Supplementary Materials for "First-Order Algorithms Converge Faster than O(1/k) on Convex Problems"

Ching-pei Lee¹ Stephen J. Wright¹

A. Proof of Lemma 1

Proof. The proof uses simplified elements of the proofs of Lemmas 2 and 9 of Section 2.2.1 from (Polyak, 1987). Define $s_k := k\Delta_k$ and $u_k := s_k + \sum_{i=k}^{\infty} \Delta_i$. Note that

$$s_{k+1} = (k+1)\Delta_{k+1} \le k\Delta_k + \Delta_{k+1} \le s_k + \Delta_k.$$

$$\tag{1}$$

From (1) we have

$$u_{k+1} = s_{k+1} + \sum_{i=k+1}^{\infty} \Delta_i \le s_k + \Delta_k + \sum_{i=k+1}^{\infty} \Delta_i$$
$$= s_k + \sum_{i=k}^{\infty} \Delta_i = u_k,$$

so that $\{u_k\}$ is a monotonically decreasing nonnegative sequence. Thus there is $u \ge 0$ such that $u_k \to u$, and since $\lim_{k\to\infty} \sum_{i=k}^{\infty} \Delta_i = 0$, we have $s_k \to u$ also.

Assuming for contradiction that u > 0, there exists $k_0 > 0$ such that $s_k \ge u/2 > 0$ for all $k \ge k_0$, so that $\Delta_k \ge u/(2k)$ for all $k \ge k_0$. This contradicts the summability of $\{\Delta_k\}$. Therefore we have u = 0, so that $k\Delta_k = s_k \to 0$, proving the result.

References

Polyak, B. T. Introduction to Optimization. Translation Series in Mathematics and Engineering. 1987.

¹Department of Computer Sciences and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA. Correspondence to: Ching-pei Lee <ching-pei@cs.wisc.edu>, Stephen J. Wright <swright@cs.wisc.edu>.

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).