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Abstract

We investigate quantum algorithms for classifica-
tion, a fundamental problem in machine learning,
with provable guarantees. Given n d-dimensional
data points, the state-of-the-art (and optimal)
classical algorithm for training classifiers with
constant margin (Clarkson et al., 2012) runs in
Õ(n + d)1. We design sublinear quantum algo-
rithms for the same task running in Õ(

p
n+
p
d),

a quadratic improvement in both n and d. More-
over, our algorithms use the standard quantization
of the classical input and generate the same clas-
sical output, suggesting minimal overheads when
used as subroutines for end-to-end applications.
We also demonstrate a tight lower bound (up to
poly-log factors) and discuss the possibility of
implementation on near-term quantum machines.

1. Introduction

Motivations. Classification is a fundamental problem of
supervised learning, which takes a training set of data points
of known classes as inputs and aims to training a model
for predicting the classes of future data points. It is also
ubiquitous due to its broad connections and applications to
computer vision, natural language processing, statistics, etc.

A fundamental case of classification is linear classification,
where we are given n data points X1, . . . , Xn in Rd and a
label vector y 2 {1,�1}n. The goal is to find a separating
hyperplane, i.e., a unit vector w in Rd, such that

yi ·X
>

i
w � 0 8 i 2 [n]. (1.1)

By taking Xi  (�1)yiXi, it reduces to a maximin problem
maxw mini X>

i
w � 0. The approximation version of linear
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Õ(·), ⌦̃(·), and ⇥̃(·) notations hide poly-logarithmic factors.

classification is to find a unit vector w̄ 2 Rd so that

X
>

i
w̄ � max

w2Rd

min
i02[n]

X
>

i0 w � ✏ 8 i 2 [n], (1.2)

i.e., w̄ approximately solves the maximin problem. More
generally, we can regard a (nonlinear) classifier as a kernel-
based classifier by replacing Xi by (Xi) ( being a kernel
function). We will focus on algorithms finding approximate
classifiers (in the sense of (1.2)) with provable guarantees.

The Perceptron Algorithm for linear classification is one of
the oldest algorithms studied in machine learning (Novikoff,
1963; Minsky & Papert, 1988), which runs in time O(nd/✏2)
for finding an w̄ 2 Rd satisfying (1.2). The state-of-the-
art classical result along this line (Clarkson et al., 2012)
solves linear classification in time Õ((n+d)/✏2). A careful
reader might notice that the input to linear classification
is n d-dimensional vectors with total size O(nd). Hence,
the result of Clarkson et al. (2012) is sub-linear in its input
size. To make it possible, Clarkson et al. (2012) assumes
the following entry-wise input model:

Input model: given any i 2 [n] and j 2 [d], the j-th entry
of Xi can be recovered in O(1) time.

The output of Clarkson et al. (2012) is an efficient classical
representation of w̄ in the sense that every entry of w̄ can
be recovered with Õ(1) cost. It is no surprise that w̄ per se
gives such a representation. However, there could be more
succinct and efficient representations of w̄, which could be
reasonable alternatives of w̄ for sub-linear algorithms that
run in time less the dimension of w̄ (as we will see in the
quantum case). The complexity of Clarkson et al. (2012) is
also optimal (up to poly-logarithmic factors) in the above
input/output model as shown by the same paper.

Recent developments in quantum computation, especially
in the emerging topic of “quantum machine learning” (see
the surveys Biamonte et al. (2017); Arunachalam & de Wolf
(2017); Schuld et al. (2015)), suggest that quantum algo-
rithms might offer significant speed-ups for optimization
and machine learning problems. In particular, a quantum
counterpart of the Perceptron algorithm has been proposed
in Kapoor et al. (2016) with improved time complexity from
O(nd/✏2) to Õ(

p
nd/✏

2) (details in related works). Mo-
tivated both by the significance of classification and the
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promise of quantum algorithms, we investigate the optimal
quantum algorithm for classification. Specifically, we aim
to design a quantum counterpart of Clarkson et al. (2012).

It is natural to require that quantum algorithms make use
of the classical input/output model as much as possible to
make the comparison fair. In particular, it is favorable to
avoid the use of too powerful input data structure which
might render any finding of quantum speedup inconclusive,
especially in light of a recent development of quantum-
inspired classical machine learning algorithms (e.g., Tang
(2018a)). Our choice of input/output models for quantum
algorithms is hence almost the same as the classical one,
except we allow coherent queries to the entries of Xi:

Quantum input model: given any i 2 [n] and j 2 [d], the
j-th entry of Xi can be recovered in O(1) time coherently.

Coherent queries allow the quantum algorithm to query
many locations in super-position, which is a standard as-
sumption that accounts for many quantum speed-ups (e.g.,
Grover’s algorithm (Grover, 1996)). A more precise defini-
tion is given in Section 2.

On the other side, our output is exactly the same as classical
algorithms, which guarantees no overhead when using our
quantum algorithms as subroutines for any applications.

Contributions. Inspired by Clarkson et al. (2012), our
main contribution is a tight characterization (up to poly-log
factors) of quantum algorithms for various classification
problems in the aforementioned input/output model.
Theorem 1.1 (Main theorem). Given ✏ = ⇥(1), we have
quantum algorithms that return an efficient representation
of w̄ 2 Bd for the following problems2, respectively, with
complexity Õ(

p
n+
p
d) and high success probability:

• Linear classification (Theorem 3.2):

min
i2[n]

X
>

i
w̄ � max

w2Bd

min
i2[n]

X
>

i
w � ✏. (1.3)

• Kernel-based classification:

min
i2[n]
h (Xi), w̄i � max

w2Bd

min
i2[n]
h (Xi), wi � ✏, (1.4)

where k(a, b) := h (a), (b)i can be the polynomial
kernel kq(a, b) = (a>b)q (Corollary 4.1) or the Gaussian
kernel kGauss(a, b) = exp

�
�ka� bk

2
�

(Corollary 4.2).

• Minimum enclosing ball (Theorem 4.2):

max
i2[n]
kw̄ �Xik

2
 min

w2Rd
max
i2[n]
kw �Xik

2 + ✏. (1.5)

• `2-margin SVM (Corollary 4.3):

min
i2[n]

(X>

i
w̄)2 � max

w2Rd
min
i2[n]

2X>

i
w � kwk

2
� ✏. (1.6)

2Here Bd is the unit ball in Rd.

On the other hand, we show that it requires ⌦(
p
n +
p
d)

queries to the quantum input model to prepare such w̄ for
these classification problems (Theorem 5.1, Theorem 5.2).

Our matching upper and lower bounds
p
n +
p
d give a

quadratic improvement in both n and d comparing to the
classical state-of-the-art results in Clarkson et al. (2012).

Technically, our result is also inspired by the recent develop-
ment of quantum semidefinite program (SDP) solvers (e.g.,
Brandão et al. (2017)) which provide quantum speed-ups for
approximating zero-sum games for the purpose of solving
SDPs. Note that such a connection was leveraged classically
in another direction in a follow-up work of Clarkson et al.
(2012) for solving SDPs (Garber & Hazan, 2011). How-
ever, our algorithm is even simpler because we only use
simple quantum state preparation instead of complicated
quantum operations in quantum SDP solvers; this is because
quantum state preparation is a direct counterpart of the `2

sampling used in Clarkson et al. (2012) (see Section 3.1
for details). In a nutshell, our result is a demonstration of
quantum speed-ups for sampling-based classical algorithms.

Moreover, our algorithms are hybrid classical-quantum al-
gorithms where the quantum part is isolated pieces of state
preparation connected by classical processing. In addition,
special instances of these state preparation might be phys-
ically realizable as suggested by some work-in-progress
in Google (Brandão, 2018). All of the above suggest the
possibility of implementing these algorithms on near-term
quantum machines (Preskill, 2018).

In general, we deem our result as a proposal of one end-
to-end quantum application in machine learning, with both
provable guarantees and the perspective of implementation
(at least in prototype) on near-term quantum machines.

Related works. We make the following comparisons with
existing literatures in quantum machine learning.

• The most relevant result is the quantum perceptron mod-
els in Kapoor et al. (2016). The classical perceptron
method (Novikoff, 1963; Minsky & Papert, 1988) is a
pivotal linear classification algorithm. In each iteration,
it checks whether (1.1) holds; if not, then it searches
for a violated constraint i0 (i.e., yi0X>

i0
w̄ < 0) and up-

date w̄  w̄ +Xi0 (up to normalization). This classical
perceptron method has complexity Õ(nd/✏2); the quan-
tum counterpart in Kapoor et al. (2016) improved the
complexity to Õ(

p
nd/✏

2) by applying Grover search
(Grover, 1996) to find a violated constraint. In contrast,
we quantize the sublinear algorithm for linear classifica-
tion in Clarkson et al. (2012) with techniques inspired by
quantum SDP solvers (Brandão et al., 2017). As a result,
we establish a better quantum complexity Õ(

p
n+
p
d).

In addition, Kapoor et al. (2016) relies on an unusual
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input model where a data point in Rd is represented by
concatenating the the binary representations of the d float-
ing point numbers; if we were only given standard inputs
with entry-wise queries to the coordinates of data points,
we need a cost of ⌦(d) to transform the data into their
input form, giving the total complexity Õ(

p
nd).

The same group of authors also gave a quantum algo-
rithm for nearest-neighbor classification with complexity
Õ(
p
n) (Wiebe et al., 2015). This complexity also de-

pends on the sparsity of the input data; in the worst case
where every data point has ⇥(d) nonzero entries, the
complexity becomes Õ(

p
nd

2).

• There have been rich developments on quantum algo-
rithms for linear algebraic problems. One prominent ex-
ample is the quantum algorithm for solving linear systems
(Harrow et al., 2009; Childs et al., 2017); in particular,
they run in time poly(log d) for any sparse d-dimensional
linear systems. These linear system solvers are subse-
quently applied to machine learning applications such as
cluster assignment (Lloyd et al., 2013), support vector
machine (SVM) (Rebentrost et al., 2014), etc.
However, these quantum algorithms have two drawbacks.
First, they require the input matrix to be sparse with effi-
cient access to nonzero elements, i.e., every row/column
of the matrix has at most poly(log d) nonzero elements
and their indexes can be queried in poly(log d) time. Sec-
ond, the outputs of these algorithms are quantum states
instead of classical vectors, and it takes ⌦(d) copies of
the quantum state to reveal one entry of the output in the
worst case. More caveats are listed in Aaronson (2015).
In contrast, our quantum algorithms do not have the spar-
sity constraint and work for arbitrary input data, and the
outputs of our quantum algorithms are succinct but ef-
ficient classical representations of vectors in Rd, which
can be directly used for classical applications.

• There are two lines of quantum machine learning algo-
rithms with different input requirements. One of them is
based on quantum principal component analysis (Lloyd
et al., 2014) and requires purely quantum inputs.
Another line is the recent development of quantum-
inspired classical poly-logarithmic time algorithms for
various machine learning tasks such as recommendation
systems (Tang, 2018a), principal component analysis
(Tang, 2018b), solving linear systems (Chia et al., 2018;
Gilyén et al., 2018), SDPs (Chia et al., 2019), and so
on. These algorithms follow a Monte-Carlo approach
for low-rank matrix approximation (Frieze et al., 2004)
and assume the ability to take samples according to the
spectral norms of all rows. In other words, these results
enforce additional requirements on their input: the input
matrix should not only be low-rank but also be prepro-
cessed as the sampling data structure.

• There are also a few heuristic quantum machine learning
approaches for classification (Havlicek et al., 2018; Farhi
& Neven, 2018; Kerenidis & Luongo, 2018) without the-
oretical guarantees. We, however, look forward to further
experiments based on their proposals.

2. Preliminaries

Basic notations in quantum computing. Quantum me-
chanics can be formulated in terms of linear algebra.
Given any complex Euclidean space Cd, we define its
computational basis by {~e0, . . . ,~ed�1}, where ~ei =
(0, . . . , 1, . . . , 0)> with the (i+1)th entry being 1 and other
entries being 0. These basic vectors are usually written
by Dirac notation: we write ~ei as |ii (called a “ket”), and
write ~e>

i
as hi| (called a “bra”).

Quantum states with dimension d are represented by unit
vectors in Cd: i.e., a vector |vi = (v0, . . . , vd�1)> is a quan-
tum state if

P
d�1
i=0 |vi|

2 = 1. For each i, vi is called the am-
plitude in |ii. If there are at least two non-zero amplitudes,
quantum state |vi is in superposition of the computational
basis, a fundamental feature in quantum mechanics.

Tensor product of quantum states is their Kronecker product:
if |ui 2 Cd1 and |vi 2 Cd2 , then |ui ⌦ |vi 2 Cd1 ⌦ Cd2 is

|ui ⌦ |vi = (u0v0, u0v1, . . . , ud1�1vd2�1)
>
. (2.1)

The basic element in classical computers is one bit; similarly,
the basic element in quantum computers is one qubit, which
is a quantum state in C2. Mathematically, a qubit state can
be written as a|0i+ b|1i for some a, b 2 C such that |a|2 +
|b|

2 = 1. An n-qubit state can be written as |v1i⌦· · ·⌦|vni,
where each |vii (i 2 [n]) is a qubit state; n-qubit states are
in a Hilbert space of dimension 2n.

Operations in quantum computation are unitary transforma-
tions and can be stated in the circuit model3 where a k-qubit
gate is a unitary matrix in C2k . It is known that two-qubit
gates are universal, i.e., every n-qubit gate can be written
as composition of a sequence of two-qubit gates. Thus, one
usually refers to the number of two-qubit gates as the gate
complexity of quantum algorithms.

Quantum oracle. Quantum access to the input data (re-
ferred as quantum oracles) needs to be reversible and allows
access to different parts of the input data in superposition
(the essence of quantum speed-ups). Specifically, to access
elements in an n⇥ d matrix X , we exploit an oracle OX (a
unitary on Cn

⌦ Cd
⌦ Cdacc ) such that

OX(|ii ⌦ |ji ⌦ |zi) = |ii ⌦ |ji ⌦ |z �Xiji (2.2)

3Uniform circuits have equivalent computational power as Tur-
ing machines; however, they are more convenient to use in quantum
computation.
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for any i 2 [n], j 2 [d] and z 2 Cdacc such that Xij can
be represented in Cdacc . Intuitively, OX reads the entry Xij

and stores it in the third register. However, to make OX

reversible (and unitary), OX applies the XOR operation (�)
on the third register. Note that OX is a natural unitary gener-
alization of classical random access to X , or in cases when
any entry of X can be efficiently read. However, it is po-
tentially stronger when queries become linear combinations
of basis vectors, e.g.,

P
k
↵k|iki ⌦ |jki. This is technically

how to make superposition of different queries in quantum.

We summarize the quantum notations as follows.

Classical Quantum

Ket and bra ~ei and ~e
>

i
|ii and hi|

Basis {~e0, . . . ,~ed�1} {|0i, . . . , |d� 1i}

State ~v = (v0, . . . , vd�1)> |vi =
P

d�1
i=0 vi|ii

Tensor ~u⌦ ~v |ui ⌦ |vi or |ui|vi
Oracle w = (Xij)ni,j=1 OX |ii|ji|zi = |ii|ji|z �Xiji

Table 1. Summary of quantum notations used in this paper.

Quantum complexity measure. We assume that a single
query to the oracle OX has a unit cost. Quantum query
complexity is defined as the total counts of oracle queries,
and quantum gate complexity is defined as the total counts
of oracle queries and two-qubit gates.

Notations. In this paper, we denote 1n to be the n-
dimensional all-one vector and Bd :=

�
a 2 Rd

|P
i2[d] |Xi|

2
 1

 
(the unit ball). Throughout the paper,

we denote X 2 Rn⇥d to be the matrix whose i
th row is

X
>

i
for all i 2 [n]. Without loss of generality, we assume

X1, . . . , Xn 2 Bd, i.e., all the n data points are normalized
to have `2-norm at most 1.

3. Linear Classification

3.1. Techniques

At a high level, our quantum algorithm leverages ideas from
both classical and quantum algorithm design. We use a
primal-dual approach under the multiplicative weight frame-
work (Freund & Schapire, 1999), in particular its improved
version in Clarkson et al. (2012) by sampling the update
of weight vectors. An important observation of ours is that
such classical algorithms can be accelerated significantly in
quantum computation, which relies on a seminal technique
in quantum algorithm design: amplitude amplification and
estimation (Grover, 1996; Brassard et al., 2002).

Multiplicative weight under a primal-dual approach.

Note that linear classification is essentially a minimax prob-

lem (zero-sum game); by strong duality, we have

� = max
w2Rd

min
p2�n

p
>
Xw = min

p2�n

max
w2Rd

p
>
Xw. (3.1)

To find its equilibrium point, we adopt an online primal-
dual approach with T rounds; at round t 2 [T ], the pri-
mal computes pt 2 �n and the dual computes wt 2 Rd,
both based on p⌧ and w⌧ for all ⌧ 2 [t � 1]. After T

rounds, the average solution w̄ = 1
T

P
T

t=1 wt approxi-
mately solves the zero-sum game with high probability,
i.e., minp2�n p

>
Xw̄ � � � ✏.

For the primal problem, we pick pt by the multiplica-
tive weight (MW) method. Given a sequence of vectors
r1, . . . , rT 2 Rn, MW sets w1 := 1n and for all t 2 [T ],
pt := wt/kwtk1 and wt+1(i) := wt(i)fw(�⌘rt(i)) for all
i 2 [n], where fw is a weight function and ⌘ is the pa-
rameter representing the step size. MW promises an upper
bound on

P
T

t=1 p
>

t
rt, whose precise form depends on the

choice of the weight function fw. The most common update
is the exponential weight update: fw(x) = e

�x (Freund
& Schapire, 1999), but in this paper we use a quadratic
weight update suggested by Clarkson et al. (2012), where
wt+1(i) := wt(i)(1 � ⌘rt(i) + ⌘

2
rt(i)2). In our primal

problem, we set rt = Xwt for all t 2 [T ] to find pt.

For the dual problem, we pick wt by the online gradient
descent method (Zinkevich, 2003). Given a set of vectors
q1, . . . , qT 2 Rd such that kqik2  1. Let w0 := 0d, and
yt+1 := wt +

1
p
T
qt, wt+1 := yt+1

max{1,kyt+1k}
. Then

max
w2Bd

TX

t=1

q
>

t
w �

TX

t=1

q
>

t
wt  2

p

T . (3.2)

This can be regarded as a regret bound, i.e.,
P

T

t=1 q
>

t
wt

has at most a regret of 2
p
T compared to the best possible

choice of w. In our dual problem, we set qt as a sample of
rows of X following the distribution pt.

This primal-dual approach gives a correct algorithm with
only T = Õ(1/✏2) iterations. However, the primal step
runs in ⇥(nd) time to compute Xwt. To obtain an algo-
rithm that is sublinear in the size of X , a key observation
by Clarkson et al. (2012) is to replace the precise compu-
tation of Xwt by an unbiased random variable. This is
achieved via `2 sampling of w: we pick jt 2 [d] by jt = j

with probability wt(j)2/kwtk
2, and for all i 2 [n] we take

ṽt(i) = Xi(jt)kwtk
2
/wt(jt). The expectation of the ran-

dom variable ṽt(i) satisfies

E[ṽt(i)] =
dX

j=1

wt(j)2

kwtk
2

Xi(j)kwtk
2

wt(j)
= Xiwt. (3.3)

In a nutshell, the update of weight vectors in each iteration
need not to be precisely computed because an `2 sample
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from w suffices to promise the provable guarantee of the
framework. This trick improves the running time of MW
to O(n) and online gradient descent to O(d); since there
are Õ(1/✏2) iterations, the total complexity is Õ(n+d

✏2
) as

claimed in Clarkson et al. (2012).

Amplitude amplification and estimation. Consider a
search problem where we are given a function f! : [n] !
{�1, 1} such that f!(i) = 1 iff i 6= !. To search for !,
classically we need ⌦(n) queries to f! as checking all n
positions is the only method.

Quantumly, given a unitary U! such that U!|ii = |ii

for all i 6= ! and U!|!i = �|!i, Grover’s algorithm
(Grover, 1996) finds ! with complexity Õ(

p
n). Denote

|si = 1
p
n

P
i2[n] |ii (the uniform superposition), |s0i =

1
p
n�1

P
i2[n]/{!}

|ii, and Us = 2|sihs|� I , the unitary U!

reflects a state with respect to |s
0
i and the unitary Us reflects

a state with respect to |si. If we start with |si and denote
✓ = 2arcsin(1/

p
n) (the angle between U!|si and |si),

then the angle between U!|si and UsU!|si is amplified to
2✓, and in general the angle between U!|si and (UsU!)k|si
is 2k✓. To find !, it suffices to take k = ⇥(

p
n) in this

quantum algorithm. See Figure 1 for an illustration.

Figure 1. Geometric interpretation of Grover’s algorithm. This
figure is copied from Wikipedia.

This trick of alternatively applying two unitaries is called
amplitude amplification; in general, this provides a quadratic
speedup for search. For the quantitative version of estimat-
ing ✓ (not only finding !), quadratic quantum speedup also
holds via an improved version of amplitude amplification
called amplitude estimation (Brassard et al., 2002).

Our main technical contribution is the implementations
of amplitude amplification and estimation in the primal-dual
approach for solving minimax problems. On the one hand,
we achieve quadratic quantum speedup for multiplicative
weight update, i.e., we improve the complexity from Õ(n)
to Õ(

p
n). This is because the `2 sampling of w is identical

to measuring the quantum state |wi in the computational
basis, which is prepared by amplitude amplification.

On the other hand, we also achieve quadratic quantum
speedup for online gradient descent (improving Õ(d) to

Õ(
p
d)). This is because the main cost of online gradient

descent comes from estimating the norms kytk, which can
be regarded as an amplitude estimation problem.

Comparison between classical and quantum results.

Although our quantum algorithms enjoy quadratic speedups
in n and d, their executions incur a larger dependence in ✏:
we have worst case Õ

�p
n

✏4
+

p

d

✏8

�
compared to the classical

Õ
�
n

✏2
+ d

✏2

�
in Clarkson et al. (2012). The main reason of

having a larger ✏-dependence in quantum is because we can-
not prepare the weight states in MW via those in previous
iterations (i.e., the quantum state |wti cannot be prepared
by |wt�1i), and we have to start over every time; this is an
intrinsic difficulty due to quantum state preparation.

Therefore, there is a trade-off between Clarkson et al. (2012)
and our results for arbitrary ✏: we provide faster training of
the classifiers if we allow a constant error, while the classical
algorithms in Clarkson et al. (2012) might work better if we
require high-accuracy classifiers.

3.2. Quantum speedup for multiplicative weights

First, we give a quantum algorithm for linear classification
with complexity Õ(

p
n):

Theorem 3.1. With success probability at least 2/3, Al-
gorithm 1 returns a succinct classical representation of a
vector w̄ 2 Rd such that

Xiw̄ � max
w2Bd

min
i02[n]

Xi0w � ✏ 8 i 2 [n], (3.4)

using Õ
�p

n

✏4
+ d

✏2

�
quantum gates.

Note that Algorithm 1 is inspired by the classical algorithm
(Clarkson et al., 2012) by using online gradient descent in
Line 5 and `2 sampling in Line 6 and Line 7. We defer the
proof of correctness to the supplementary material; here, we
focus on its gate complexity to see our quantum speedup.

Gate complexity of Algorithm 1. To run Line 3 and Line 5,
we need d time and space to compute and store wt and yt+1;
for all t 2 [T ], this takes total complexity O(dT ) = Õ( d

✏2
).

It takes another O(dT ) = Õ( d

✏2
) cost to compute jt for all

t 2 [T ] in Line 6.

The quantum part of Algorithm 1 mainly happens at Line 7
and Line 8, where we prepare the quantum state |pt+1i

instead of computing the coefficients ut+1(i) one by one
for all i 2 [n]. To be more specific, we construct an oracle
Ot such that Ot|ii|0i = |ii|ut+1(i)i for all i 2 [n]. This is

4By defining wt here, we do not write down the whole vector
but we construct any query to its entries in O(1) time. For example,
the i

th coordinate of wt is wt(i) = yt(i)
max{1,kytk} , constructed by

one query to yt(i). The yt+1 in Line 5 is defined in the same sense.
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Algorithm 1: Quantum linear classification algorithm.
Input: ✏ > 0, a quantum oracle OX for X 2 Rn⇥d.
Output: w̄ that satisfies (3.4).
1 Let T = 232✏�2 log n, y1 = 0d, ⌘ =

q
logn

T
, u1 = 1n,

|p1i =
1

p
n

P
i2[n] |ii;

2 for t = 1 to T do

3 Define4
wt :=

yt

max{1,kytk}
;

4 Measure the state |pti in the computational basis
and denote the output as it 2 [n];

5 Define yt+1 := yt +
1

p
2T

Xit ;

6 Choose jt 2 [d] by jt = j with probability wt(j)
2

kwtk
2 ;

7 For all i 2 [n], denote ṽt(i) = Xi(jt)
kwtk

2

wt(jt)
,

vt(i) = min{1/⌘,max{�1/⌘, ṽt(i)}}, and
ut+1(i) = ut(i)(1� ⌘vt(i) + ⌘

2
vt(i)2).

Implement a quantum oracle Ot such that for all
i 2 [n], Ot|ii|0i = |ii|ut+1(i)i;

8 Prepare |pt+1i =
1

kut+1k2

P
i2[n] ut+1(i)|ii;

9 Return w̄ = 1
T

P
T

t=1 wt;

achieved iteratively, i.e., at iteration s we map |ii|us(i)i to
|ii|us+1(i)i. In total, one query to Ot is implemented by 2t
queries to OX and Õ(t) additional arithmetic computations.

Finally, we prepare the state |pt+1i = 1
kut+1k2

·P
i2[n] ut+1(i)|ii in Line 8 using O(

p
n) calls to Ot, which

are equivalent to O(
p
nt) calls to OX by Line 7 and Õ(

p
nt)

additional arithmetic computations. Therefore, the total
complexity of Line 8 for all t 2 [T ] is

TX

t=1

Õ(
p
nt) = Õ(

p
nT

2) = Õ

⇣p
n

✏4

⌘
. (3.5)

In all, the total complexity of Algorithm 1 is Õ
�p

n

✏4
+ d

✏2

�
,

establishing our statement.

Finally, the output w̄ has a succinct classical representation
with space complexity O(log n/✏2). To achieve this, we
save 2T = O(log n/✏2) values in Algorithm 1: i1, . . . , iT
and ky1k, . . . , kyT k; it then only takes O(log n/✏2) cost to
recover any coordinate of w̄ by Line 3 and Line 5.

3.3. Quantum speedup for online gradient descent

We further improve the dependence in d to Õ(
p
d). To

achieve this, we cannot update wt and yt in Line 3 and
Line 5 by each coordinate because storing wt or yt would
already take cost at least d. We solve this issue by not
updating wt and yt explicitly and instead only computing
kytk for all i 2 [T ]. This norm estimation is achieved by
the following lemma:

Lemma 3.1. Assume that F : [d]! [0, 1] with a quantum
oracle OF |ii|0i = |ii|F (i)i for all i 2 [d]. Denote m =
1
d

P
d

i=1 F (i). Then for any � > 0, there is a quantum
algorithm that uses O(

p
d/�) queries to OF and returns an

m̃ such that |m̃�m|  �m with probability at least 2/3.

Instead of updating yt explicitly in Line 5 of Algo-
rithm 1, we save the it for all t 2 [T ] in Line 4,
which only takes Õ(1/✏2) cost in total but we can di-
rectly generate yt given i1, . . . , it. Furthermore, notice
that the probabilities in the `2 sampling in Line 6 do not
change because wt(j)2/kwtk

2 = yt(j)2/kytk
2; it suf-

fices to replace ṽt(i) = Xi(jt)kwtk
2
/wt(jt) by ṽt(i) =

Xi(jt)kytk
2
/(yt(jt)max{1, kytk}) in Line 7. These ob-

servations imply the following result:
Theorem 3.2. With success probability at least 2/3, there
is a quantum algorithm that returns a succinct classical
representation of a vector w̄ 2 Rd such that

Xiw̄ � max
w2Bd

min
i02[n]

Xi0w � ✏ 8 i 2 [n], (3.6)

using Õ
�p

n

✏4
+

p

d

✏8

�
quantum gates.

Remark 3.1. In real applications, typically the number of
data points n is larger than the dimension d, so Theorem 3.1
might perform better than Theorem 3.2 in practice. Never-
theless, the Õ(

p
d) complexity in Theorem 3.2 matches our

quantum lower bound (see Theorem 5.1).

4. Applications

As introduced in Section 3.1, the `2 sampling of w picks
jt 2 [d] by jt = j with probability w(j)2/kwk2, and the
expectation of the random variable Xi(jt)kwk

2
/w(jt) is

Xiw. Here, if we consider some alternate random variables,
we could give unbiased estimators of nonlinear functions of
X . We first look at the general case of applying kernel func-
tions (Schölkopf & Smola, 2002) in Section 4.1. We then
look at the special case of quadratic problems in Section 4.2
as they enjoy simple forms that can be applied to finding
minimum enclosing balls (Saha et al., 2011) and `2-margin
support vector machines (Suykens & Vandewalle, 1999).

4.1. Kernel methods

Having quantum algorithms for solving linear classification
at hand, it is natural to consider linear classification under
kernels. Let  : Rd

7! H be a mapping into a reproducing
kernel Hilbert space (RKHS), and the problem is to find the
classifier h 2 H that solves the maximin problem

� = max
h2H

min
i2[n]
hh, (Xi)i, (4.1)

where the kernel is defined as k(a, b) := h (a), (b)i for
all a, b 2 Rd.
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Classically, Clarkson et al. (2012) gave the following re-
sult for classification under efficiently-computable kernels,
following the linear classification algorithm therein:

Theorem 4.1 (Lemma 5.3 of Clarkson et al. (2012)). De-
note Tk as the time cost for computing k(Xi, Xj) for some
i, j 2 [n], and denote Lk as the time cost for computing a
random variable k̃(Xi, Xj) for some i, j 2 [n] such that
E[k̃(Xi, Xj)] = k(Xi, Xj) and Var[k(Xi, Xj)]  1. Then
there is a classical algorithm that runs in time

Õ

⇣
Lkn+ d

✏2
+min

n
Tk

✏4
,
Lk

✏6

o⌘
(4.2)

and returns a vector h̄ 2 H such that with high success
probability hh̄, (Xi)i � � � ✏ for all i 2 [n].

Quantumly, we give the following algorithm for classifica-
tion under kernels based on Algorithm 1:

Algorithm 2: Quantum kernel-based classification.
Input: ✏ > 0, a quantum oracle OX for X 2 Rn⇥d.
Output: w̄ that satisfies (3.4).
Let T = 272✏�2 log n, y1 = 0d, ⌘ =

q
logn

T
, u1 = 1n,

|p1i =
1

p
n

P
i2[n] |ii;

for t = 1 to T do

Measure the state |pti in the computational basis and
denote the output as it 2 [n];

Define yt+1 := yt +
1

p
2T
 (Xit);

Apply Lemma 3.1 for 2dlog T e times to estimate kytk2
with precision � = ⌘

2, and take the median of all the

2dlog T e outputs, denoted gkytk
2
;

Choose jt 2 [d] by jt = j with probability
yt(j)2/kytk

2, which is achieved by applying
Algorithm 3 to prepare the quantum state |yti and
measure in the computational basis;

For all i 2 [n], denote ṽt(i) =
 (Xi)(jt) gkytk

2

yt(jt)max{1, gkytk}
,

vt(i) = clip(ṽt(i), 1/⌘), and ut+1(i) = ut(i)·
(1� ⌘vt(i) + ⌘

2
vt(i)2). Apply Algorithm 4 to

prepare an oracle Ot such that Ot|ii|0i = |ii|ut+1(i)i
for all i 2 [n], using 2t queries to OX and Õ(t)
additional arithmetic computations;

Prepare the state |pt+1i =
1

kut+1k2

P
i2[n] ut+1(i)|ii

using Algorithm 3 and Ot;
Return w̄ = 1

T

P
T

t=1
yt

max{1, gkytk}
;

Theorem 3.2 and Theorem 4.1 imply that our quantum
kernel-based classifier has time complexity

Õ

⇣
Lk

p
n

✏4
+

p
d

✏8
+min

n
Tk

✏4
,
Lk

✏6

o⌘
. (4.3)

For polynomial kernels of degree q, i.e., kq(x, y) = (x>
y)q ,

we have Lkq = q by taking the product of q independent
`2 samples (this is an unbiased estimator of (x>

y)q and the
variance of each sample is at most 1). As a result of (4.3),
Corollary 4.1. For the polynomial kernel of degree q, there
is a quantum algorithm that solves the classification task
within precision ✏ with gate complexity Õ

�
q
p
n

✏4
+ q

p

d

✏8

�
.

Compared to the classical complexity Õ
�
q(n+d)

✏2
+

min
�

d log q

✏4
,

q

✏6

 �
in Corollary 5.4 of Clarkson et al. (2012),

our quantum algorithm gives quadratic speedups in n and d.

For Gaussian kernels, i.e., kGauss(x, y) = exp
�
�kx� yk

2
�
,

Corollary 5.5 of Clarkson et al. (2012) proved that LkGauss =
1/s4 if the Gaussian has standard deviation s. As a result,
Corollary 4.2. For the polynomial kernel of degree q, there
is a quantum algorithm that solves the classification task
within precision ✏ with gate complexity Õ

� p
n

s4✏4
+

p

d

s4✏8

�
.

This still gives quadratic speedups in n and d compared
to the classical complexity Õ

�
n+d

s4✏2
+ min

�
d

✏4
,

1
s4✏6

 �
in

Corollary 5.5 of Clarkson et al. (2012).

4.2. Quadratic machine learning problems

We consider the maximin problem of a quadratic function:

max
w2Rd

min
p2�n

p
>(b+ 2Xw � 1nkwk

2)

= max
w2Rd

min
i2[n]

bi + 2Xiw � kwk
2
, (4.4)

where b 2 Rn and X 2 Rn⇥d. Note that the function
bi + 2Xiw � kwk

2 in Eq. (4.4) is 2-strongly convex; as
a result, the regret of the online gradient descent after T
rounds can be improved to O(log T ) by Sra et al. (2012)
instead of O(

p
T ) as in Eq. (3.2). In addition, `2 sampling

of the w in Algorithm 1 still works: consider the random
variable w = bi +

2Xi(j)kwk
2

w(j) � kwk
2 where j = k with

probability w(k)2

kwk2 . Then the expectation of w is

E[X] =
dX

j=1

w(j)2

kwk2

⇣
bi +

2Xi(j)kwk2

w(j)
� kwk

2
⌘

= bi + 2Xiw � kwk
2
, (4.5)

i.e., w is an unbiased estimator of the quadratic form in
(4.4). As a result, given the quantum oracle OX in (2.2), we
could give sublinear quantum algorithms for such problems;
these include two important problems: minimum enclosing
balls (MEB) and `2-margin supper vector machines (SVM).

4.2.1. MINIMUM ENCLOSING BALL

In the minimum enclosing ball (MEB) problem we have
bi = �kXik

2 for all i 2 [n]; Eq. (4.4) then be-
comes maxw2Rd mini2[n]�kXik

2 + 2Xiw � kwk
2 =
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�minw2Rd maxi2[n] kw �Xik
2, which is the smallest ra-

dius of the balls that contain all the data points X1, . . . , Xn.

Denote �MEB = minw2Rd maxi2[n] kw�Xik
2, the follow-

ing theorem is a direct consequence of Theorem 3.1 (see also
Theorem 3.1 in Clarkson et al. (2012)) and Theorem 3.2:
Theorem 4.2. There is a quantum algorithm that returns a
vector w̄ 2 Rd such that with probability at least 2/3,

max
i2[n]
kw̄ �Xik

2
 �MEB + ✏, (4.6)

using Õ
�p

n

✏4
+ d

✏

�
quantum gates; the quantum gate com-

plexity can also be improved to Õ
�p

n

✏4
+

p

d

✏7

�
.

4.2.2. `2-MARGIN SVM

To estimate the margin of a support vector machine (SVM)
in `2-norm, we take bi = 0 for all i 2 [n]; Eq. (4.4) then be-
comes solving �SVM := maxw2Rd mini2[n] 2Xiw� kwk

2.

Notice that �SVM � 0 because 2Xiw � kwk
2 = 0 for all

i 2 [n] when w = 0. For the case �SVM > 0 and taking
0 < ✏ < �SVM, similar to Theorem 4.2 we have:
Corollary 4.3. There is a quantum algorithm that returns
a vector w̄ 2 Rd such that with probability at least 2/3,

min
i2[n]

2Xiw̄ � kw̄k
2
� �SVM � ✏ > 0, (4.7)

using Õ
�p

n

✏4
+ d

✏

�
quantum gates; the quantum gate com-

plexity can also be improved to Õ
�p

n

✏4
+

p

d

✏7

�
.

Note that (4.7) implies that Xiw̄ > 0 for all i 2 [n]; further-
more, by the AM-GM inequality we have (Xiw̄)2

kw̄k2 +kw̄k2 �
2Xiw̄, and hence

min
i2[n]

⇣
Xiw̄

kw̄k

⌘2
� min

i2[n]
2Xiw̄ � kw̄k

2
� �SVM � ✏. (4.8)

If we denote ŵ = w̄/kw̄k, then Xiŵ �
p
�SVM � ✏ > 0

for all i 2 [n]. Consequently, if the data X is from an
SVM, we obtain a normalized direction ŵ (in `2-norm) such
that all data points have a margin of at least

p
�SVM � ✏.

Classically, this task takes time Õ(n+d) for constant �SVM

by Clarkson et al. (2012), but our quantum algorithm only
takes time Õ(

p
n+
p
d).

5. Quantum Lower Bounds

All quantum algorithms (upper bounds) above have match-
ing lower bounds in n and d. In particular, assuming
✏ = ⇥(1) and given the oracle OX in (2.2), we have:
Theorem 5.1. To return an w̄ 2 Bd satisfying

Xjw̄ � max
w2Bd

min
i2[n]

Xiw � ✏ 8 j 2 [n] (5.1)

with probability at least 2/3, we need⌦(
p
n+
p
d) quantum

queries to OX .

Theorem 5.2. To return an w̄ 2 Rd satisfying

max
i2[n]
kw̄ �Xik

2
 min

w2Rd
max
i2[n]
kw �Xik

2 + ✏ (5.2)

with probability at least 2/3, we need⌦(
p
n+
p
d) quantum

queries to OX .

Because the kernel-based classifier in Section 4.1 contains
the linear classification in Section 3 as a special case, The-
orem 5.1 implies an ⌦(

p
n +
p
d) quantum lower bound

on the kernel method. Similarly, Theorem 5.2 implies an
⌦(
p
n+
p
d) quantum lower bound on the `2-margin SVM.

Therefore, we establish tight quantum bounds for all the
classification problems in Section 3 and Section 4.

We prove both theorems by constructing reductions to the
quantum search lower bound (Bennett et al., 1997); their
full proofs are deferred to the supplementary material.

6. Conclusion

We give quantum algorithms for training linear and kernel-
based classifiers with complexity Õ(

p
n +
p
d), where n

and d are the number and dimension of data points, respec-
tively; furthermore, our quantum algorithms are optimal as
we prove matching ⌦(

p
n +
p
d) quantum lower bounds.

Our quantum algorithms take standard entry-wise inputs and
give classical outputs with succinct representations. Tech-
nically, our result is a demonstration of quantum speed-ups
for sampling-based classical algorithms using the technique
of amplitude amplification and estimation.

Our paper raises a couple of natural open questions for
future work. For instance:

• Can we improve the dependence in ✏? Recall our quan-
tum algorithms have worst-case complexity Õ

�p
n

✏4
+

p

d

✏8

�

whereas the classical complexities in Clarkson et al.
(2012) are Õ

�
n

✏2
+ d

✏2

�
; as a result, the quantum algo-

rithms perform better only when we tolerate a significant
error. It would be interesting to check if some clever tricks
could be applied to circumventing some dependence in ✏.

• Can we solve equilibrium point problems other than clas-
sification? Recall that our results in Theorem 1.1 are all
formulated as maximin problems where the minimum is
taken over [n] and the maximum is taken over Bd or Rd.
It would be interesting to study other type of equilibrium
point problems in game theory, learning theory, etc.

• What happens if we work with more sophisticated data
structures such as QRAM or its augmented variants?
Their preprocessing time will likely be at least linear.
However, it might be still advantageous to do so, e.g.,
to reduce the amortized complexity when one needs to
perform multiple classification tasks on the same data set.
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