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Abstract
Large-scale datasets may contain significant pro-
portions of noisy (incorrect) class labels, and it
is well-known that modern deep neural networks
(DNNs) poorly generalize from such noisy train-
ing datasets. To mitigate the issue, we propose a
novel inference method, termed Robust Genera-
tive classifier (RoG), applicable to any discrimina-
tive (e.g., softmax) neural classifier pre-trained on
noisy datasets. In particular, we induce a genera-
tive classifier on top of hidden feature spaces of
the pre-trained DNNs, for obtaining a more robust
decision boundary. By estimating the parameters
of generative classifier using the minimum co-
variance determinant estimator, we significantly
improve the classification accuracy with neither
re-training of the deep model nor changing its
architectures. With the assumption of Gaussian
distribution for features, we prove that RoG gen-
eralizes better than baselines under noisy labels.
Finally, we propose the ensemble version of RoG
to improve its performance by investigating the
layer-wise characteristics of DNNs. Our extensive
experimental results demonstrate the superiority
of RoG given different learning models optimized
by several training techniques to handle diverse
scenarios of noisy labels.

1. Introduction
Deep neural networks (DNNs) tend to generalize well when
they are trained on large-scale datasets with ground-truth
label annotations. For example, DNNs have achieved state-
of-the-art performance on many classification tasks, e.g.,
image classification (He et al., 2016), object detection (Gir-
shick, 2015), and speech recognition (Amodei et al., 2016).
However, as the scale of training dataset increases, it be-
comes infeasible to obtain all ground-truth class labels from
domain experts. A common practice is collecting the class
labels from data mining on social media (Mahajan et al.,
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2018) or web data (Krause et al., 2016). Machine-generated
labels are often used; e.g., the Open Images Dataset V4 con-
tains such 70 million labels for training images (Kuznetsova
et al., 2018). However, they may contain incorrect labels,
and recent studies have shown that modern deep architec-
tures may generalize poorly from the noisy datasets (Zhang
et al., 2017) (e.g., see the black line of Figure 1(a)).

To address the poor generalization issue of DNNs with noisy
labels, many training strategies have been investigated (Reed
et al., 2014; Patrini et al., 2017; Ma et al., 2018; Han et al.,
2018b; Hendrycks et al., 2018; Goldberger & Ben-Reuven,
2017; Jiang et al., 2018; Ren et al., 2018; Zhang & Sabuncu,
2018; Malach & Shalev-Shwartz, 2017; Han et al., 2018a).
However, using such training methods may incur expensive
back-and-forth costs (e.g., additional time and hyperparam-
eter tuning) and suffer from the reproducibility issue. This
motivates our approach of developing a more plausible in-
ference method applicable to any pre-trained deep model.
Hence, our direction is complementary to the prior works:
one can combine ours and a prior training method for the
best performance (see Tables 3, 4, & 5 in Section 4).

The key contribution of our work is to develop such an infer-
ence method, Robust Generative classifier (RoG), which is
applicable to any discriminative (e.g., softmax) neural classi-
fier pre-trained on noisy datasets (without re-training). Our
main idea is inducing a better posterior distribution from
the pre-trained (noisy, though) feature representation by uti-
lizing a robust generative classifier. Here, our belief is that
the softmax DNNs can learn meaningful feature patterns
shared by multiple training examples even under datasets
with noisy labels, e.g., see (Arpit et al., 2017).

To motivate our approach, we first observe that training
samples with noisy labels (red circles) are distributed like
outliers when their hidden features are projected in a 2-
dimensional space using t-SNE (Maaten & Hinton, 2008)
(see Figure 1(b)). In other words, this phenomena implies
that DNN representations even when trained with noisy la-
bels may still exhibit clustering properties (i.e., the DNN
learns embedding that tend to group clean examples of the
same class into the clusters while pushing away the exam-
ples with corrupt labels outside these clusters). The obser-
vation inspires us to induce a generative classifier on the
pre-trained hidden features since it can model joint data
distributions P (x, y) for input x and its label y for outlier
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(a) Test set accuracy comparison

Samples with clean labels
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(b) Penultimate features by t-SNE

MCD estimator
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(c) An illustration of the MCD estimator

Figure 1. Experimental results under DenseNet-100 and CIFAR-10 with uniform noise, i.e., the labels of a given proportion of training
samples are flipped to other labels uniformly at random. (a) Test set accuracy of softmax and generative classifiers with various parameter
estimations. (b) Visualization of features on the penultimate layer using t-SNE from training samples when the noise fraction is 20%. (c)
An illustration of the MCD estimator: it is more robust against outliers by finding a subset with minimum covariance determinant.

detection and thus produce robust posterior P (y |x) for pre-
diction. Here, one may suggest training a deep generative
classifier from scratch. However, such a fully generative
approach is expensive and has been not popular for recent
state-of-art classification. We instead post-process a light
generative classifier only for inference.

In particular, we propose to induce the generative classifier
under linear discriminant analysis (LDA) assumption and
choose its parameters by the minimum covariance determi-
nant (MCD) (Rousseeuw, 1984) estimator which calculates
more robust parameters. We provide a theoretical support
on the generalization property (Durrant & Kabán, 2010) of
RoG based on MCD: it has the smaller errors on parame-
ter estimations provably under some Gaussian assumptions.
To improve RoG further, we observe that RoG built from
low-level features can be often more effective since DNNs
tend to have similar hidden features, regardless of whether
they are trained with clean or noisy labels at early layers
(Arpit et al., 2017; Morcos et al., 2018). Under the obser-
vations, we finally propose an ensemble version of RoG to
incorporate all effects of low and high layers.

We demonstrate the effectiveness of RoG using modern
neural architectures on image classification and natural lan-
guage processing tasks. In all tested cases, our methods
(e.g., see green and blue lines in Figure 1(a)) significantly
outperform the softmax classifier, although they use the
same feature representations trained by the noisy dataset. In
particular, we show that RoG can be used to further improve
various prior training methods (Reed et al., 2014; Patrini
et al., 2017; Ma et al., 2018; Han et al., 2018b; Hendrycks
et al., 2018) which are specialized to handle the noisy en-
vironment. For example, we improve the test accuracy of
the state-of-the-art training method (Han et al., 2018b) on
CIFAR-100 dataset with 45% noisy labels from 33.34%
to 43.02%. Finally, RoG is shown to be working properly
against more semantic noisy labels (generated from a ma-
chine labeler) and open-set noisy labels (Wang et al., 2018).

2. Related work
One of major directions for handling noisy labels is utilizing
an estimated/corrected labels during training: Reed et al.
(2014) proposed a bootstrapping method which trains deep
models with new labels generated by a convex combina-
tion of the raw (noisy) labels and their predictions, and Ma
et al. (2018) improved the bootstrapping method by utiliz-
ing the dimensionality of subspaces during training. Patrini
et al. (2017) modified the loss and posterior distribution
to eliminate the influence of noisy labels, and Hendrycks
et al. (2018) improved such a loss correction method by
utilizing the information from data with true class labels.
Another promising direction has focused on training on
selected (cleaner) samples: Jiang et al. (2018) introduced
a meta-learning model, called MentorNet, and Han et al.
(2018a) proposed a meta approach which can improve Men-
torNet. Ren et al. (2018) adaptively assigned weights to
training samples based on their gradient directions. Malach
& Shalev-Shwartz (2017) and Han et al. (2018b) proposed
the selection methods based on an ensemble of deep mod-
els. A potential drawback of the above training methods
is that they may incur expensive back-and-forth costs for
training and hyperparameter tuning. On the other hand, our
generative inference method is very cheap and can provide
complementary benefits, i.e., ours can be easily applied to
improve any of them.

Inducing a generative classifier (e.g., a mixture of Gaussian)
on pre-trained deep models also has been investigated for
various purposes: Hermansky et al. (2000) propose Tan-
dem approaches which induce a generative model on top of
hidden features for speech recognition. More recently, by in-
ducing the generative model, Lee et al. (2018) introduce the
Mahalanobis distance-based confidence score for novelty
detection. However, their methods use naive parameter esti-
mation under assuming perfect clean training labels, which
should be highly influenced by outliers. We overcome the
issue by using the MCD estimator.
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3. Robust Inference via Generative Classifiers
In this section, we propose a novel inference method which
obtains a robust posterior distribution from any softmax
neural classifier pre-trained on datasets with noisy labels.
Our idea is inducing the generative classifier given hidden
features of the deep model. We show the robustness of our
method in terms of high breakdown points (Hampel, 1971),
and generalization error (Durrant & Kabán, 2010). We
also investigate the layer-wise characteristics of generative
classifiers, and introduce an ensemble of them to improve
its performance.

3.1. Generative Classifier and MCD Estimator

Let x be an input and y 2 {1, · · · , C} be its class
label. Without loss of generality, suppose that a pre-
trained softmax neural classifier is given: P (y = c|x) =

exp(w>
c f(x)+bc)

P
c0 exp(w>

c0f(x)+bc0)
, where wc and bc are the weight and

the bias of the softmax classifier for class c, and f(·) 2 Rd

denotes the output of the penultimate layer of DNNs. Then,
without any modification on the pre-trained softmax neu-
ral classifier, we induce a generative classifier by assum-
ing the class-conditional distribution follows the multi-
variate Gaussian distribution. In particular, we define
C Gaussian distributions with a tied covariance ⌃, i.e.,
linear discriminant analysis (LDA) (Fisher, 1936), and a
Bernoulli distribution for the class prior: P (f(x)|y = c) =
N (f(x)|µc,⌃) , P (y = c) = �c, where µc is the mean of
multivariate Gaussian distribution and �c is the normalized
prior for class c. We provide an analytic justification on the
LDA (i.e., tied covariance) assumption in the supplementary
material. Then, based on the Bayesian rule, we induce a
new posterior different from the softmax one as follows:

P (y = c|f(x)) =
P (y = c)P (f(x)|y = c)P

c0
P (y = c0)P (f(x)|y = c0)

=
exp

�
µ>
c ⌃

�1f(x)� 1
2µ

>
c ⌃

�1µc + log �c

�
P
c0

exp
�
µ>
c0⌃

�1f(x)� 1
2µ

>
c0⌃

�1µc0 + log �c0
� .

To estimate the parameters of the generative classifier, one
can compute the sample class mean and covariance of train-
ing samples XN = {(x1, y1), . . . , (xN , yN )}:

µ̄c =
X

i:yi=c

f(xi)

Nc
, �̄c =

Nc

N
,

⌃̄ =
X

c

X

i:yi=c

(f(xi)� µ̄c) (f(xi)� µ̄c)
>

N
, (1)

where Nc is the number of samples labeled to be class c.

However, one can expect that the naive sample estimator (1)
can be highly influenced by outliers (i.e., training samples

with noisy labels). In order to improve the robustness, we
propose the so-called Robust Generative classifier (RoG),
which utilizes the minimum covariance determinant (MCD)
estimator (Rousseeuw & Driessen, 1999) to estimate its pa-
rameters. For each class c, the main idea of MCD is finding
a subset XKc for which the determinant of the corresponding
sample covariance is minimized:

min
XKc⇢XNc

det
⇣
b⌃c

⌘
subject to |XKc | = Kc, (2)

where XNc is the set of training samples labeled to be class
c, b⌃c is the sample covariance of XKc and 0 < Kc < Nc is
a hyperparameter. Then, only using the samples in

S
c XKc ,

it estimates the parameters, i.e., bµc, b⌃, b�c, of the generative
classifier, by following (1). Such a new estimator can be
more robust by removing the outliers which might be widely
scattered in datasets (see Figure 1(c)).

The robustness of MCD estimator has been justified in the lit-
erature: it is known to have near-optimal breakdown points
(Hampel, 1971), i.e., the smallest fraction of data points that
need to be replaced by arbitrary values (i.e., outliers) to fool
the estimator completely. Formally, denote YM as a set ob-
tained by replacing M data points of set Y by some arbitrary
values. Then, for a multivariate mean estimator µ = µ(Y)
from Y , the breakdown point is defined as follows (see
the supplementary material for more detailed explanations
including the breakdown point of covariance estimator):

"⇤(µ,Y)

=
1

|Y|
min

⇢
M 2 [|Y|] : sup

YM

kµ(Y)� µ(YM )k = 1

�
,

where the set {1, . . . , n} is denoted by [n] for positive in-
teger n. While the breakdown point of the naive sample
estimator is 0%, the MCD estimator for the generative clas-
sifier under LDA assumption is known to attain near optimal
breakdown value of minc

b(Nc�d+1)/2c
Nc

⇡ 50% (Lopuhaa
et al., 1991). Inspired by this fact, we choose the default
value of Kc in (2) by b(Nc + d+ 1)/2c.

We also establish the following theoretical support that
the MCD-based generative classifier (i.e., RoG) can have
smaller errors on parameter estimations, compared to the
naive sample estimator, under some assumptions for its
analytic tractability.

Theorem 1 Assume the followings:

(A1) For (clean) sample x of correct label, the class-
conditional distribution of hidden feature f(x) of
DNNs has mean µc and tied covariance matrix �2I.
For (outlier) sample x of incorrect label, the distribu-
tion of hidden feature has mean µout and covariance
matrix �2

outI, where I 2 Rd⇥d is the identity matrix.
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(A2) All classes have the same number of samples (i.e.,
Nc = N

C ), the same fraction �out < 1 of outliers,
and the sample fraction �mcd = Kc

Nc
< 1 of samples

selected by MCD estimator.

(A3) The outliers are widely scattered such that �2 < �2
out.

(A4) The number of outliers is not too large such that �out <
1� �mcd and �mcd >

d
Nc

.

Let bµ, b⌃ and µ̄, ⌃̄ be the outputs of the MCD and sample
estimators, respectively. Then, for all c, c0, bµ, µ̄, b⌃, ⌃̄ con-
verge almost surely to their expectation as N ! 1, and it
holds that

kµc � bµck1
a.s.
! lim

N!1
kµc � bµck1 = 0,

kµc � µ̄ck1
a.s.
! lim

N!1
kµc � µ̄ck1 = �outkµck1, (3)

�(b⌃)kbµc � bµc0k2

�(⌃̄)kµ̄c � µ̄c0k2

a.s.
! lim

N!1

�(b⌃)kbµc � bµc0k2

�(⌃̄)kµ̄c � µ̄c0k2

= lim
N!1

1

(1� �out)
2 �(⌃̄)

� 1, (4)

where �(b⌃) = 4kb⌃�1
k2k

b⌃k2

⇣
1 + kb⌃�1

k2k
b⌃k2

⌘�2
.

The proof of the above theorem is given in the supplemen-
tary material, where it is built upon the fact that the deter-
minants can be expressed as the d-th degree polynomial
of outlier ratio under the assumptions. We note that one
might enforce the assumptions of the diagonal covariance
matrices in A1 to hold under an affine translation of hidden
features. In addition, the assumption in A4 holds when Nc

is large enough. Nevertheless, we think most assumptions
of Theorem 1 are not necessary to claim the superiority of
RoG and it is an interesting future direction to explore to
relax them.

The generalization error bound of a generative classifier
under the assumption that the class-conditional Gaussian
distributions of features is known to be bounded as follows
(Durrant & Kabán, 2010):

Pf(x)

✓
y⇤ 6= argmax

y
Pbµc,b⌃(y|f(x))

◆



X

c

X

c0 6=c

exp

✓
�
kbµc � bµc0k2

8�2
· �(b⌃)

◆
+Dkµc � bµck1,

for some constant D > 0. Therefore, (3) and (4) together
imply that utilizing the MCD estimator provides a better
generalization bound, compared to the sample estimator.

3.2. Approximation Algorithm for MCD

Even though the MCD estimator has several advantages,
the optimization (2) is computationally intractable (i.e., NP-
hard) to solve (Bernholt, 2006). To handle this issue, we

Algorithm 1 (Rousseeuw & Driessen, 1999) Approximat-
ing MCD for a single Gaussian.

1: Input: XNc = {xi : i = 1, · · · , Nc} and the maxi-
mum number of iterations Imax.

2: Uniformly sample initial subset XKc ⇢ XNc , where
|XKc | = b(Nc + d+ 1)/2c.

3: Compute a mean bµc = 1
|XKc |

P
x2XKc

f(x), and covari-

ance b⌃c =
1

|XKc |
P

x2XKc

(f(x)� bµc) (f(x)� bµc)
> .

4: for i = 1 to Imax do
5: Compute the Mahalanobis distance for all x 2 XNc :

↵(x) = (f(x)� bµc)
> b⌃�1

c (f(x)� bµc) .
6: Update XKc such that it includes b(Nc + d+ 1)/2c

samples with the smallest distance ↵(x).
7: Compute sample mean and covariance, i.e., bµc, b⌃c,

using new subset XKc .
8: Exit the loop if the determinant of covariance matrix

is not decreasing anymore.
9: end for

10: Return bµc and b⌃c

aim to compute its approximate solution, by following the
idea of Hubert & Van Driessen (2004). We design two step
scheme as follows: (a) obtain the mean and covariance,
i.e., bµc, b⌃c, using Algorithm 1 for each class c, and (b)
compute the tied covariance by b⌃ =

P
c Kc

b⌃cP
c Kc

. In other
words, we apply the MCD estimator for each class, and
combine the individual covariances into a single one due
to the tied covariance assumption of LDA. Even though
finding the optimal solution of the MCD estimator under a
single Gaussian distribution is still intractable, Algorithm 1
can produce a local optimal solution since it monotonically
decreases the determinant under any random initial subset
(Rousseeuw & Driessen, 1999). We choose Imax = 2 in our
experiments since additional iterations would not improve
the results significantly.

3.3. Ensemble of Generative Classifiers

To further improve the performance of our method, we
consider the ensemble of generative classifiers not only
from the penultimate features but also from other low-level
features in DNNs. Formally, given training data, we extract
`-th hidden features of DNNs, denoted by f`(x) 2 Rd` ,
and compute the corresponding parameters of a generative
classifier (i.e., bµ`,c and b⌃`) using the (approximated version
of) MCD estimator. Then, the final posterior distribution is
obtained by the weighted sum of all posterior distributions
of generative classifiers:

P
`
↵`P (y = c|f`(x)) , where ↵`

is an ensemble weight at `-th layer. In our experiments,
we choose the weight of each layer by optimizing negative
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Figure 2. Experimental results under ResNet-34 model and CIFAR-10 dataset. (a) Test accuracy of generative classifiers from penultimate
features under various assumptions: identity covariance and tied covariance (LDA). (b) The number of clean samples among selected
samples by the MCD estimator. (c) Test accuracy of generative classifiers computed at different basic blocks.

Model Inference method Ensemble Clean Uniform (20%) Uniform (40%) Uniform (60%)

DenseNet

Softmax - 94.11 81.01 72.34 55.42

Generative + sample - 94.18 85.12 76.75 60.14
X 93.97 87.40 81.27 69.81

Generative + MCD (ours) - 94.22 86.54 80.27 67.67
X 94.18 87.41 81.83 75.45

ResNet

Softmax - 94.76 80.88 61.98 39.96

Generative + sample - 94.80 82.97 65.92 42.76
X 94.82 83.36 68.57 46.45

Generative + MCD (ours) - 94.76 83.86 68.03 44.87
X 94.68 84.62 75.28 54.57

Table 1. Effects of an ensemble method. We use the CIFAR-10 dataset with various uniform noise fractions. All values are percentages
and the best results are highlighted in bold if the gain is bigger than 1% compared to softmax classifier.

log-likelihood (NLL) loss over the validation set. One can
expect that this natural scheme can bring an extra gain in
improving the performance due to ensemble effects.

4. Experiments
In this section, we demonstrate the effectiveness of
the proposed method using deep neural networks
on various vision and natural language processing
tasks. We provide more detailed experimental setups
in the supplementary material. Code is available at
github.com/pokaxpoka/RoGNoisyLabel.

4.1. Experimental Setup

For evaluation, we apply the proposed method to deep neu-
ral networks including DenseNet (Huang & Liu, 2017) and
ResNet (He et al., 2016) for the classification tasks on CI-
FAR (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), Twitter Part of Speech (Gimpel et al., 2011), and
Reuters (Lewis et al., 2004) datasets with noisy labels. Fol-
lowing the setups of (Ma et al., 2018; Han et al., 2018b), we
first consider two types of random noisy labels: corrupting
a label to other class uniformly at random (uniform) and
corrupting a label only to a specific class (flip). Our method

is also evaluated on semantic noisy labels from a machine
classifier and open-set noisy labels (Wang et al., 2018).

For ensembles of generative classifiers, we induce the gen-
erative classifiers from basic blocks of the last dense (or
residual) block of DenseNet (or ResNet), where ensemble
weights of each layer are tuned on an additional valida-
tion set, which consists of 1000 images with noisy labels.
Here, when learning the weights, we use only 500 samples
out of 1000, chosen by the MCD estimator to remove the
outliers (see the supplementary material for more details).
The size of feature maps on each convolutional layers is
reduced by average pooling for computational efficiency:
F ⇥H⇥W ! F ⇥ 1, where F is the number of channels
and H⇥W is the spatial dimension.

4.2. Ablation Study

We first evaluate the performance of generative classifiers
with various assumptions: identity covariance (Euclidean)
and tied covariance (LDA). In the case of identity covari-
ance, we also apply a robust estimator called the least
trimmed square (LTS) estimator (Rousseeuw, 1984) which
finds a K-subset with the smallest error and computes the
sample mean from it, i.e., minbµ

PK
i=1(kxi � bµk22). Fig-

ure 2(a) reports the test set accuracy of the softmax and

https://github.com/pokaxpoka/RoGNoisyLabel
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Noise type (%)
ResNet DenseNet

CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
Softmax / RoG Softmax / RoG

Clean 94.76 / 94.68 76.81 / 76.97 95.96 / 96.09 94.11 / 94.18 75.69 / 72.67 96.59 / 96.18
Uniform (20%) 80.88 / 84.62 64.43 / 68.29 83.52 / 91.67 81.01 / 87.41 61.72 / 64.29 86.92 / 89.50
Uniform (40%) 61.98 / 75.28 48.62 / 60.76 72.89 / 87.16 72.34 / 81.83 50.89 / 55.68 81.91 / 85.71
Uniform (60%) 39.96 / 54.57 27.57 / 48.42 61.23 / 80.52 55.42 / 75.45 38.33 / 44.12 71.18 / 77.67

Flip (20%) 79.65 / 88.73 65.14 / 73.37 85.49 / 93.00 79.18 / 91.23 65.37 / 69.03 95.04 / 94.86
Flip (40%) 58.13 / 61.56 46.61 / 66.71 65.88 / 87.96 56.29 / 86.42 46.04 / 69.38 88.83 / 93.57

Table 2. Test accuracy (%) of different models trained on various datasets. We use the ensemble version of RoG, and the best results are
highlighted in bold if the gain is bigger than 1%.

Dataset Training
method

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / RoG

CIFAR-10

Cross-entropy 94.34 / 94.20 81.95 / 84.63 63.84 / 74.72 62.45 / 67.47
Bootstrap (hard) 94.56 / 94.52 82.90 / 86.27 75.97 / 80.72 72.91 / 75.41
Bootstrap (soft) 94.46 / 94.28 80.29 / 84.82 65.22 / 74.22 58.55 / 66.68

Forward 94.53 / 94.52 85.80 / 86.84 77.95 / 79.87 72.56 / 74.75
Backward 94.39 / 94.44 77.44 / 79.16 62.83 / 68.29 56.64 / 66.44

D2L 94.55 / 94.29 88.89 / 89.00 86.68 / 87.00 76.83 / 77.92

CIFAR-100

Cross-entropy 76.31 / 75.40 61.11 / 64.82 45.08 / 55.90 34.97 / 41.25
Bootstrap (hard) 75.65 / 75.49 61.61 / 64.81 51.27 / 57.22 39.04 / 43.69
Bootstrap (soft) 76.40 / 76.02 60.28 / 64.04 47.66 / 56.51 34.68 / 42.47

Forward 75.84 / 75.93 63.73 / 66.02 53.03 / 57.69 41.28 / 45.28
Backward 76.75 / 76.28 56.24 / 62.13 37.70 / 50.23 23.55 / 37.18

D2L 76.13 / 75.93 71.90 / 72.09 63.61 / 64.85 9.51 / 40.57

SVHN

Cross-entropy 96.38 / 96.41 83.45 / 91.14 60.86 / 80.36 38.29 / 54.99
Bootstrap (hard) 96.40 / 96.12 83.43 / 91.98 74.25 / 86.83 66.51 / 77.14
Bootstrap (soft) 96.51 / 96.10 86.43 / 90.84 58.22 / 79.90 44.52 / 62.52

Forward 96.36 / 96.00 88.21 / 91.99 80.35 / 86.49 82.16 / 84.99
Backward 96.43 / 96.09 87.00 / 87.11 72.02 / 73.32 50.54 / 64.01

D2L 96.49 / 96.37 92.31 / 93.58 94.46 / 94.68 92.87 / 93.25

Table 3. Test accuracy (%) of ResNet trained on various training methods which utilize a single classifier. We use the ensemble version of
RoG, and the best results are highlighted in bold if the gain is bigger than 1%.

generative classifiers on features extracted from the penulti-
mate layer using ResNet-34 trained on the CIFAR-10 dataset
with the uniform noise type. First, one can observe that the
generative classifiers with LDA assumption (blue and pur-
ple bars) generalize better than the softmax (red bar) and
generative classifiers with identity covariance (orange and
green bars) well from noisy labels. Here, we remark that
they still provide a comparable classification accuracy of
softmax classifier when the model is trained on clean dataset
(i.e., noise = 0%). On top of that, by utilizing the MCD
estimator, the classification accuracy (blue bar) is further
improved compared to that employs only the naive sample
estimator (purple bar). This is because the MCD estima-
tor indeed selects the training samples with clean labels as
shown in Figure 2(b). The above results justify the proposed
generative classifier, in comparison with other alternatives.

Next, to confirm that the ensemble approach is indeed ef-
fective, we measure a classification accuracy of generative

classifier from different basic blocks of ResNet-34. First,
we found that the performances of the generative classifiers
from low-level features are more stable, while the accuracy
of generative classifier from penultimate layer significantly
decreases as the noisy fraction increases as shown in Fig-
ure 2(c). We expect that this is because the dimension (i.e.,
number of channels) of low-level features is usually smaller
than that of high-level features. Since the breakdown point
of MCD is inversely proportional to the feature dimension,
the generative classifiers from low-level features can be
more robust. This also coincides with the prior observation
in the literature (Morcos et al., 2018) that DNNs tend to
have similar hidden features at early layers, regardless of
whether they train clean or noisy labels. Since the genera-
tive classifiers from low-level features are more stable, the
ensemble method significantly improves the classification
accuracy as shown in Table 1. Finally, Table 2 reports the
classification accuracy for all networks and datasets, where
the proposed method significantly outperforms the softmax
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Dataset Noise type (%) Cross-entropy Decoupling MentorNet Co-teaching Co-teaching
+ RoG

CIFAR-10
Flip (45%) 49.50 48.80 58.14 71.17 71.26

Uniform (50%) 48.87 51.49 71.10 74.12 76.67
Uniform (20%) 76.25 80.44 80.76 82.13 84.32

CIFAR-100
Flip (45%) 31.99 26.05 31.60 33.34 43.18

Uniform (50%) 25.21 25.80 39.00 41.49 45.42
Uniform (20%) 47.55 44.52 52.13 54.27 58.16

Table 4. Test accuracy (%) of 9-layer CNNs trained on various training methods which utilize an ensemble of classifiers or meta-learning
model. We use the ensemble version of RoG and the best results are highlighted in bold if the gain is bigger than 1%.

Dataset Training
method

Softmax / RoG
Clean Uniform (20%) Uniform (40%) Uniform (60%)

Twitter
Cross-entropy 87.47 / 85.28 79.13 / 81.66 66.74 / 79.37 50.83 / 73.65
Forward (gold) 78.07 / 83.59 72.97 / 81.60 64.55 / 78.24 51.59 / 72.33

GLC 83.47 / 84.68 66.09 / 81.66 59.72 / 79.00 53.14 / 72.93

Reuters
Cross-entropy 95.88 / 94.77 87.74 / 92.83 76.54 / 82.20 57.49 / 64.98
Forward (gold) 94.57 / 94.75 88.44 / 93.24 77.85 / 82.56 61.01 / 66.56

GLC 95.97 / 94.91 81.45 / 92.75 73.40 / 83.82 59.21 / 67.91

Table 5. Test accuracy (%) of 2-layer FCNs trained on NLP datasets with uniform noise. We use the ensemble version of RoG, and the
best results highlighted in bold if the gain is bigger than 1%.

classifier for all tested cases.

4.3. Compatibility and Comparison with the
State-of-Art Training Methods

We compare the performance of the standard softmax clas-
sifier and RoG when they are combined with other vari-
ous training methods for noisy environments, where more
detailed explanations about training methods are given in
the supplementary material. First, we consider the fol-
lowing methods that require to train only a single net-
work: Hard/soft bootstrapping (Reed et al., 2014), for-
ward/backward (Patrini et al., 2017), and D2L (Ma et al.,
2018). Following the same experimental setup in Ma et al.
(2018)1, we use ResNet-44 and only consider the uniform
noises of various levels. Table 3 shows the classification
accuracy of softmax classifier and the ensemble version of
RoG. Note that RoG always improves the classification ac-
curacy compared to the softmax classifier, where the gains
due to ours are more significant than those due to other
special training methods.

We also consider the following methods that require to train
multiple networks, i.e., an ensemble of classifiers or a meta-
learning model: Decoupling (Malach & Shalev-Shwartz,
2017), MentorNet (Jiang et al., 2018) and Co-teaching (Han
et al., 2018b). Following the same experimental setup of

1The code is available at https://github.com/
xingjunm/dimensionality-driven-learning.

Han et al. (2018b)2, we use a 9-layer convolutional neural
network (CNN), and consider the CIFAR-10 and CIFAR-
100 datasets with uniform and flip noise. In this setup,
we only apply RoG to a model pre-trained by Co-teaching
since it outperforms other training methods. As shown in
Table 4, RoG with Co-teaching method achieves the best
performance in all tested cases.

We further apply our inference method to non-convolutional
neural networks on natural language processing (NLP) tasks:
the text categorization on Reuters (Lewis et al., 2004),
and part-of-speech (POS) tagging on Twitter POS (Gim-
pel et al., 2011). By following the same experimental setup
of Hendrycks et al. (2018)3, we train 2-layer fully con-
nected networks (FCNs) using forward (gold)4, and GLC
(Hendrycks et al., 2018) methods. Note that they are de-
signed to train a single network using a set of trusted data
with golden clean labels (1% of training samples in our ex-
periments). Hence, the setting is slightly different from what
we considered so far, but we run RoG (without utilizing 1%
knowledge of ground truth) to compare. Table 5 shows that,
even with this unfair disadvantage, RoG can improve the
performance over the baselines for these NLP datasets with
noisy labels.

2We used a reference implementation: https://github.
com/bhanML/Co-teaching.

3The code is available at https://github.com/
mmazeika/glc.

4We use an augmented version of forward (Patrini et al., 2017)
which estimates a corruption matrix using the trusted data.

https://github.com/xingjunm/dimensionality-driven-learning
https://github.com/xingjunm/dimensionality-driven-learning
https://github.com/bhanML/Co-teaching
https://github.com/bhanML/Co-teaching
https://github.com/mmazeika/glc
https://github.com/mmazeika/glc
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Training
method

Label generator (noisy fraction) on CIFAR-10 Label generator (noisy fraction) on CIFAR-100
DenseNet (32%) ResNet (38%) VGG (34%) DenseNet (34%) ResNet (37%) VGG (37%)

Softmax / RoG Softmax / RoG
Cross-entropy 67.24 / 68.33 62.26 / 64.15 68.77 / 70.04 50.72 / 61.14 50.68 / 53.09 51.08 / 53.64

Bootstrap (hard) 67.31 / 68.40 62.22 / 63.98 69.11 / 70.09 51.31 / 53.66 50.62 / 52.62 50.91 / 53.46
Bootstrap (soft) 67.17 / 68.38 62.15 / 64.03 69.28 / 70.11 50.57 / 54.71 50.68 / 53.30 51.41 / 53.76

Forward 67.46 / 68.20 61.96 / 64.24 68.95 / 70.09 50.59 / 53.91 51.04 / 53.36 51.05 / 53.63
Backward 67.31 / 68.66 62.40 / 63.45 69.04 / 70.18 50.54 / 54.01 50.30 / 53.03 51.15 / 53.50

D2L 66.91 / 68.57 59.10 / 60.25 57.97 / 59.94 5.00 / 31.67 23.71 / 39.92 40.97 / 45.42

Table 6. Test accuracy (%) of DenseNet on the CIFAR-10 and CIFAR-100 datasets with semantic noisy labels. We use the ensemble
version of RoG, and the best results are highlighted in bold if the gain is bigger than 1%.

Open-set data Softmax RoG

CIFAR-100 79.01 83.37
ImageNet 86.88 87.05

CIFAR-100 + ImageNet 81.58 84.35

Table 7. Test accuracy (%) of DenseNet on the CIFAR-10 dataset
with open-set noisy labels. We use the ensemble of RoG. The best
results are highlighted in bold if the gain is bigger than 1%.

4.4. Semantic and Open-Set Noisy Labels

In this section, our method is evaluated under more realistic
noisy labels. First, in order to generate more semantically
meaningful noisy labels, we train DenseNet-100, ResNet-34
and VGG-13 (Simonyan & Zisserman, 2015) using 5% and
20% of CIFAR-10 and CIFAR-100 training samples with
clean labels, respectively. Then, we produce the labels of
remaining training samples based on their predictions, and
train another DenseNet-100 with the pseudo-labeled sam-
ples. Figure 3(a) shows a confusion graph for pseudo-labels,
obtained from ResNet-34 trained on the 5% of CIFAR-10:
each node corresponds to a class, and an edge from the
node represents its most confusing class. Note that the weak
classification system produces semantically noisy labels;
e.g., “Cat” is confused with “Dog”, but not with “Car”. We
remark that DenseNet and VGG also produce similar confu-
sion graphs. Table 6 shows RoG consistently improves the
performance, while the gains due to other special training
methods are not very significant.

Our final benchmark is the open-set noisy scenario (Wang
et al., 2018). In this case, some training images are often
from the open world and not relevant to the targeted classi-
fication task at all, i.e., out-of-distribution. However, they
are still labeled to certain classes. For example, as shown
in Figure 3(b), noisy samples like “chair” from CIFAR-100
and “door” from (downsampled) ImageNet (Chrabaszcz
et al., 2017) can be labeled as “bird” to train, even though
their true labels are not contained within the set of train-
ing classes in the CIFAR-10 dataset. In our experiments,
open-set noisy datasets are built by replacing some training
samples in CIFAR-10 by out-of-distribution samples, while
keeping the labels and the number of images per class un-
changed. We train DenseNet-100 on CIFAR-10 with 60%

Ship 

Airplane 

Deer 

Bird 

Truck 

Car 

Frog 

Cat 

Dog 

Horse 

(a) Confusion graph on CIFAR-10

CIFAR-10 CIFAR-100 ImageNet

(b) Open-set noise example

Figure 3. (a) Confusion graph from ResNet-34 trained on the
CIFAR-10 dataset. (b) Examples of training samples with open-set
noise for “bird” in the CIFAR-10 dataset.

open-set noise. As shown in Table 7, our method achieves
comparable or significantly better test accuracy than the
softmax classifier.

5. Conclusion
We propose a new inference method for handling noisy la-
bels. Our main idea is inducing the generative classifier
on top of fixed features from the pre-trained model. Such
“deep generative classifiers” have been largely dismissed
for fully-supervised classification settings as they are often
substantially outperformed by discriminative deep classi-
fiers (e.g., softmax classifiers). In contrast to this common
belief, we show that it is possible to formulate a simple
generative classifier that is significantly more robust to la-
beling noise without much sacrifice of the discriminative
performance for clean labeling setting. We expect that our
work would bring a refreshing perspective for other related
tasks, e.g., memorization (Zhang et al., 2017), adversarial
attacks (Szegedy et al., 2014), and semi-supervised learning
(Oliver et al., 2018).
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