared using the global pooling architecture. We
used the same hyperparameter search strategy for all the
baselines and SAGPool. The hyperparameters are summa-
rized in Table 2.

Set2Set (Vinyals et al., 2015) requires an additional hyper-
parameter which is the number of processing steps for the
LSTM(Hochreiter & Schmidhuber, 1997) module. We use
10 processing steps for all the experiments. We assume that
the readout layer is unnecessary because the LSTM module

Self-Attention Graph Pooling

Table 3. Average accuracy and standard deviation of the 20 random seeds. The subscript g (e.g. POOLg) denotes the global pooling
architecture and the subscript h (e.g. POOLh) denotes the hierarchical pooling architecture.

Models D&D PROTEINS NCI1 NCI109 FRANKENSTEIN

Set2Setg 71.27± 0.84 66.06± 1.66 68.55± 1.92 69.78± 1.16 61.92± 0.73
SortPoolg 72.53± 1.19 66.72± 3.56 73.82± 0.96 74.02± 1.18 60.61± 0.77
SAGPoolg (Ours) 76.19± 0.94 70.04± 1.47 74.18± 1.20 74.06± 0.78 62.57± 0.60

DiffPoolh 66.95± 2.41 68.20± 2.02 62.32± 1.90 61.98± 1.98 60.60± 1.62
gPoolh 75.01± 0.86 71.10± 0.90 67.02± 2.25 66.12± 1.60 61.46± 0.84
SAGPoolh (Ours) 76.45± 0.97 71.86± 0.97 67.45± 1.11 67.86± 1.41 61.73± 0.76

Table 4. Experimental results of SAGPoolh variants. We com-
pare ChebConv(K=2) (Defferrard et al., 2016), GCNConv (Kipf
& Welling, 2016), SAGEConv (Hamilton et al., 2017), and
GATConv(heads=6) (Velikovi et al., 2018). GCNConv is ap-
plied to SAGPoolh, SAGPoolh,augmentation, SAGPoolh,serial, and
SAGPoolh,parallel.

Graph Convolution D&D PROTEINS

SAGPoolh 76.45± 0.97 71.86± 0.97

SAGPoolh,Cheb 75.82± 0.79 71.98± 0.93
SAGPoolh,SAGE 76.28± 1.06 71.93± 0.82
SAGPoolh,GAT 75.49± 0.93 71.98± 1.01

SAGPoolh,augmentation 77.07± 0.82 71.82± 0.81
SAGPoolh,serial,2layers 76.68± 0.96 72.17± 0.87

SAGPoolh,parallel,M=2 75.79± 0.96 72.05± 0.43
SAGPoolh,parallel,M=4 76.77± 0.61 71.66± 0.98

produces embeddings for graphs invariant to the order of
nodes.

SortPool (Zhang et al., 2018b) is a recent global pooling
method which uses sorting for pooling. The K number of
nodes is set such that 60% of graphs have more than K
nodes. In the global pooling setting, SAGPoolg has the
same K number of output nodes as SortPool.

DiffPool (Ying et al., 2018) is the first end-to-end trainable
graph pooling method that can produce hierarchical repre-
sentations of graphs. We did not use batch normalization for
DiffPool, which is not related to the pooling method. For
the hyperparameter search, the pooling ratio ranges from
0.25 to 0.5 for the following reasons. In the reference im-
plementation, the cluster size is set to 25% of the maximum
number of nodes. DiffPoolh causes the out of memory error
when the pooling ratio is larger than 0.5.

gPool (Gao & Ji, 2019) selects top-ranked nodes for pool-
ing, which makes it similar to our method. The comparison
between our method and gPool demonstrates that consider-
ing topology can help improve performance on the graph
classification task.

Figure 3. The increase in the number of parameters according to
the number of graph nodes. The x-axis label denotes the number
of input graph nodes and the y-axis label denotes the number of
parameters of the hierarchical pooling models: the number of input
node features is 128, the hidden feature size is 128, and the number
of classes is 2. Equation (3) is used as a graph convolution of
SAGPool. k denotes the pooling ratio and k = 1.0 indicates that
the entire node is preserved after pooling. gPool and SAGPool
have a consistent number of parameters regardless of the input
graph size and the pooling ratio.

4.5. Variations of SAGPool

As mentioned in section 3.1, three variations of SAGPool
are used to obtain attention scores Z. In our experiments,
we compared each variant on the two datasets. First, any
kind of GNNs can be applied to Equation (6). We com-
pared the performance of the three most widely used GNNs
(SAGPoolCheb, SAGPoolSAGE, SAGPoolGAT). Second, we
made the following modifications to SAGPool so that it can
consider the two-hop connection: an edge augmentation
(SAGPoolaugmentation) in Equation (7) and a stack of GNN
layers (SAGPoolserial) in Equation (8). Last, multiple GNNs
calculate attention scores and the scores are averaged to ob-
tain the final attention score (SAGPoolparallel). We evaluated
the performance of M = 2 and M = 4 using Equation (9).
The results are summarized in Table 4.

Self-Attention Graph Pooling

4.6. Summary of Results

The results are summarized in Table 3 and 4. The accuracies
and standard deviations are given in percentages. From the
comparison of the global pooling methods and SAGPool, the
results demonstrate that SAGPool generally performs well,
but it performs especially well on D&D and PROTEINS. In
the experiments, SAGPool outperformed the hierarchical
pooling methods on all the datasets. We also compared
variants of SAGPool with the hierarchical pooling architec-
ture on the two benchmark datasets. The performance of
the variants of SAGPool varied. The experimental results
of the SAGPool variants show that SAGPool has the po-
tential to improve performance. A detailed analysis of the
experimental results is provided in the next section.

5. Analysis
In this section, we provide an analysis of the experimental
results. In Section 5.1, we compare global pooling and
hierarchical pooling. Section 5.2 provides an explanation on
how the SAGPool method addresses the shortcomings of the
gPool method. In the 5.3 and 5.4 sections, we compare the
efficiency of SAGPool with that of DiffPool. We provide an
analysis of SAGPool variants in Section 5.5.

5.1. Global and Hierarchical Pooling

It is difficult to determine whether the global pooling archi-
tecture or hierarchical pooling architecture is completely
beneficial to graph classification. Since the global pool-
ing architecture POOLg (SAGPoolg , SortPoolg , Set2Setg)
minimizes the loss of information, it performs better than
the hierarchical pooling architecture POOLh (SAGPoolh,
gPoolh, DiffPoolh) on datasets with fewer nodes (NCI1,
NCI109, FRANKENSTEIN). However, POOLh is more
effective on datasets with a large number of nodes (D&D,
PROTEINS) because it efficiently extracts useful informa-
tion from large scale graphs. Therefore, it is important to
use the pooling architecture that is the most suitable for the
given data. Nonetheless, SAGPool tends to perform well
with each architecture.

5.2. Effect of Considering Graph Topology

To calculate the attention scores of nodes, SAGPoolh uti-
lizes the graph convolution in Equation (3). Unlike gPool,
SAGPool uses the D̃−

1
2 ÃD̃−

1
2 term, which is the first order

approximation of the graph Laplacian. This term allows
SAGPool to consider graph topology. As shown in Table 3,
considering graph topology improves performance. In addi-
tion, the graph Laplacian does not have to be recalculated
because it is the term used in a previous graph convolu-
tional layer in the same block. Although SAGPool has the
same parameters as gPool (Figure 3), it achieves superior

performance in the graph classification task.

5.3. Sparse Implementation

Manipulating graph data with a sparse matrix is important
for GNNs because the adjacency matrix is usually sparse.
When graph convolution is calculated using a dense ma-
trix, the computational complexity of multiplication AX
is O(|V |2) where A is the adjacency matrix, X is the fea-
ture matrix of nodes, and V denotes vertices. Pooling with
a dense matrix causes the memory efficiency problem, as
mentioned by (Cangea et al., 2018). However, if a sparse
matrix is used in the same operation, the computational com-
plexity is reduced to O(|E|) where E represents the edges.
Since SAGPool is a sparse pooling method, it can reduce
its computational complexity, unlike DiffPool which is a
dense pooling method. Sparseness also affects space com-
plexity. Since SAGPool uses GNN for obtaining attention
scores, SAGPool requiresO(|V |+|E|) of storage for sparse
pooling whereas dense pooling methods need O(|V |2).

5.4. Relation with the Number of Nodes

In DiffPool, the cluster size has to be defined when con-
structing a model because a GNN produces an assignment
matrix S as stated in Equation (1). The cluster size has to be
proportional to the maximum number of nodes according
to the reference implementation. These requirements of
DiffPool can lead to two problems. First, the number of
parameters is dependent on the maximum number of nodes
as shown in Figure 3. Second, it is difficult to determine the
right cluster size when the number of nodes varies greatly.
For example, only 10 out of 1178 graphs have over 1000
nodes, where the maximum number of nodes is 5748 and
the minimum is 30. The cluster size is 574 if the pooling
ratio is 10%, which expands the size of graphs after pool-
ing for most of the data. On the other hand, in SAGPool,
the number of parameters is independent of the cluster size.
In addition, the cluster size can be changed based on the
number of input nodes.

5.5. Comparison of the SAGPool Variants

To investigate the potential of our method, we evaluated
SAGPool variants on two datasets. SAGPool can be modi-
fied to perform the following: changing the type of GNN,
considering the two-hop connections, and averaging the
attention scores of multiple GNNs. As shown in Table 4,
the performance on graph classification varies depending
on which dataset and type of GNN in SAGPool are used.
We used two techniques to consider two-hop connections.
The attention scores obtained by the two sequential GNN
layers (SAGPoolserial) reflect the information of two-hop
neighbors. Another technique is to add the square of an ad-
jacency matrix to itself, resulting in a new adjacency matrix

Self-Attention Graph Pooling

that has two-hop connectivity. Without any modifications
to the SAGPool layer, the new adjacency matrix can be pro-
cessed in SAGPoolaugmentation. The information of two-hop
neighbors may help improve performance. The last variants
of SAGPool is to average the attention scores from multiple
GNNs. We found that choosing the right M for the dataset
can help achieve stable performance.

5.6. Limitations

We retain a certain percentage (pooling ratio k) of nodes to
handle different input graphs of various sizes, which has also
been done in previous studies (Gao & Ji, 2019; Cangea et al.,
2018). In SAGPool, we cannot parameterize the pooling
ratios to find optimal values for each graph. To address this
limitation, we used binary classification to decide which
nodes to preserve, but this did not completely solve the
issue.

6. Conclusion
In this paper, we proposed SAGPool which is a novel graph
pooling method based on self-attention. Our method has
the following features: hierarchical pooling, consideration
of both node features and graph topology, reasonable com-
plexity, and end-to-end representation learning. SAGPool
uses a consistent number of parameters regardless of the
input graph size. Extensions of our work may include using
learnable pooling ratios to obtain optimal cluster sizes for
each graph and studying the effects of multiple attention
masks in each pooling layer, where final representations can
be derived by aggregating different hierarchical represen-
tations. Our experiments were run on a NVIDIA TitanXp
GPU. We implemented all the baselines and SAGPool us-
ing PyTorch (Paszke et al., 2017) and the geometric deep
learning extension library provided by Fey & Lenssen.

Acknowledgements
This work was supported by the National Research Foun-
dation of Korea (NRF-2017R1A2A1A17069645, NRF-
2016M3A9A7916996, NRF-2017M3C4A7065887)

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate.
CoRR, abs/1409.0473, 2014. URL http://arxiv.
org/abs/1409.0473.

Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., and
Simaan, K. Graph convolutional encoders for syntax-
aware neural machine translation. In Proceedings of
the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 1957–1967, 2017.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S., Smola, A. J., and Kriegel, H.-P. Protein function
prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. Spectral
networks and locally connected networks on graphs. In
International Conference on Learning Representations
(ICLR2014), CBLS, April 2014, 2014.

Cangea, C., Veličković, P., Jovanović, N., Kipf, T., and Liò,
P. Towards sparse hierarchical graph classifiers. arXiv
preprint arXiv:1811.01287, 2018.

Cheng, J., Dong, L., and Lapata, M. Long short-term
memory-networks for machine reading. In Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 551–561, 2016.

Costa, F. and Grave, K. D. Fast neighborhood subgraph
pairwise distance kernel. In Proceedings of the 27th
International Conference on International Conference on
Machine Learning, pp. 255–262. Omnipress, 2010.

Dai, H., Dai, B., and Song, L. Discriminative embeddings of
latent variable models for structured data. In International
Conference on Machine Learning, pp. 2702–2711, 2016.

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A.,
Calestani, C., Yuh, C.-H., Minokawa, T., Amore, G.,
Hinman, V., Arenas-Mena, C., et al. A genomic reg-
ulatory network for development. science, 295(5560):
1669–1678, 2002.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems, pp. 3844–3852, 2016.

Dhillon, I. S., Guan, Y., and Kulis, B. Weighted graph
cuts without eigenvectors a multilevel approach. IEEE
transactions on pattern analysis and machine intelligence,
29(11), 2007.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330(4):771–783, 2003.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224–2232, 2015.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

Self-Attention Graph Pooling

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gao, H. and Ji, S. Graph u-net. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quan-
tum chemistry. CoRR, abs/1704.01212, 2017a. URL
http://arxiv.org/abs/1704.01212.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272, 2017b.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1024–1034, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N., et al. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97,
2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,
R., and Fei-Fei, L. Large-scale video classification with
convolutional neural networks. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recog-
nition, pp. 1725–1732, 2014.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P.,
and Neumann, M. Benchmark data sets for graph
kernels, 2016. URL http://graphkernels.cs.
tu-dortmund.de.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. URL http:
//arxiv.org/abs/1412.6980.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi,
A. L., Brewer, D., Christakis, N., Contractor, N., Fowler,
J., Gutmann, M., et al. Life in the network: the coming
age of computational social science. Science (New York,
NY), 323(5915):721, 2009.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436, 2015.

Lipton, Z. C. and Steinhardt, J. Troubling trends in machine
learning scholarship. arXiv preprint arXiv:1807.03341,
2018.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proc. CVPR,
volume 1, pp. 3, 2017.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. CoRR,
abs/1810.02244, 2018. URL http://arxiv.org/
abs/1810.02244.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pp. 807–814, 2010.

Orsini, F., Frasconi, P., and De Raedt, L. Graph invari-
ant kernels. In Proceedings of the Twenty-fourth Inter-
national Joint Conference on Artificial Intelligence, pp.
3756–3762, 2015.

Parikh, A., Täckström, O., Das, D., and Uszkoreit, J. A
decomposable attention model for natural language in-
ference. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, pp.
2249–2255, 2016.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song, Y.,
and Yang, Q. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Proceed-
ings of the 2018 World Wide Web Conference on World
Wide Web, pp. 1063–1072. International World Wide Web
Conferences Steering Committee, 2018.

http://arxiv.org/abs/1704.01212
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1810.02244

Self-Attention Graph Pooling

Rhee, S., Seo, S., and Kim, S. Hybrid approach of relation
network and localized graph convolutional filtering for
breast cancer subtype classification. In Proceedings of the
Twenty-Seventh International Joint Conference on Artifi-
cial Intelligence, IJCAI-18, pp. 3527–3534. International
Joint Conferences on Artificial Intelligence Organization,
7 2018. doi: 10.24963/ijcai.2018/490. URL https:
//doi.org/10.24963/ijcai.2018/490.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. CoRR,
abs/1811.05868, 2018. URL http://arxiv.org/
abs/1811.05868.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(Sep):2539–2561, 2011.

Simoncelli, E. P. and Olshausen, B. A. Natural image statis-
tics and neural representation. Annual review of neuro-
science, 24(1):1193–1216, 2001.

van den Berg, R., Kipf, T. N., and Welling, M. Graph
convolutional matrix completion. stat, 1050:7, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Li, P.,
and Bengio, Y. Graph attention networks. In International
Conference on Learning Representations, 2018.

Vinyals, O., Bengio, S., and Kudlur, M. Order mat-
ters: Sequence to sequence for sets. arXiv preprint
arXiv:1511.06391, 2015.

Wale, N., Watson, I. A., and Karypis, G. Comparison of
descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14
(3):347–375, 2008.

Xu, K., Li, C., Tian, Y., Sonobe, T., ichi Kawarabayashi, K.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In ICML, 2018a.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-
i., and Jegelka, S. Representation learning on graphs
with jumping knowledge networks. arXiv preprint
arXiv:1806.03536, 2018b.

Yao, K.-L. and Li, W.-J. Convolutional geometric matrix
completion. arXiv preprint arXiv:1803.00754, 2018.

Yao, L., Mao, C., and Luo, Y. Graph convolutional networks
for text classification. arXiv preprint arXiv:1809.05679,
2018.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. CoRR, abs/1806.08804, 2018.
URL http://arxiv.org/abs/1806.08804.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecular
graph generation. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 6412–6422. Curran Associates, Inc., 2018.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. Self-
attention generative adversarial networks. arXiv preprint
arXiv:1805.08318, 2018a.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
Proceedings of AAAI Conference on Artificial Inteligence,
2018b.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., and Sun,
M. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434, 2018.

Zitnik, M., Agrawal, M., and Leskovec, J. Modeling
polypharmacy side effects with graph convolutional net-
works. Bioinformatics, 34(13):457466, 2018.

https://doi.org/10.24963/ijcai.2018/490
https://doi.org/10.24963/ijcai.2018/490
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1806.08804

