
Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

A. Quantum Algorithms for Classification: Details
A.1. Quantum state preparation

In this paper, we use the following result for quantum state preparation (see, e.g., Grover (2000)):

Proposition A.1. Assume that a ∈ Cn, and we are given a unitary oracle Oa such that O|i〉|0〉 = |i〉|ai〉 for all i ∈ [n].
Then Algorithm 3 takes O(

√
n) calls to Oa for preparing the quantum state 1

‖a‖2
∑
i∈[n] ai|i〉 with success probability

1−O(1/n).

Algorithm 3: Prepare a pure state given an oracle to its coefficients.

1 Apply Dürr-Høyer’s algorithm (Dürr & Høyer, 1996) to find amax := maxi∈[n] |ai| in O(
√
n) time;

2 Prepare the uniform superposition 1√
n

∑
i∈[n] |i〉;

3 Perform the following unitary transformations:

1√
n

∑
i∈[n]

|i〉 Oa7−−→ 1√
n

∑
i∈[n]

|i〉|ai〉 7→
1√
n

∑
i∈[n]

|i〉|ai〉
(ai
amax

|0〉+

√
1− |ai|

2

a2
max

|1〉
)

O−1
a7−−−→ 1√

n

∑
i∈[n]

|i〉|0〉
(ai
amax

|0〉+

√
1− |ai|

2

a2
max

|1〉
)

; (A.1)

4 Delete the second system in Eq. (A.1), and rewrite the state as

‖a‖2√
namax

·
(1

‖a‖2

∑
i∈[n]

ai|i〉
)
|1〉+ |a⊥〉|0〉, (A.2)

where |a⊥〉 := 1√
n

∑
i∈[n]

√
1− |ai|

2

a2max
|i〉 is a garbage state;

5 Apply amplitude amplification (Brassard et al., 2002) for the state in (A.2) conditioned on the second system being 1.
Return the output;

Note that the coefficient in (A.2) satisfies ‖a‖2√
namax

≥ 1√
n

; therefore, applying amplitude amplification for O(
√
n) times

indeed promises that we obtain 1 on the second system with success probability 1−O(1/n), i.e., the state 1
‖a‖2

∑
i∈[n] ai|i〉

is prepared.

Remark A.1. Another common method to prepare quantum states is via quantum random access memory (QRAM). We
point out that Algorithm 3 is incomparable to state preparation via QRAM. QRAM relies on the weak assumption that we
start from zero, and every added datum is processed in poly-logarithmic time. In total, this takes at least linear time in the
size of the data (see, for instance, Kerenidis & Prakash (2017)). For the task of Proposition A.1, QRAM takes at least Ω(n)
cost.

In this paper, we use the standard model where the input is formulated as an oracle, also widely assumed and used in
existing quantum algorithm literatures (e.g., Grover (1996); Harrow et al. (2009); Childs et al. (2017); Brandão et al.
(2017)). Under the standard model, Algorithm 3 prepares states with only O(

√
n) cost.

Nevertheless, it is an interesting question to ask whether there is a poly(log(nd))-time quantum algorithm for linear
classification given the existence of a pre-loaded QRAM of X . This would require the ability to take summations of the
vectors 1√

2T
Xit in Line 5 of Algorithm 1 in poly(log(nd))-time as well as the ability to update the weight state ut+1 in

Line 8 in poly(log(nd))-time, both using QRAM. These two tasks are plausible as suggested by classical poly-log time
sample-based algorithms for matrix arithmetics under multiplicative weight frameworks (Chia et al., 2019), which can
potentially be combined with the analysis of QRAM data structures in Kerenidis & Prakash (2017); we leave this possibility
as an open question.

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

A.2. Implementation of the quantum oracle for updating the weight vectors

The quantum oracleOt in Line 7 of Algorithm 1 is implemented by Algorithm 4. For convenience, we denote clip(v, 1/η) :=
min{1/η,max{−1/η, v}} for all v ∈ R.

Algorithm 4: Quantum oracle for updating the weight state.

Input: w1, . . . , wt ∈ Rd, j1, . . . , jt ∈ [d].
Output: An oracle Ot such that Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all i ∈ [n].
1 Define three classical oracles: Os,j(0) = js, Os,w(js) = ‖ws‖2

ws(js)
, and

Oclip(a, b, c) = c ·
(
1− η clip(ab, 1/η) + η2 clip(ab, 1/η)2

)
;

2 for s = 1 to t do
3 Perform the following maps:

|i〉|0〉|0〉|0〉|us(i)〉
Os,j7−−−→ |i〉|js〉|0〉|0〉|us(i)〉 (A.3)
OX7−−→ |i〉|js〉|Xi(js)〉|0〉|us(i)〉 (A.4)

Os,w7−−−→ |i〉|js〉|Xi(js)〉
∣∣∣ ‖ws‖2
ws(js)

〉
|us(i)〉 (A.5)

Oclip7−−→ |i〉|js〉|Xi(js)〉
∣∣∣ ‖ws‖2
ws(js)

〉
|us+1(i)〉 (A.6)

O−1
s,w7−−−→ |i〉|js〉|Xi(js)〉|0〉|us+1(i)〉 (A.7)

O−1
X7−−−→ |i〉|js〉|0〉|0〉|us+1(i)〉 (A.8)

O−1
s,j7−−−→ |i〉|0〉|0〉|0〉|us+1(i)〉. (A.9)

Because we have stored ws and js, we could construct classical oracles Os,j(0) = js, Os,w(js) = ‖ws‖2
ws(js)

with O(1)

complexity. In the algorithm, we first call Os,j to compute js and store it into the second register in (A.3). In (A.4), we call
the quantum oracle OX for the value Xi(js), which is stored into the third register. In (A.5), we call Os,w to compute ‖ws‖

2

ws(js)

and store it into the fourth register. In (A.6), because we have Xi(js) and ‖ws‖
2

ws(js)
at hand, we could use Õ(1) arithmetic

computations to compute ṽs(i) = Xi(js)‖ws‖2/wt(js) and

us+1(i) = us(i)
(
1− η clip(ṽs(i), 1/η) + η2 clip(ṽs(i), 1/η)2

)
. (A.10)

We then store us+1(i) into the fifth register. In (A.7), (A.8), and (A.9), we uncompute the steps in (A.5), (A.4), and (A.3),
respectively (we need these steps in Algorithm 4 to keep its unitarity).

In total, between (A.3)-(A.9) we use 2 queries to OX and Õ(1) additional arithmetic computations. Because s goes from 1
to t, in total we use 2t queries to OX and Õ(t) additional arithmetic computations.

A.3. Correctness of Algorithm 1

Our proof follows that of Theorem 2.7 in Clarkson et al. (2012). In particular, we use the following five lemmas proved in
Clarkson et al. (2012) for analyzing the online gradient gradient descent and `2 sampling outcomes:

Lemma A.1 (Lemma A.2 of Clarkson et al. (2012)). The updates of w in Line 3 and y in Line 5 satisfy

max
w∈Bn

∑
t∈[T]

Xitw ≤
∑
t∈[T]

Xitwt + 2
√

2T . (A.11)

Lemma A.2 (Lemma 2.3 of Clarkson et al. (2012)). For any t ∈ [T], denote pt to be the unit vector in Rn such that

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

(pt)i = |〈i|pt〉|2 for all i ∈ [n]. Then the update for pt+1 in Line 8 satisfies∑
t∈[T]

p>t vt ≤ min
i∈[n]

∑
t∈[T]

vt(i) + η
∑
t∈[T]

p>t v
2
t +

log n

η
, (A.12)

where v2
t is defined as (v2

t)i := (vt)
2
i for all i ∈ [n].

Lemma A.3 (Lemma 2.4 of Clarkson et al. (2012)). With probability at least 1−O(1/n),

max
i∈[n]

∑
t∈[T]

[
vt(i)−Xiwt

]
≤ 4ηT. (A.13)

Lemma A.4 (Lemma 2.5 of Clarkson et al. (2012)). With probability at least 1−O(1/n),∣∣∣ ∑
t∈[T]

Xitwt −
∑
t∈[T]

p>t vt

∣∣∣ ≤ 10ηT. (A.14)

Lemma A.5 (Lemma 2.6 of Clarkson et al. (2012)). With probability at least 3/4,∑
t∈[T]

p>t v
2
t ≤ 8T. (A.15)

Proof. We first prove the correctness of Algorithm 1. By Lemma A.1, we have∑
t∈[T]

Xitwt ≥ max
w∈Bn

∑
t∈[T]

Xitw − 2
√

2T ≥ Tσ − 2
√

2T . (A.16)

On the other hand, Lemma A.3 implies that for any i ∈ [n],∑
t∈[T]

Xiwt ≥
∑
t∈[T]

vt(i)− 4ηT. (A.17)

Together with Lemma A.2, we have∑
t∈[T]

p>t vt ≤ min
i∈[n]

∑
t∈[T]

Xiwt + η
∑
t∈[T]

p>t v
2
t +

log n

η
+ 4ηT. (A.18)

Plugging Lemma A.4, Lemma A.5, and (A.16) into (A.18), with probability at least 3
4 − 2 ·O(1

n) ≥ 2
3 ,

min
i∈[n]

∑
t∈[T]

Xiwt ≥ −
log n

η
− 8ηT − 4ηT + Tσ − 2

√
2T − 10ηT ≥ Tσ − 22ηT − log n

η
. (A.19)

Since T = 232ε−2 log n and η =
√

logn
T , we have

min
i∈[n]

Xiw̄ =
1

T
min
i∈[n]

T∑
t=1

Xiwt ≥ σ − 23

√
log n

T
≥ σ − ε (A.20)

with probability at least 2/3, which is exactly (3.4).

A.4. Linear classification in the PAC model

Theorem 3.1 could also be applied to the PAC model. For the case where there exists a hyperplane classifying all data points
correctly with margin σ, and assume that the margin is not small in the sense that 1

σ2 < d, PAC learning theory implies that
the number of examples needed for training a classifier of error δ is O(1/σ2δ). As a result, we have a quantum algorithm
that computes a σ/2-approximation to the best classifier with cost

Õ
(√1/σ2δ

σ4
+

d

σ2

)
= Õ

(1

σ5
√
δ

+
d

σ2

)
. (A.21)

This is better than the classical complexity O(1
σ4δ + d

σ2) in Clarkson et al. (2012) as long as δ ≤ σ2, which is plausible
under the assumption that the margin σ is large.

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

A.5. Quantum algorithm for norm estimation

Lemma A.6 (Rewrite of Lemma 3.1). Assume that F : [d] → [0, 1] with a quantum oracle OF |i〉|0〉 = |i〉|F (i)〉 for all
i ∈ [d]. Denote m = 1

d

∑d
i=1 F (i). Then for any δ > 0, there is a quantum algorithm that uses O(

√
d/δ) queries to OF

and returns an m̃ such that |m̃−m| ≤ δm with probability at least 2/3.

Our proof of Lemma A.6 is based on amplitude estimation:

Theorem A.1 (Theorem 15 of Brassard et al. (2002)). For any 0 < ε < 1 and Boolean function f : [d] → {0, 1} with
quantum oracle Of |i〉|0〉 = |i〉|f(i)〉 for all i ∈ [d], there is a quantum algorithm that outputs an estimate t̂ to t = |f−1(1)|
such that

|t̂− t| ≤ εt (A.22)

with probability at least 8/π2, using O(1
ε

√
d
t) evaluations of Of . If t = 0, the algorithm outputs t̂ = 0 with certainty and

Of is evaluated O(
√
d) times.

Proof. Assume that F (i) has l bits for precision for all i ∈ [d] (in our paper, we take l = O(1), say l = 64 for double float
precision), and for all k ∈ [l] denote Fk(i) as the kth bit of F (i); denote nk =

∑
i∈[d] Fk(i).

We apply Theorem A.1 to all the l bits of nk using O(
√
d/δ) queries (taking ε = δ/2), which gives an approximation n̂k of

nk such that with probability at least 8/π2 we have |nk − n̂k| ≤ δnk/2 if nk ≥ 1, and n̂k = 0 if nk = 0. Running this
procedure for Θ(log l) times and take the median of all returned n̂k, and do this for all k ∈ [l], Chernoff’s bound promises
that with probability 2/3 we have

|nk − n̂k| ≤ δnk ∀ k ∈ [l]. (A.23)

As a result, if we take m̃ = 1
d

∑
k∈[l]

n̂k
2k

, and observe that m = 1
d

∑
k∈[l]

nk
2k

, we have

|m̃−m| ≤ 1

d

∑
k∈[l]

∣∣∣ n̂k
2k
− nk

2k

∣∣∣ ≤ 1

d

∑
k∈[l]

δnk
2k

= δm (A.24)

with probability at least 2/3. The total quantum query complexity is O(l log l ·
√
d/δ) = O(

√
d/δ).

A.6. Proof of Theorem 3.2

In this subsection, we prove:

Theorem A.2 (Rewrite of Theorem 3.2). With success probability at least 2/3, Algorithm 5 returns a succinct classical
representation of a vector w̄ ∈ Rd such that

Xiw̄ ≥ max
w∈Bd

min
i′∈[n]

Xi′w − ε ∀ i ∈ [n], (A.25)

using Õ
(√n
ε4 +

√
d
ε8

)
quantum gates.

Proof. For clarification, we denote

ṽt,approx(i) =
Xi(jt)‖̃yt‖

2

yt(jt) max{1, ‖̃yt‖}
, ṽt,true(i) =

Xi(jt)‖yt‖2

yt(jt) max{1, ‖yt‖}
∀ i ∈ [n]. (A.26)

In other words, the ṽt in Line 7 of Algorithm 5 is ṽt,approx, an approximation of ṽt,true. We prove:

|ṽt,approx(i)− ṽt,true(i)| ≤ η ∀ i ∈ [n]. (A.27)

5The meaning of the definition here is the same as Footnote 4 in Algorithm 1.

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

Algorithm 5: Quantum linear classification algorithm with O(
√
d) cost.

Input: ε > 0, a quantum oracle OX for X ∈ Rn×d.
Output: w̄ that satisfies (3.4).

1 Let T = 272ε−2 log n, y1 = 0d, η =
√

logn
T , u1 = 1n, |p1〉 = 1√

n

∑
i∈[n] |i〉;

2 for t = 1 to T do
3 Measure the state |pt〉 in the computational basis and denote the output as it ∈ [n];
4 Define5 yt+1 := yt + 1√

2T
Xit ;

5 Apply Lemma 3.1 for 2dlog T e times to estimate ‖yt‖2 with precision δ = η2, and take the median of all the

2dlog T e outputs, denoted ‖̃yt‖
2
;

6 Choose jt ∈ [d] by jt = j with probability yt(j)2/‖yt‖2, which is achieved by applying Algorithm 3 to prepare the
quantum state |yt〉 and measure in the computational basis;

7 For all i ∈ [n], denote ṽt(i) = Xi(jt)‖̃yt‖
2
/
(
yt(jt) max{1, ‖̃yt‖}

)
, vt(i) = clip(ṽt(i), 1/η), and

ut+1(i) = ut(i)(1− ηvt(i) + η2vt(i)
2). Apply Algorithm 4 to prepare an oracle Ot such that

Ot|i〉|0〉 = |i〉|ut+1(i)〉 for all i ∈ [n], using 2t queries to OX and Õ(t) additional arithmetic computations;
8 Prepare the state |pt+1〉 = 1

‖ut+1‖2
∑
i∈[n] ut+1(i)|i〉 using Algorithm 3 and Ot;

9 Return w̄ = 1
T

∑T
t=1

yt

max{1,‖̃yt‖}
;

Without loss generality, we can assume that ṽt,true(i), ṽt,approx(i) ≤ 1/η; otherwise, they are both truncated to 1/η by the

clip function in Line 7 and no error occurs. For convenience, we denote m = ‖yt‖2 and m̃ = ‖̃yt‖
2
. Then

|ṽt,approx(i)− ṽt,true(i)| = ṽt,true(i) ·
∣∣∣ ṽt,approx(i)

ṽt,true(i)
− 1
∣∣∣ ≤ 1

η
·
∣∣∣ ṽt,approx(i)

ṽt,true(i)
− 1
∣∣∣. (A.28)

When ‖yt‖ ≥ 1 we have ṽt,approx(i)
ṽt,true(i)

= m̃
m ; when ‖yt‖ ≤ 1 we have ṽt,approx(i)

ṽt,true(i)
=
√

m̃
m . Because in Line 5 ‖̃yt‖

2
is the median

of 2dlog T e executions of Lemma 3.1, with failure probability at most 1− (2/3)2 log T = O(1/T 2) we have | m̃m − 1| ≤ δ;
given there are T iterations in total, the probability that Line 5 always succeeds is at least 1− T ·O(1/T 2) = 1− o(1), and
we have ∣∣∣m̃

m
− 1
∣∣∣, ∣∣∣√m̃

m
− 1
∣∣∣ ≤ δ. (A.29)

Plugging this into (A.28), we have

|ṽt,approx(i)− ṽt,true(i)| ≤
δ

η
= η, (A.30)

which proves (A.27).

Now we prove the correctness of Algorithm 5. By (A.27) and Lemma A.3, with probability at least 1−O(1/n) we have

max
i∈[n]

∑
t∈[T]

[
vt(i)−Xiwt

]
≤ 4ηT + ηT = 5ηT, (A.31)

where wt = yt

max{1,‖̃yt‖}
for all t ∈ [T]. By (A.27) and Lemma A.4, with probability at least 1−O(1/n) we have∣∣∣ ∑

t∈[T]

Xitwt −
∑
t∈[T]

p>t vt

∣∣∣ ≤ 10ηT + ηT = 11ηT ; (A.32)

by (A.27) and Lemma A.5, with probability at least 3/4 we have∑
t∈[T]

p>t v
2
t ≤ 8T + 2T = 10T. (A.33)

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

As a result, similar to the proof of Theorem 3.1, we have

min
i∈[n]

∑
t∈[T]

Xiwt ≥ −
log n

η
− 10ηT − 5ηT + Tσ − 2

√
2T − 11ηT ≥ Tσ − 26ηT − log n

η
. (A.34)

Since T = 272ε−2 log n and η =
√

logn
T , we have

min
i∈[n]

Xiw̄ =
1

T
min
i∈[n]

T∑
t=1

Xiwt ≥ σ − 27

√
log n

T
≥ σ − ε (A.35)

with probability at least 2/3, which is exactly (A.25).

It remains to analyze the time complexity. Same as the proof of Theorem 3.1, the complexity in n is Õ(
√
n
ε4). It remains to

show that the complexity in d is Õ(
√
n
ε8). The cost in d in Algorithm 1 and Algorithm 5 differs at Line 5 and Line 6. We first

look at Line 5; because

yt =
1√
2T

T∑
τ=1

Xiτ , (A.36)

one query to a coefficient of yt takes t = Õ(1/ε2) queries to OX . Next, since Xi ∈ Bn for all i ∈ [n], we know that
Xij ∈ [−1, 1] for all i ∈ [n], j ∈ [d]; to apply Lemma 3.1 (F should have image domain in [0, 1]) we need to renormalize
yt by a factor of t = Õ(1/ε2). In addition, notice that δ = η2 = Θ(ε2); as a result, the query complexity of executing
Lemma 3.1 is Õ(

√
d/ε2). Finally, there are in total T = Õ(1/ε2) iterations. Therefore, the total complexity in Line 5 is

Õ
(1

ε2

)
· Õ
(1

ε2

)
· Õ
(√d
ε2

)
· Õ
(1

ε2

)
= Õ

(√d
ε8

)
. (A.37)

Regarding the complexity in d in Line 6, the cost is to prepare the pure state |yt〉 whose coefficient is proportional to yt.
To achieve this, we need t = Õ(1/ε2) queries to OX (for summing up the rows Xi1 , . . . , Xit) such that we have an oracle
Oyt satisfying Oyt |j〉|0〉 = |j〉|yt(j)〉 for all j ∈ [d]. By Algorithm 3, the query complexity of preparing |yt〉 using Oyt is
O(
√
d). Because there are in total T = Õ(1/ε2) iterations, the total complexity in Line 6 is

Õ
(1

ε2

)
·O(
√
d) · Õ

(1

ε2

)
= Õ

(√d
ε4

)
. (A.38)

In all, the total complexity in d is Õ(
√
d/ε8) as dominated by (A.37). Finally, w̄ has a succinct classical representation:

using i1, . . . , iT obtained from Line 3 and ‖̃y1‖
2
, . . . , ‖̃yT ‖

2
obtained from Line 5, we could restore a coordinate of w̄ in

time T = Õ(1/ε2).

B. Proof of Quantum Lower Bounds
In this section, we prove the quantum lower bounds claimed in Section 5.

B.1. Linear classification

Recall that the input of the linear classification problem is a matrix X ∈ Rn×d such that Xi ∈ Bd for all i ∈ [n] (Xi being
the ith row of X), and the goal is to approximately solve

σ := max
w∈Bd

min
p∈∆n

p>Xw = max
w∈Bd

min
i∈[n]

Xiw. (B.1)

Given the quantum oracle OX such that OX |i〉|j〉|0〉 = |i〉|j〉|Xij〉 ∀ i ∈ [n], j ∈ [d], Theorem 3.2 solves this task with
high success probability with cost Õ

(√n
ε4 +

√
d
ε8

)
. We prove a quantum lower bound that matches this upper bound in n and

d for constant ε:

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

Theorem B.1. Assume 0 < ε < 0.04. Then to return an w̄ ∈ Bd satisfying

Xjw̄ ≥ max
w∈Bd

min
i∈[n]

Xiw − ε ∀ j ∈ [n] (B.2)

with probability at least 2/3, we need Ω(
√
n+
√
d) quantum queries to OX .

Proof. Assume we are given the promise that X is from one of the two cases below:

1. There exists an l ∈ {2, . . . , d} such that X11 = − 1√
2

, X1l = 1√
2

; X21 = X2l = 1√
2

; there exists a unique
k ∈ {3, . . . , n} such that Xk1 = 1, Xkl = 0; Xij = 1√

2
for all i ∈ {3, . . . , n}/{k}, j ∈ {1, l}, and Xij = 0 for all

i ∈ [n], j /∈ {1, l}.

2. There exists an l ∈ {2, . . . , d} such that X11 = − 1√
2

, X1l = 1√
2

; X21 = X2l = 1√
2

; Xij = 1√
2

for all i ∈ {3, . . . , n},
j ∈ {1, l}, and Xij = 0 for all i ∈ [n], j /∈ {1, l}.

Notice that the only difference between these two cases is a row where the first entry is 1 and the lth entry is 0; they have the
following pictures, respectively.

Case 1: X =

− 1√
2

0 · · · 0 1√
2

0 · · · 0
1√
2

0 · · · 0 1√
2

0 · · · 0
...

...
. . .

...
...

...
. . .

...
1√
2

0 · · · 0 1√
2

0 · · · 0

1 0 · · · 0 0 0 · · · 0
1√
2

0 · · · 0 1√
2

0 · · · 0
...

...
. . .

...
...

...
. . .

...
1√
2

0 · · · 0 1√
2

0 · · · 0

; (B.3)

Case 2: X =

− 1√
2

0 · · · 0 1√
2

0 · · · 0
1√
2

0 · · · 0 1√
2

0 · · · 0
...

...
. . .

...
...

...
. . .

...
1√
2

0 · · · 0 1√
2

0 · · · 0
...

...
. . .

...
...

...
. . .

...
1√
2

0 · · · 0 1√
2

0 · · · 0

. (B.4)

We denote the maximin value in (B.1) of these cases as σ1 and σ2, respectively. We have:

• σ2 = 1√
2

.

On the one hand, consider w̄ = ~el ∈ Bd (the vector in Rd with the lth coordinate being 1 and all other coordinates being 0).
Then Xiw̄ = 1√

2
for all i ∈ [n], and hence σ2 ≥ mini∈[n]Xiw̄ = 1√

2
. On the other hand, for any w = (w1, . . . , wd) ∈ Bd,

we have

min
i∈[n]

Xiw = min
{
− 1√

2
w1 +

1√
2
wl,

1√
2
w1 +

1√
2
wl

}
≤ 1√

2
wl ≤

1√
2
, (B.5)

where the first inequality comes from the fact that min{a, b} ≤ a+b
2 for all X, b ∈ R and the second inequality comes from

the fact that w ∈ Bd and |wl| ≤ 1. As a result, σ2 = maxw∈Bd mini∈[n]Xiw ≤ 1√
2

. In conclusion, we have σ2 = 1√
2

.

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

• σ1 = 1√
4+2
√

2
.

On the one hand, consider w̄ = 1√
4+2
√

2
~e1 +

√
2+1√

4+2
√

2
~el ∈ Bd. Then

X1w̄ = − 1√
2
· 1√

4 + 2
√

2
+

1√
2
·
√

2 + 1√
4 + 2

√
2

=
1√

4 + 2
√

2
; (B.6)

Xiw̄ =
1√
2
· 1√

4 + 2
√

2
+

1√
2
·
√

2 + 1√
4 + 2

√
2

=

√
2 + 1√

4 + 2
√

2
>

1√
4 + 2

√
2
∀ i ∈ [n]/{1, k}; (B.7)

Xkw̄ = 1 · 1√
4 + 2

√
2

+ 0 ·
√

2 + 1√
4 + 2

√
2

=
1√

4 + 2
√

2
. (B.8)

In all, σ1 ≥ mini∈[n]Xiw̄ = 1√
4+2
√

2
.

On the other hand, for any w = (w1, . . . , wd) ∈ Bd, we have

min
i∈[n]

Xiw = min
{
− 1√

2
w1 +

1√
2
wl,

1√
2
w1 +

1√
2
wl, w1

}
. (B.9)

If w1 ≤ 1√
4+2
√

2
, then (B.9) implies that mini∈[n]Xiw ≤ 1√

4+2
√

2
; if w1 ≥ 1√

4+2
√

2
, then

wl ≤
√

1− w2
1 =

√
1− 1

4 + 2
√

2
=

√
2 + 1√

4 + 2
√

2
, (B.10)

and hence by (B.9) we have

min
i∈[n]

Xiw ≤ −
1√
2
w1 +

1√
2
wl ≤ −

1√
2
· 1√

4 + 2
√

2
+

1√
2
·
√

2 + 1√
4 + 2

√
2

=
1√

4 + 2
√

2
. (B.11)

In all, we always have mini∈[n]Xiw ≤ 1√
4+2
√

2
. As a result, σ1 = maxw∈Bd mini∈[n]Xiw ≤ 1√

4+2
√

2
. In conclusion,

we have σ1 = 1√
4+2
√

2
.

Now, we prove that an w̄ ∈ Bd satisfying (B.2) would simultaneously reveal whether X is from Case 1 or Case
2 as well as the value of l ∈ {2, . . . , d}, by the following algorithm:

1. Check if one of w̄2, . . . , w̄d is larger than 0.94; if there exists an l′ ∈ {2, . . . , d} such that w̄l′ > 0.94, return ‘Case 2’
and l = l′;

2. Otherwise, return ‘Case 1’ and l = arg maxi∈{2,...,d} w̄i.

We first prove that the classification of X (between Case 1 and Case 2) is correct. On the one hand, assume that X comes
from Case 1. If we wrongly classified X as from Case 2, we would have w̄l′ > 0.94 and w̄1 <

√
1− 0.942 < 0.342; this

would imply

min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l, w̄1

}
≤ w̄1 <

1√
4 + 2

√
2
− 0.04 ≤ σ1 − ε (B.12)

by 0.342 < 1√
4+2
√

2
− 0.04, contradicts with (B.2). Therefore, for this case we must make correct classification that X

comes from Case 1.

On the other hand, assume that X comes from Case 2. If we wrongly classified X as from Case 1, we would have
w̄l ≤ maxi∈{2,...,d} w̄i ≤ 0.94; this would imply

min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l

}
≤ 1√

2
w̄l <

1√
2
− 0.04 ≤ σ2 − ε (B.13)

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

by 0.94√
2
< 1√

2
− 0.04, contradicts with (B.2). Therefore, for this case we must make correct classification that X comes

from Case 2. In all, our classification is always correct.

It remains to prove that the value of l is correct. If X is from Case 1, we have

σ1 − ε ≤ min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l, w̄1

}
; (B.14)

as a result, w̄1 ≥ σ1 − ε > 0.38− 0.04 = 0.34, and

− 1√
2
w̄1 +

1√
2
w̄l > 0.34 =⇒ w̄l > 0.34

√
2 + w̄1 > 0.34(

√
2 + 1) > 0.82. (B.15)

Because 2 · 0.822 > 1, w̄l must be the largest among w̄2, . . . , w̄d (otherwise l′ = arg maxi∈{2,...,d} w̄i and l 6= l′ would
imply ‖w̄‖2 =

∑
i∈[d] |w̄i|2 ≥ w̄2

l + w̄2
l′ ≥ 2w̄2

l > 1, contradiction). Therefore, Line 2 of our algorithm correctly returns
the value of l.

If X is from Case 2, we have

σ2 − ε ≤ min
i∈[n]

Xiw̄ = min
{
− 1√

2
w̄1 +

1√
2
w̄l,

1√
2
w̄1 +

1√
2
w̄l

}
≤ 1√

2
w̄l, (B.16)

and hence w̄l ≥
√

2(σ2 − ε) ≥
√

2(1√
2
− 0.04) > 0.94. Because 2 · 0.942 > 1, only one coordinate of w̄ could be at least

0.94 and we must have l = l′. Therefore, Line 1 of our algorithm correctly returns the value of l.

In all, we have proved that an ε-approximate solution w̄ ∈ Bd for (B.2) would simultaneously reveal whether X is from
Case 1 or Case 2 as well as the value of l ∈ {2, . . . , d}. On the one hand, notice that distinguishing these two cases requires
Ω(
√
n− 2) = Ω(

√
n) quantum queries to OX for searching the position of k because of the quantum lower bound for

search (Bennett et al., 1997); therefore, it gives an Ω(
√
n) quantum lower bound on queries to OX for returning an w̄

that satisfies (B.2). On the other hand, finding the value of l is also a search problem on the entries of X , which requires
Ω(
√
d− 1) = Ω(

√
d) quantum queries to OX also due to the quantum lower bound for search (Bennett et al., 1997). These

observations complete the proof of Theorem B.1.

B.2. Minimum enclosing ball (MEB)

Similarly, the input of the MEB problem is a matrix X ∈ Rn×d such that Xi ∈ Bd for all i ∈ [n], and we are given the
quantum oracle OX such that OX |i〉|j〉|0〉 = |i〉|j〉|Xij〉 ∀ i ∈ [n], j ∈ [d]. The goal of MEB is to approximately solve

σMEB = min
w∈Rd

max
i∈[n]
‖w −Xi‖2. (B.17)

Theorem 4.2 solves this task with high success probability with cost Õ
(√n
ε4 +

√
d
ε7

)
. In this subsection, we prove a quantum

lower bound that matches this upper bound in n and d for constant ε:
Theorem B.2. Assume 0 < ε < 0.01. Then to return an w̄ ∈ Rd satisfying

max
i∈[n]
‖w̄ −Xi‖2 ≤ min

w∈Rd
max
i∈[n]
‖w −Xi‖2 + ε (B.18)

with probability at least 2/3, we need Ω(
√
n+
√
d) quantum queries to OX .

Proof. We also assume that X is from one of the two cases in Theorem B.1; see also (B.3) and (B.4). We denote the
maximin value in (B.17) of these cases as σMEB,1 and σMEB,2, respectively. We have:

• σMEB,2 = 1
2 .

On the one hand, consider w̄ = 1√
2
~el. Then

‖w̄ −X1‖2 =
(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

(1√
2

)2

=
1

2
; (B.19)

‖w̄ −Xi‖2 =
(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

(1√
2

)2

=
1

2
∀ i ∈ {2, . . . , n}. (B.20)

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

Therefore, ‖w̄ −Xi‖2 = 1
2 for all i ∈ [n], and hence σMEB,2 ≤ maxi∈[n] ‖w̄ −Xi‖2 = 1

2 .

On the other hand, for any w = (w1, . . . , wd) ∈ Rd, we have

max
i∈[n]
‖w −Xi‖2

= max
{(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i ,
(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i

}
(B.21)

≥ 1

2

[(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2]
+

1

2

[(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2]
+
∑
i6=1,l

w2
i (B.22)

= w2
1 +

(
wl −

1√
2

)2

+
∑
i6=1,l

w2
i +

1

2
(B.23)

≥ 1

2
, (B.24)

where (B.22) comes from the fact that max{a, b} ≥ 1
2 (a+ b) and

∑
i 6=1,l w

2
i ≥ 0. Therefore, σMEB,2 ≥ 1

2 . In all, we must
have σMEB,2 = 1

2 .

• σMEB,1 = 2+
√

2
4 .

On the one hand, consider w̄ =
(

1
2 −

√
2

4

)
~e1 +

√
2

4 ~el. Then

‖w̄ −X1‖2 =
(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

(1

2
+

√
2

4

)2

+
(√2

4

)2

=
2 +
√

2

4
; (B.25)

‖w̄ −Xk‖2 = (w1 − 1)2 + w2
l +

∑
i 6=1,l

w2
i =

(1

2
+

√
2

4

)2

+
(√2

4

)2

=
2 +
√

2

4
; (B.26)

‖w̄ −Xi‖2 =
(
w1 −

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i =

6− 3
√

2

4
<

2 +
√

2

4
∀ i ∈ [n]/{1, k}. (B.27)

In all, σMEB,1 ≤ maxi∈[n] ‖w̄ −Xi‖2 = 2+
√

2
4 .

On the other hand, for any w = (w1, . . . , wd) ∈ Rd, we have

max
i∈[n]
‖w −Xi‖2 ≥max

{(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2

+
∑
i 6=1,l

w2
i , (w1 − 1)2 + w2

l +
∑
i6=1,l

w2
i

}
(B.28)

≥ 1

2

[(
w1 +

1√
2

)2

+
(
wl −

1√
2

)2]
+

1

2

[
(w1 − 1)2 + w2

l

]
+
∑
i6=1,l

w2
i (B.29)

=
[
w1 −

(1

2
−
√

2

4

)]2
+
(
wl −

√
2

4

)2

+
∑
i 6=1,l

w2
i +

2 +
√

2

4
(B.30)

≥ 2 +
√

2

4
. (B.31)

Therefore, σMEB,2 ≥ 2+
√

2
4 . In all, we must have σMEB,2 = 2+

√
2

4 .

Now, we prove that an w̄ ∈ Rd satisfying (B.18) would simultaneously reveal whether X is from Case 1 or
Case 2 as well as the value of l ∈ {2, . . . , d}, by the following algorithm:

1. Check if one of w̄2, . . . , w̄d is larger than 3
√

2
8 ; if there exists an l′ ∈ {2, . . . , d} such that w̄l′ > 3

√
2

8 , return ‘Case 1’
and l = l′;

Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

2. Otherwise, return ‘Case 2’ and l = arg maxi∈{2,...,d} w̄i.

We first prove that the classification of X (between Case 1 and Case 2) is correct. On the one hand, assume that X comes
from Case 1. If we wrongly classified X as from Case 2, we would have w̄l ≤ maxi∈{2,...,d} w̄i ≤ 3

√
2

8 . By (B.23), this
would imply

max
i∈[n]
‖w̄ −Xi‖2 ≥

(
w̄l −

1√
2

)2

+
1

2
≥ 1

32
+

1

2
> σMEB,1 + ε, (B.32)

contradicts with (B.18). Therefore, for this case we must make correct classification that X comes from Case 2.

On the other hand, assume thatX comes from Case 2. If we wrongly classifiedX as from Case 1, we would have w̄l′ > 3
√

2
8 .

If l = l′, then (B.30) implies that

max
i∈[n]
‖w̄ −Xi‖2 ≥

(
w̄l −

√
2

4

)2

+
2 +
√

2

4
≥ 1

32
+

2 +
√

2

4
> σMEB,2 + ε, (B.33)

contradicts with (B.18). If l 6= l′, then (B.30) implies that

max
i∈[n]
‖w̄ −Xi‖2 ≥ w̄2

l′ +
2 +
√

2

4
≥ 9

32
+

2 +
√

2

4
> σMEB,2 + ε, (B.34)

also contradicts with (B.18). Therefore, for this case we must make correct classification that X comes from Case 1.

In all, our classification is always correct. It remains to prove that the value of l is correct. If X is from Case 1, by (B.23) we
have

1

2
+ 0.01 ≥ max

i∈[n]
‖w̄ −Xi‖2 ≥ w̄2

1 +
(
w̄l −

1√
2

)2

+
∑
i 6=1,l

w̄2
i +

1

2
. (B.35)

As a result, w̄i ≤ 0.1 < 3
√

2
8 for all i ∈ [n]/{l} and w̄l ≥ 1√

2
− 0.1 > 3

√
2

8 . Therefore, we must have l = l′, i.e., Line 1 of
our algorithm correctly returns the value of l.

If X is from Case 2, by (B.30) we have

2 +
√

2

4
+ 0.01 ≥ max

i∈[n]
‖w̄ −Xi‖2 ≥

[
w̄1 −

(1

2
−
√

2

4

)]2
+
(
w̄l −

√
2

4

)2

+
∑
i6=1,l

w̄2
i +

2 +
√

2

4
. (B.36)

As a result, w̄i ≤ 0.1 < 0.25 for all i ∈ [n]/{1, l}, w̄1 ≤ 1
2 −

√
2

4 + 0.1 < 0.25, and w̄l ≥
√

2
4 − 0.1 > 0.25. Therefore, we

must have w̄l = maxi∈{2,...,d} w̄i, i.e., Line 1 of our algorithm correctly returns the value of l.

In all, we have proved that an ε-approximate solution w̄ ∈ Rd for (B.18) would simultaneously reveal whether X is from
Case 1 or Case 2 as well as the value of l ∈ {2, . . . , d}. On the one hand, notice that distinguishing these two cases requires
Ω(
√
n− 2) = Ω(

√
n) quantum queries to OX for searching the position of k because of the quantum lower bound for

search (Bennett et al., 1997); therefore, it gives an Ω(
√
n) quantum lower bound on queries to OX for returning an w̄ that

satisfies (B.18). On the other hand, finding the value of l is also a search problem on the entries of X , which requires
Ω(
√
d− 1) = Ω(

√
d) quantum queries to OX also due to the quantum lower bound for search (Bennett et al., 1997). These

observations complete the proof of Theorem B.2.

