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Abstract
We introduce a new model for online ranking in
which the click probability factors into an exami-
nation and attractiveness function and the attrac-
tiveness function is a linear function of a feature
vector and an unknown parameter. Only relatively
mild assumptions are made on the examination
function. A novel algorithm for this setup is anal-
ysed, showing that the dependence on the number
of items is replaced by a dependence on the dimen-
sion, allowing the new algorithm to handle a large
number of items. When reduced to the orthogonal
case, the regret of the algorithm improves on the
state-of-the-art.

1. Introduction
Let L be a large set of items to be ranked. For example, a
database of movies, news articles or search results. We con-
sider a sequential version of the ranking problem where in
each round the learner chooses an ordered list of K distinct
items from L to show the user. We assume the feedback
comes in the form of clicks and the learner’s objective is
to maximise the expected number of clicks over T rounds.
Our focus is on the case where L is large (perhaps millions)
and K is relatively small (fifty or so). There are two main
challenges that arise in online ranking problems:

(a) The number of rankings grows exponentially in K,
which makes learning one parameter for each ranking a
fruitless endeavour. Click models may be used to reduce the
dimensionality of the learning problem, but balancing gen-
erality of the model with learnability is a serious challenge.
The majority of previous works on online learning to rank
have used unstructured models, which are not well suited to
our setting where L is large.

(b) Most click models depend on an unknown attractiveness
function that endows the item set with an order. This yields
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a model with at least |L| parameters, which is prohibitively
large in the applications we have in mind.

The first challenge is tackled by adapting the flexible click
models introduced in (Zoghi et al., 2017; Lattimore et al.,
2018) to our setting. For the second we follow previous
works on bandits with large action sets by assuming the
attractiveness function can be written as a linear function of
a relatively small number of features.

Contribution We make several contributions:

• A new model for ranking problems with features is pro-
posed that generalises previous work (Li et al., 2016;
Zong et al., 2016; Liu et al., 2018) by relaxing the rela-
tively restrictive assumptions on the probability that a
user clicks on an item. The new model is strictly more
robust than previous works focusing on regret analysis
for large item sets.

• We introduce a novel polynomial-time algorithm called
RecurRank. The algorithm operates recursively over
an increasingly fine set of partitions of [K]. Within
each partition the algorithm balances exploration and
exploitation, subdividing the partition once it becomes
sufficiently certain about the suboptimality of a subset
of items.

• A regret analysis shows that the cumulative regret of
RecurRank is at most RT = O(K

√
dT log(LT ),

whereK is the number of positions, L is the number of
items and d is the dimension of the feature space. Even
in the non-feature case where L = d this improves on
the state-of-the-art by a factor of

√
K.

A comparison with most related work is shown in Table 1.

Related work Online learning to rank has seen an explo-
sion of research in the last decade and there are multiple
ways of measuring the performance of an algorithm. One
view is that the clicks themselves should be maximised,
which we take in this article. An alternative is to assume an
underlying relevance of all items in a ranking that is never
directly observed, but can be inferred in some way from
the observed clicks. In all generality this latter setting falls
into the partial monitoring framework (Rustichini, 1999),
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Table 1. This table compares settings and regret bounds of most related works on online learning to rank. T is the number of total rounds,
K is the number of positions, L is the number of items and d is the feature space dimension. � is the minimal gap between the expected
click rate of the best items and the expected click rate of the suboptimal items.
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but has been studied in specific ranking settings (Chaudhuri,
2016, and references therein). See the article by Hofmann
et al. (2011) for more discussion on various objectives.

Maximising clicks directly is a more straightforward objec-
tive because clicks are an observed quantity. Early work was
empirically focused. For example, Li et al. (2010) propose a
modification of LinUCB for contextual ranking and Chen &
Hofmann (2015) modify the optimistic algorithms for linear
bandits. These algorithms do not come with theoretical guar-
antees, however. There has recently been significant effort
towards designing theoretically justified algorithms in set-
tings of increasing complexity (Kveton et al., 2015; Combes
et al., 2015; Zong et al., 2016; Katariya et al., 2016; Lagree
et al., 2016). These works assume the user’s clicks follow a
click model that connects properties of the shown ranking to
the probability that a user clicks on an item placed in a given
position. For example, in the document-based model it is
assumed that the probability that the user clicks on a shown
item only depends on the unknown attractiveness of that
item and not its position in the ranking or the other items.
Other simple models include the position-based, cascade
and dependent click models. For a survey of click models
see (Chuklin et al., 2015).

As usual, however, algorithms designed for specific mod-
els are brittle when the modelling assumptions are not met.
Recent work has started to relax the strong assumptions

by making the observation that in all of the above click
models the probability of a user clicking on an item can be
written as the product of the item’s inherent attractiveness
and the probability that the user examines its position in
the list. Zoghi et al. (2017) use a click model where this
decomposition is kept, but the assumption on how the ex-
amination probability of a position depends on the list is
significantly relaxed. This is relaxed still further by Latti-
more et al. (2018) who avoid the factorisation assumption
by making assumptions directly on the click probabilities,
but the existence of an attractiveness function remains.

The models mentioned in the last paragraph do not make
assumptions on the attractiveness function, which means the
regret depends badly on the size of L. Certain simple click
models have assumed the attractiveness function is a linear
function of an item’s features and the resulting algorithms
are suitable for large action sets. This has been done for
the cascade model (Li et al., 2016) and the dependent-click
model (Liu et al., 2018). While these works are welcomed,
the strong assumptions leave a lingering doubt that perhaps
the models may not be a good fit for practical problems.
Of course, our work is closely related to stochastic linear
bandits, first studied by Abe & Long (1999) and refined
by Auer (2002); Abbasi-Yadkori et al. (2011); Valko et al.
(2014) and many others.

Ranking has also been examined in an adversarial frame-
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work by Radlinski et al. (2008). These settings are most
similar to the stochastic position-based and document-based
models, but with the additional robustness bought by the
adversarial framework. Another related setup is the rank-1
bandit problem in which the learner should choose just one
of L items to place in one ofK positions. For example, the
location of a billboard with the budget to place only one.
These setups have a lot in common with the present one, but
cannot be directly applied to ranking problems. For more
details see (Katariya et al., 2017a;b).

Finally, we note that some authors do not assume an ordering
of the item set provided by an attractiveness function. The
reader is referred to the work by Slivkins et al. (2013) (which
is a follow-up work to Radlinski et al. (2008)) where the
learner's objective is to maximise the probability that a user
clicks onany item, rather than rewarding multiple clicks.
This model encourages diversity and provides an interesting
alternative approach.

2. Preliminaries

Notation Let [n] = f 1; 2; : : : ; ng denote the �rstn nat-
ural numbers. Given a setX the indicator function is1X .
For vectorx 2 Rd and positive de�nite matrixV 2 Rd� d

we letkxk2
V = x> V x. The Moore-Penrose pseudoinverse

of a matrixV is V y.

Problem setup Let L � Rd be a �nite set of items,L =
jLj andK > 0 a natural number, denoting the number of
positions. A ranking is an injective function from[K ], the
set of positions, toL and the set of all rankings is denoted
by � . We use uppercase letters likeA to denote rankings
in � and lowercase lettersa; b to denote items inL . The
game proceeds overT rounds. In each roundt 2 [T] the
learner chooses a rankingA t 2 � and subsequently receives
feedback in the form of a vectorCt 2 f 0; 1gK whereCtk =
1 if the user clicked on thekth position. We assume that the
conditional distribution ofCt only depends onA t , which
means there exists an unknown functionv : � � [K ] !
[0; 1] such that for allA 2 � andk 2 [K ],

P(Ctk = 1 j A t = A) = v(A; k ) : (1)

Remark 1. We do not assume conditional independence of
(Ctk )K

k=1 .

In all generality the functionv hasK j� j parameters, which
is usually impractically large to learn in any reasonable time-
frame. A click model corresponds to making assumptions
onv that reduces the statistical complexity of the learning
problem. We assume a factored model:

v(A; k ) = � (A; k )� (A(k)) ; (2)

where� : � � [K ] ! [0; 1] is called the examination
probability and� : L ! [0; 1] is the attractiveness function.

We assume that attractiveness is linear in the action, which
means there exists an unknown� � 2 Rd such that

� (a) = ha; � � i for all a 2 L : (3)

Let a�
k be thek-th best item sorted in order of decreasing

attractiveness. Then letA � = ( a�
1; : : : ; a�

K ). In case of ties
the choice ofA � may not be unique. All of the results that
follow hold for any choice.

The examination function satis�es three additional assump-
tions. The �rst says the examination probability of position
k only depends on the identity of the �rstk � 1 items and
not their order:

Assumption 1. � (A; k ) = � (A0; k) for any A; A 0 2 �
with A([k � 1]) = A0([k � 1]).

The second assumption is that the examination probability
on any ranking is monotone decreasing ink:

Assumption 2. � (A; k + 1) � � (A; k ) for all A 2 � and
k 2 [K � 1].

The third assumption is that the examination probability on
rankingA � is minimal:

Assumption 3. � (A; k ) � � (A � ; k) =: � �
k for all A 2 �

andk 2 [K ].

All of these assumptions are satis�ed by many standard click
models, including the document-based, position-based and
cascade models. These assumptions are strictly weaker than
those made by Zoghi et al. (2017) and orthogonal to those
by Lattimore et al. (2018) as we discuss it in Section 6.

The learning objective We measure the performance of
our algorithm in terms of the cumulative regret, which is

RT = T
KX

k=1

v(A � ; k) � E

"
TX

t =1

KX

k=1

v(A t ; k)

#

:

Remark 2. The regret is de�ned relative toA � , but our
assumptions do not imply that

A � 2 arg max
A 2 �

KX

k=1

v(A; k ) : (4)

The assumptions in all prior work in Table 1 either directly
or indirectly ensure that (4) holds. Our regret analysis does
not rely on this, so we do not assume it. Note, however, that
the de�nition of regret is most meaningful when (Eq.(4))
approximately holds.

Experimental design Our algorithm makes use of an ex-
ploration `spanner' that approximately minimises the co-
variance of the least-squares estimator. Given an arbitrary
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�nite set of vectorsX = f x1; : : : ; xn g � Rd and distri-
bution � : X ! [0; 1] let Q(� ) =

P
x 2 X � (x)xx > . By

the Kiefer–Wolfowitz theorem (Kiefer & Wolfowitz, 1960)
there exists a� called theG-optimal design such that

max
x 2 X

kxk2
Q( � ) y � d : (5)

As explained in Chap. 21 of (Lattimore & Szepesvári, 2018),
� may be chosen so thatjf x : � (x) > 0gj � d(d + 1) =2. A
G-optimal design� for X has the property that if each
elementx 2 X is observedn� (x) times for somen
large enough, the value estimate obtained via least-squares
will have its maximum uncertainty over the items min-
imised. Given a �nite (multi-)set of vectorsX � Rd

we let GOPT(X ) denote aG-optimal design distribution.
Methods from experimental design have been used for pure
exploration in linear bandits (Soare et al., 2014; Xu et al.,
2017) and also �nite-armed linear bandits (Lattimore &
Szepesvári, 2018, Chap. 22) as well as adversarial linear
bandits (Bubeck et al., 2012).

3. Algorithm

The new algorithm is calledRecurRank (`recursive
ranker'). The algorithm maintains a partition of theK
positions into intervals. Associated with each interval is an
integer-valued `phase number' and an ordered set of items,
which has the same size as the interval for all but the last
interval (containing positionK ). Initially the partition only
contains one interval that is associated with all the items
and phase number` = 1 .

At any point in time,RecurRank works in parallel on all
intervals. Within an interval associated with phase num-
ber`, the algorithm balances exploration and exploitation
while determining the relative attractiveness of the items
to accuracy� ` = 2 � ` . To do this, items are placed in the
�rst position of the interval in proportion to an experimen-
tal design. The remaining items are placed in order in the
remaining positions. Once suf�cient data is collected, the
interval is divided into a collection of subintervals and the
algorithm is restarted on each subinterval with the phase
number increased.

The natural implementation of the algorithm maintains a
list of partitions and associated items. In each round it iter-
ates over the partitions and makes assignments of the items
within each partition. The assignments are based on round-
robin idea using an experimental design, which means the
algorithm needs to keep track of how often each item has
been placed in the �rst position. This is not a problem from
an implementation perspective, but stateful code is hard
to interpret in pseudocode. We provide a recursive imple-
mentation that describes the assignments made within each
interval and the rules for creating a new partition. A �ow
chart depicting the operation of the algorithm is given in

Fig. 1. The code is provided in the supplementary material.

Algorithm 1 RecurRank
1: Input: Phase number̀and

A = ( a1; a2; : : :) andK = ( k; k + 1 ; : : : ; k + m � 1)
2: Find aG-optimal design� = GOPT(A )
3: Let � ` = 2 � ` and

T(a) =
�

d � (a)
2� 2

`
log

�
jAj
� `

��
(6)

This instance will run
P

a2A T(a) times
4: Select each itema 2 A exactlyT(a) times at positionk

and put available items inf a1; : : : ; am g sequentially in
positionsf k +1 ; : : : ; k + m � 1g and receive feedbacks
(synchronized by a global clock).

5: Let D = f (� 1; � 1); : : :g be the multiset of item/clicks
from positionk and compute

�̂ = V yS with (7)

V =
X

( �;� )2D

�� > andS =
X

( �;� )2D

��

6: Let a(1) ; a(2) ; : : : ; a( jAj ) be an orderingA such that

" i = ĥ�; a ( i ) � a( i +1) i � 0 for all 1 � i < jAj

and set" jAj = 2� `

7: Let (u1; : : : ; up) = ( i 2 [jAj ] : " i � 2� ` ) andu0 = 0

A i = ( a(u i � 1 +1) ; : : : ; a(u i ) )

K i = ( k + ui � 1; : : : ; k + min( m; u i ) � 1)

8: For eachi 2 [p] such thatk + ui � 1 � k + m � 1 call
RecurRank (` + 1 ; A i ; K i ) on separate threads

The pseudocode of the core subroutine on each interval
is given in Algorithm 1. The subroutine accepts as input
(1) the phase number`, (2) the positions of the interval
K � [K ] and (3) an ordered list of items,A . The phase
number determines the length of the experiment and the
target precision. The ordering of the items inA is arbi-
trary in the initial partition (wheǹ = 1 ). When` > 1
the ordering is determined by the empirical estimate of at-
tractiveness in the previous experiment, which is crucial
for the analysis. The whole algorithm is started by call-
ing RecurRank(1; L ; (1; 2; : : : ; K )) where the order ofL
is random. The algorithm is always instantiated with param-
eters that satisfyjAj � jKj = m. Furthermore,jAj > jKj
is only possible whenK 2 K .

The subroutine learns about the common unknown param-
eter vector by placing items in the �rst position of the in-
terval in proportion to aG-optimal design for the available
items. The remaining items inA are placed in order into



Online Learning to Rank with Features

1

8

` = 1
A
jj

z}|{
a1

�
�
�

a8

���
a50|{z}

1

3

` = 2
A
jj

z}|{
a1...a3|{z}

` = 2
A
jj

4

8

z}|{
a4
�
�
�

a8

���
a25|{z}

1

3

` = 3
A
jj

z}|{
a1...a3|{z}

� � �

` = 3
A
jj

4
5

z}|{
a4a5|{z}

� � �

` = 3
A
jj

6

8

z}|{
a6...a8

���
a12|{z}

� � �

t

Instance 1

1

Instance 2

Instance 3

t1

Instance 4

t2

Instance 5

Instance 6

t3

Figure 1.A �ow chart demonstration for the algorithm. Each dotted circle represents a subinterval and runs an instance of Algorithm 1.
The dashed line denotes the �rst position for each interval.

the remaining positions (Line 4). This means that each item
a 2 A is placed exactlyT(a) times in the �rst positionk
of the interval. The choice ofT(a) is based on the phase
number̀ and theG-optimal design� overA (Line 2). Note
T(a) = 0 if � (a) = 0 . For example, ifA = ( a1; : : : ; am )
anda3 is placed at the �rst position, then the rest positions
are �lled in asa1; a2; a4; a5; : : : ; am . The subroutine runs
for

P
a2A T(a) rounds. TheG-optimal design means that

the number of rounds required to estimate the value of each
item to a �xed precision depends only logarithmically on
the number of items. Higher phase number means longer
experiment and also higher target precision.

Once all armsa 2 A have been placed in the �rst position of
the intervalT(a) times,RecurRank estimates the attrac-
tiveness of the items inA using a least-squares estimator
based on the data collected from the �rst position (Line
5). The items are then ordered based on their estimated
attractiveness. The subroutine then partitions the ordered
items when the difference between estimated attractiveness
of consecutive items is suf�ciently large (Line 7). Finally
the subroutine recursively callsRecurRank on each parti-
tion for which there are positions available with an increased
phase number with items sorted according to their empirical
attractiveness (Line 8).

Remark 3. Items are eliminated entirely if at the end of
a subroutine a partition is formed for which there are no
available positions. For example, consider the �rst instanti-
ation ofRecurRank with ` = 1 andK = [ K ] andA = L .
Suppose the observed data is such thatp = 2 andu1 � K ,

then itemsa(u 1 +1) ; a(u 1 +2) ; : : : ; a(u 2 ) will be discarded be-
cause the starting position of the second partition would be
larger thanK .

Remark 4. The least-squares estimator�̂ de�ned in Eq.(7)
actually does not have expectation� , which means the algo-
rithm is not really estimating attractiveness. Our assump-
tions ensure that the expectation of�̂ is proportional to� ,
however, which is suf�cient for our analysis. This is the
reason for only using the �rst position within an interval for
estimation.

Remark 5. The subroutine only uses data collected during
its own run. Not doing this would introduce bias that may
be hard to control.
In Fig. 1, the algorithm starts with Instance 1 of phase num-
ber` = 1 , all items and all positions. At timet1, Instance 1
splits into two, each with an increased phase number` = 2 .
Instance 2 contains3 items and3 positions and Instance 3
contains5 positions but22 items. The remaining items have
been eliminated. At timet2, Instance 2 �nishes running but
has no split, so it calls Instance 4 with the same items, same
positions but increased phase number` = 3 . During time
t1 to t2, Instance 2 and Instance 3 run in parallel and rec-
ommend lists together; during timet2 to t3, Instances 3 and
4 run in parallel and recommend lists together. At timet3,
Instance 3 �nishes and splits into another two threads, both
with increased phase number` = 3 . Instance 5 contains
exactly2 items and2 positions and Instance6 contains3
positions but7 items. Note that the involved items become
even less. Right after timet3, Instance4; 5; 6 run in parallel
and recommend lists together.
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RecurRank has two aspects that one may think can lead to
an unjusti�able increase of regret:(i) each subroutine only
uses data from the �rst position to estimate attractiveness,
and (ii) data collected by one subroutine is not re-used
subsequently. The second of these is relatively minor. Like
many elimination algorithms, the halving of the precision
means that at most a constant factor is lost by discarding
the data. The �rst issue is more delicate. On the one hand,
it seems distasteful not to use all available data. But the
assumptions do not make it easy to use data collected in
later positions. And actually the harm may not be so great.
Intuitively the cost of only using data from the �rst position
is greatest when the interval is large and the attractiveness
varies greatly within the interval. In this case, however, a
split will happen relatively fast.

Running time The most expensive component is comput-
ing theG-optimal design. This is a convex optimisation
problem and has been studied extensively (see, Boyd &
Vandenberghe 2004, §7.5 and Todd 2016). It is not neces-
sary to solve the optimisation problem exactly. Suppose
instead we �nd a distribution� onA with support at most
D(D + 1) =2 and for whichmaxa2A kak2

Q( � ) y � D . Then
our bounds continue to hold withd replaced byD. Such
approximations are generally easy to �nd. For example,�
may be chosen to be a uniform distribution on a volumetric
spanner ofA of sizeD . See Appendix B for a summary on
volumetric spanners. Hazan & Karnin (2016) provide a ran-
domized algorithm that returns a volumetric spanner of size
at mostO(d log(d) log(jAj )) with an expected running time
of O(jAj d2). For the remaining parts of the algorithm, the
least-squares estimation is at mostO(d3). The elimination
and partitioning run inO(jAj d). Note these computations
happen only once for each instantiation. The update for
each partition in each round isO(d2). The total running
time isO(Ld2 log(T) + Kd 2T).

4. Regret Analysis

Our main theorem bounds the regret of Algorithm 1.

Theorem 1. There exists a universal constantC > 0 such
that the regret bound for Algorithm 1 with� = 1=

p
T

satis�es

RT � CK
p

dT log(LT ) :

Let I ` be the number of calls toRecurRank with phase
number`. Hence eachi 2 [I ` ] corresponds to a call of
RecurRank with phase number̀ and the arguments are
denoted byA `i andK `i . AbbreviateK `i = min K `i for
the �rst position of K `i , M `i = jK `i j for the number of
positions andK+

`i = K `i n f K `i g. We also letK `;I ` +1 =
K + 1 and assume that the callsi 2 [I ` ] are ordered so that

1 = K ` 1 < K ` 2 < � � � < K `I ` � K < K + 1 = K `;I ` +1 :

The reader is reminded that� �
k = � (A � ; k) is the examina-

tion probability of thekth position under the optimal list.
Let � `i = � �

K `i
be the shorthand for the optimal examina-

tion probability of the �rst position in call(`; i ). We let
�̂ `i be the least-squares estimator computed in Eq. (7) in
Algorithm 1. The maximum phase number during the entire
operation of the algorithm is̀max .

De�nition 1. Let F be the failure event that there exists an
` 2 [`max ], i 2 [I ` ] anda 2 A `i such that

�
�
� ĥ� `i ; ai � � `i h� � ; ai

�
�
� � � `

or there exists aǹ 2 [`max ], i 2 [I ` ] andk 2 K `i such that
a�

k =2 A `i .

The �rst lemma shows that the failure event occurs with
low probability. The proof follows the analysis in (Latti-
more & Szepesvári, 2018, Chap. 22) and is summarised in
Appendix A.

Lemma 1. P(F ) � � .

The proofs of the following lemmas are provided in Ap-
pendix C.

Lemma 2. On the eventF c it holds for any` 2 [`max ],
i 2 [I ` ] and positionsk; k + 1 2 K `i that � `i (� (a�

k ) �
� (a�

k+1 )) � 8� ` .

Lemma 3. On the eventF c it holds for anỳ 2 [`max ] and
a 2 A `I ` that � `I ` (� (a�

K ) � � (a)) � 8� ` .

Lemma 4. Suppose that in its(`; i )th call RecurRank
places itema in positionk = K `i . Then, providedF c holds,
� `i (� (a�

k ) � � (a)) � 8M `i .

Lemma 5. Suppose that in its(`; i )th call RecurRank
places itema in positionk 2 K +

`i . Then providedF c holds,
� `i (� (a�

k ) � � (a)) � 4� ` .

Proof of Theorem 1.The �rst step is to decompose the re-
gret using the failure event:

RT � P(F ) TK + E

"

1F c

TX

t =1

KX

k=1

(v(A � ; k) � v(A t ; k))

#

:

From now on we assume thatF c holds and bound the term
inside the expectation. Given` andi 2 [I ` ] let T`i be the set
of rounds when algorithm(`; i ) is active. Then

TX

t =1

KX

k=1

(v(A � ; k) � v(A t ; k)) =
` maxX

` =1

I `X

i =1

R`i ; (8)

whereR`i is the regret incurred during call(`; i ):

R`i =
X

t 2T `i

X

k2K `i

(v(A � ; k) � v(A t ; k)) :
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This quantity is further decomposed into the �rst position
in K `i , which is used for exploration, and the remaining
positions:

R(1)
`i =

X

t 2T `i

(v(A � ; K `i ) � v(A t ; K `i )) :

R(2)
`i =

X

t 2T `i

X

k2K +
`i

(v(A � ; k) � v(A t ; k)) :

Each of these terms is bounded separately. For the �rst term
we have

R(1)
`i =

X

t 2T `i

(v(A � ; K `i ) � v(A t ; K `i ))

=
X

t 2T `i

� (A � ; K `i )� (a�
K `i

) � � (A t ; K `i )� (A t (K `i ))

=
X

t 2T `i

� `i
�

� (a�
K `i

) � � (A t (K `i ))
	

� 8
X

t 2T `i

M `i � ` ; (9)

where the �rst equality is the de�nition ofR(1)
`i , the second

is the de�nition of v. The third inequality is true because
eventF c ensures that

f A t (k) : k < K `i g = f a�
k : k < K `i g;

which combined with Assumption 1 shows that
� (A � ; K `i ) = � (A t ; K `i ) = � `i . The inequality in
Eq. (9) follows from Lemma 4. Moving on to the second
term,

R(2)
`i =

X

t 2T `i

X

k2K +
`i

(v(A � ; k) � v(A t ; k))

�
X

t 2T `i

X

k2K +
`i

� �
k (� (a�

k ) � � (A t (k)))

�
X

t 2T `i

X

k2K +
`i

� `i (� (a�
k ) � � (A t (k)))

� 4
X

t 2T `i

X

k2K +
`i

� ` (10)

� 4
X

t 2T `i

M `i � ` ;

where the second inequality follows from Assumption 3 and
the third inequality follows from Assumption 2 on ranking
A � . The inequality in Eq. (10) follows from Lemma 5 and
the one after it from the de�nition ofM `i = jK `i j. Putting
things together,

(8) = 12
` maxX

` =1

X

i 2 I `

jT`i jM `i � ` � 12K
` maxX

` =1

max
i 2 I `

jT`i j� ` ;

(11)

where we used that
P

i 2 I `
M `i = K . To boundjT`i j note

that, on the one hand,jT`i j � T (this will be useful when
` is large), while on the other hand, by the de�nition of the
algorithm and the fact that theG-optimal design is supported
on at mostd(d + 1) =2 points we have

jT`i j �
X

a2A `i

�
2d� (a) log(1=� ` )

� 2
`

�

�
d(d + 1)

2
+

2d log(1=� ` )
� 2

`
:

We now split to sum in(11) into two. For1 � `0 � `max to
be chosen later,

` 0X

` =1

max
i 2 I `

jT`i j� ` �
d(d + 1)

2
+ 4d log(1=� ` 0 )2` 0 ;

while

` maxX

` = ` 0 +1

max
i 2 I `

jT`i j� ` � T
` maxX

` = ` 0 +1

� ` � T2� ` 0 ;

hence,

(8) � 12K
�

d(d + 1)
2

+ 4d log(1=� ` 0 )2` 0 + T2� ` 0

�
:

The result is completed by optimising`0.

5. Experiments

We run experiments to compareRecurRank with
CascadeLinUCB (Li et al., 2016; Zong et al., 2016) and
TopRank (Lattimore et al., 2018).

Synthetic experiments We construct environments using
the cascade click model (CM) and the position-based click
model (PBM) withL = 104 items ind = 5 dimension to
be displayed inK = 10 positions. We �rst randomly draw
item vectorsL and weight vector� � in d� 1 dimension with
each entry a standard Gaussian variable, then normalise, add
one more dimension with constant1, and divide by

p
2. The

transformation is as follows:

x 7!
�

x
p

2kxk
;

1
p

2

�
: (12)

This transformation on both the item vectorx 2 L � Rd

and weight vector� � is to guarantee the attractiveness
h� � ; xi of each itemx lies in [0; 1]. The position bias for
PBM is set as

�
1; 1

2 ; 1
3 ; : : : ; 1

K

�
which is often adopted in

applications (Wang et al., 2018). The evolution of the regret
as a function of time is shown in Fig. 2(a)(b). The regrets at
the end and total running times are given in Appendix D.
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Figure 2. The �gures compareRecurRank (red) withCascadeLinUCB (black) andTopRank (blue). Sub�gure (a) shows results for
an environment that follows the cascade click model (CM), while sub�gure (b) does the same for the position-based click model (PBM).
On these �gures, regret over time is shown (smaller is better). In both models there areL = 10 4 items andK = 10 positions, and the
feature space dimension isd = 5 . Note the logarithmic scale of they axis on sub�gure (a). Sub�gure (c) shows the regret over time on
the MovieLens dataset withL = 10 3 , d = 5 , K = 10 . All results are averaged over10 random runs. The error bars are standard errors.

CascadeLinUCB is best in CM but worst in PBM because
of its modelling bias.TopRank takes much longer time
to converge than eitherCascadeLinUCB or RecurRank
since it neither exploits the speci�cs of the click model, nor
does it use the linear structure.

MovieLens dataset We use the20m MovieLens dataset
(Harper & Konstan, 2016) which contains20 million rat-
ings for2:7 � 104 movies by1:38� 105 users. We extract
L = 103 movies with most ratings and1:1 � 103 users who
rate most and randomly split the user set to two parts,U1 and
U2 with jU1j = 100 andjU2j = 103. We then use the rating
matrix of users inU1 to derive feature vectors withd = 5
for all movies by singular-value decomposition (SVD). The
resulting feature vectorsL are also processed as(12). The
true weight vector� � is computed by solving the linear sys-
tem ofL w.r.t. the rating matrix ofU2. The environment
is the document-based click model (DBM) withL and� �

and we setK = 10. The performances are measured in
regret, as shown in Fig. 2(c). As can be seen,RecurRank
learns faster than the other two algorithms. Of these two al-
gorithms, the performance ofCascadeLinUCB saturates:
this is due to its incorrect bias.

6. Discussion

Assumptions Our assumptions are most closely related to
the work by Lattimore et al. (2018) and Zoghi et al. (2017).
The latter work also assumes a factored model where the
probability of clicking on an item factors into an exami-
nation probability and an attractiveness function. None of
these works make use of features to model the attractiveness
of items: They are a special case of our model when we
set the features of items to be orthogonal to each other (in
particular,d = L). Our assumptions on the examination
probability function are weaker than those by Zoghi et al.
(2017). Despite this, our regret upper bound is better by
a factor ofK (when settingd = L) and the analysis is
also simpler. The paper by Lattimore et al. (2018) does not

assume a factored model, but instead places assumptions
directly onv. They also assume a speci�c behaviour of the
v function under pairwise exchanges that is not required
here. Their assumptions are weaker in the sense that they
do not assume the probability of clicking on positionk only
depends on the identities of the items in positions[k � 1]
and the attractiveness of the item in positionk. On the
other hand, they do assume a speci�c behaviour of thev
function under pairwise exchanges that is not required by
our analysis. It is unclear which set of these assumptions is
preferable.

Lower bounds In the orthogonal case whered = L the
lower bound in (Lattimore et al., 2018) provides an example
where the regret is at least
(

p
TKL ). For d � L , the

standard techniques for proving lower bounds for linear
bandits can be used to prove the regret is at least
(

p
dTK ),

which except for logarithmic terms means our upper bound
is suboptimal by a factor of at most

p
K . We are not sure

whether either the lower bound or the upper bound is tight.

Open questions Only using data from the �rst position
seems suboptimal, but is hard to avoid without making
additional assumptions. Nevertheless, we believe a small
improvement should be possible here. Another natural ques-
tion is how to deal with the situation when the set of avail-
able items is changing. In practice this happens in many
applications, either because the features are changing or
because new items are being added or removed. Other inter-
esting directions are to use weighted least-squares estimators
to exploit the low variance when the examination probability
and attractiveness are small. Additionally one can use a gen-
eralised linear model instead of the linear model to model
the attractiveness function, which may be analysed using
techniques developed by Filippi et al. (2010) and Jun et al.
(2017). Finally, it could be interesting to generalise to the
setting where item vectors are sparse (see Abbasi-Yadkori
et al. 2012 and Lattimore & Szepesvári 2018, Chap. 23).


