A. Proof of Lemma 1

Proof. The proof uses simplified elements of the proofs of Lemmas 2 and 9 of Section 2.2.1 from (Polyak, 1987). Define $s_k := k\Delta_k$ and $u_k := s_k + \sum_{i=k}^{\infty} \Delta_i$. Note that

$$s_{k+1} = (k + 1)\Delta_{k+1} \leq k\Delta_k + \Delta_{k+1} \leq s_k + \Delta_k. \tag{1}$$

From (1) we have

$$u_{k+1} = s_{k+1} + \sum_{i=k+1}^{\infty} \Delta_i \leq s_k + \Delta_k + \sum_{i=k+1}^{\infty} \Delta_i$$

$$= s_k + \sum_{i=k}^{\infty} \Delta_i = u_k,$$

so that $\{u_k\}$ is a monotonically decreasing nonnegative sequence. Thus there is $u \geq 0$ such that $u_k \rightarrow u$, and since $\lim_{k \rightarrow \infty} \sum_{i=k}^{\infty} \Delta_i = 0$, we have $s_k \rightarrow u$ also.

Assuming for contradiction that $u > 0$, there exists $k_0 > 0$ such that $s_k \geq u/2 > 0$ for all $k \geq k_0$, so that $\Delta_k \geq u/(2k)$ for all $k \geq k_0$. This contradicts the summability of $\{\Delta_k\}$. Therefore we have $u = 0$, so that $k\Delta_k = s_k \rightarrow 0$, proving the result. \qed

References