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Abstract
Crowdsourcing has emerged as a core component
of data science pipelines. From collected noisy
worker labels, aggregation models that incorpo-
rate worker reliability parameters aim to infer a
latent true annotation. In this paper, we argue
that existing crowdsourcing approaches do not
sufficiently model worker correlations observed
in practical settings; we propose in response an en-
hanced Bayesian classifier combination (EBCC)
model, with inference based on a mean-field vari-
ational approach. An introduced mixture of intra-
class reliabilities—connected to tensor decompo-
sition and item clustering—induces inter-worker
correlation. EBCC does not suffer the limita-
tions of existing correlation models: intractable
marginalisation of missing labels and poor scal-
ing to large worker cohorts. Extensive empirical
comparison on 17 real-world datasets sees EBCC
achieving the highest mean accuracy across 10
benchmark crowdsourcing methods.

1. Introduction
Production systems for machine learning, natural language
processing, computer vision, and information retrieval are
regularly trained and evaluated on vast annotated datasets
collected by crowdsourcing services (Howe, 2008; Callison-
Burch & Dredze, 2010). While crowdsourced annotations
are low cost per label, they can be highly noisy, with few
annotations available per item, and with labels procured
from large cohorts of worker annotators (Difallah et al.,
2012). Consequently, inferring consensus aggregation of
collected annotations is a core crowdsourcing task, with the
simplest technique being majority voting. While simple to
implement, majority voting is deficient in granting workers
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equal votes towards consensus. Numerous probabilistic
models have emerged that parameterise worker reliability
to improve consensus accuracy (Dawid & Skene, 1979;
Whitehill et al., 2009; Kim & Ghahramani, 2012).

In this paper we argue by carefully worked example (Sec-
tion 4.1) and experimentation on synthetic data (Section 5.1)
that modeling correlation between worker labels has signif-
icant potential to improve truth inference. We propose a
model (Section 4.3) that captures worker correlation by mod-
eling true classes as mixtures of subtypes, with class-level
correlation a consequence of worker behaviour varying by
subtype. Extending a family of Bayesian classifier combi-
nation (BCC) models (Kim & Ghahramani, 2012), we term
our model enhanced BCC (EBCC) and develop a variational
approach for inference (Section 4.4).

While many relevant approaches exist for truth inference
(Section 2), very few of them model correlation between
workers. Among models that purely rely on crowdsourced
labels to infer the truth, the only one incorporating worker
correlation, dBCC (Kim & Ghahramani, 2012), has limita-
tions that disqualify it for crowdsourcing (Section 3.1.2): as
the missing annotations cannot be tractably marginalised
out, all workers must annotate all items; and because dBCC
possesses parameters quadratic in the number of workers, it
cannot scale to large worker cohorts. (In its original setting
of classifier combination, where all classifier predictions
are available on only moderately-many classifiers, dBCC’s
shortcomings are unimportant.) Fortunately our proposed
method EBCC suffers no such shortcomings (Section 4.2).
We connect our proposed mixture model for classes to ten-
sor decomposition (Sections 4.1, 4.2) and item clustering
(Section 4.5), to help explain EBCC’s operation.

We conduct extensive experiments on 17 datasets with
sources spanning music genre classification, news named
entities labeling, movie review and tweet sentiment analysis.
Compared to 10 state-of-the-art benchmark methods, EBCC
achieves the highest mean accuracy (Section 5).

2. Related Work
Initiating the area of worker label aggregation, Dawid &
Skene (1979) used a confusion matrix parameter to gener-
atively model worker labels conditioned on the item’s true
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annotation, for clinical diagnostics. Kim & Ghahramani
(2012) formulated a Bayesian generalisation with Dirich-
let priors and inference by Gibbs sampling, while Simpson
et al. (2013) instead used more efficient variational Bayesian
inference. Their analysis of inferred worker confusion ma-
trix clustering is a natural precursor to modelling worker
correlation. Taking a parametric hierarchical approach, Ve-
nanzi et al. (2014) explicitly modelled workers in clusters
within which confusion matrices are likely similar; follow-
up work used a non-parametric Dirichlet process for more
flexible generation of Dirichlet priors (Moreno et al., 2015).
Imamura et al. (2018) derived a minimax error rate for gen-
eral confusion-matrix-based models and proposed a worker
clustering model where the number of clusters can be de-
termined using the derived minimax error rate. Shah et al.
(2016) and Khetan & Oh (2016) proposed generalized DS
models involving item difficulty for aggregating binary la-
bels and adaptively collecting labels from crowd.

Forgoing confusion matrix parametrisation, Whitehill et al.
(2009) proposed an unsupervised item response theory ap-
proach which additionally models item difficulty. Another
approach, taken by Zhou et al. (2012), estimates true anno-
tations via a minimax entropy principle, which generatively
models worker labels from categorical distributions per
worker-item pair, promoting distributions close to worker
label empirical distributions.

The database community has independently studied truth
discovery, merging in entity resolution, and data fusion.
Similar to the DS model, but with scalar worker accuracy
parameters, the model of Demartini et al. (2012) is used
with EM. Li et al. (2014) model worker labels as truth-
centred Gaussian noise, with worker ability parametrised
by scalar variance. Aydin et al. (2014) iteratively update
estimated truth and worker weights so as to minimise the
sum of worker weight times distance between worker label
and estimated truth.

There is another line of work on jointly learning a classifier
and inferring the truth. Cao et al. (2019) used a logistic-
regression-style label aggregator considering worker labels
as features and making predictions via softmax. Discrimina-
tive aggregators are impossible to train using the maximis-
ing likelihood principle, but under their proposed MaxMIG
framework, such aggregators can be trained jointly with a
classifier by maximising their mutual information. In this
way, workers producing highly correlated labels can be de-
tected as “redundant features”, so the model is more robust
when workers make highly correlated mistakes.

3. Preliminaries
In this section, we first define the crowdsourced annotation
aggregation problem and our notation, then discuss two rep-

resentative Bayesian models for crowdsourcing aggregation.

Notation. Assume there are W workers who classify N
items into K categories. Let zi be the latent true annotation
of item i, yij the label that worker j assigns to item i,Wi

the set of workers who have labelled item i, We use the
capitalized letter of a variable to denote the collection of all
such variables, for example, Z is {z1, z2, . . . , zN}.

3.1. Bayesian Classifier Combination (BCC) Models

The BCC model (Kim & Ghahramani, 2012) was proposed
for unsupervised ensembling of discrete outputs from sev-
eral black-box classifiers. It has been successfully used
in crowdsourcing aggregation by making the analogue that
workers are black-box classifiers and labels are their discrete
outputs (Simpson et al., 2013). The BCC model has several
variants. Here we discuss two representative ones, namely
independent BCC (iBCC) and dependent BCC (dBCC).

3.1.1. INDEPENDENT BCC

The iBCC model is a directed graphical model which as-
sumes that given the true label zi of an item, worker labels
to item i are generated independently by different workers,

p (yi1, . . . , yiW |zi) =
W∏
j=1

p(yij |zi) . (1)

We refer to this as the worker conditional independence
assumption. Furthermore, p(yij = l|zi = k) = vjkl is
assumed invariant to items. We denote the parameterisation
of p(yij |zi = k) as ~vjk = (vjk1, vjk2, . . . , vjkK).

An important property of Equation (1) is that in the case
that not all workers have labelled item i, the likelihood of
its observed labels {yij}j∈Wi can be calculated easily by
marginalising those unobserved labels {yij}j /∈Wi

out,

p ({yij}j∈Wi
|zi) =

∑
{yij}j /∈Wi

p (yi1, . . . , yiW |zi)

=
∑

{yij}j /∈Wi

W∏
j=1

p(yij |zi) =
∏
j∈Wi

p(yij |zi) . (2)

The iBCC model is depicted in Figure 1. Apart from how
yij’s are generated, it assumes that zi ∼ Categorical(~τ),
~τ ∼ Dirichlet(~α), and ~vjk ∼ Dirichlet(~βk). The joint
distribution is

p(Y, Z, V, τ |α, β)

=
∏
i

p(zi|~τ)
∏
j∈Wi

p(yij |zi, Vj) ·Dir(~τ |~α)
∏
k

Dir(~vjk|~βk) .

The iBCC model is a popular extension to the DS
model (Dawid & Skene, 1979) and has been independently
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yij zi ~τ~vjk

~α
~βk

i = 1 . . . Nk = 1 . . .K

j = 1 . . .W

Figure 1. The plate notation for the iBCC model.

re-discovered and implemented using Gibbs sampling (Kim
& Ghahramani, 2012; Zhao et al., 2012), mean-field varia-
tional Bayes (Simpson et al., 2013; Felt et al., 2015), and
expectation propagation (Venanzi et al., 2014). Despite its
popularity, underlying independence assumptions prevent
the model from capturing correlations between labels from
different workers—a serious limitation as we will show.

3.1.2. DEPENDENT BCC

dBCC is an undirected graphical model proposed to over-
come the above limitation. In contrast to Equation (1),
dBCC uses a Markov network to model the dependence
between yij’s,

p (yi1, yi2, . . . , yiW |zi, V, U) = (3)

1

C(V,U, zi)
exp

 ∑
1≤j<j′≤W

ujj′yijyij′ +

W∑
j=1

vjziyij

 ,

where C(V,U, zi) is a partition function that normalises
the exponential part; U and V are two matrices of shape
(W,W,K,K) and (W,K,K) respectively; ujj′ll′ relates
worker j and j′, the larger it is the more likely worker j and
j′ assign l and l′ to the same item; vjkl relates yij and zi,
the higher it is the more likely worker j labels a class-k item
as l. The dBCC model further assumes ujj′ll′ and vjkl are
drawn from Gaussian distributions N (0, σ2

u) and N (0, σ2
v)

respectively. The generation of zi is the same as in iBCC.

Note that Equation (3) is the full joint distribution over la-
bels from all workers to item i, but in practice we may only
observe labels from a small set of workers, then marginali-
sation of the full joint is required to calculate the likelihood
of observing {yij}j∈Wi ,

p({yij}j∈Wi
|zi, V, U)=

∑
{yij}j /∈Wi

p (yi1, . . . , yiW |zi, V, U) .

Unfortunately, this marginalisation is intractable owing to
the partition function and the full connectivity between yij’s.
Furthermore, even if all workers have labelled all items,
thus removing the need of marginalisation, the number of
parameters is O(W 2K2) which is quadratic in W , and as
such the model cannot scale to large cohorts of workers.

Table 1. A toy example of two highly correlated workers A and B.

10 items (z = 0)

worker A 1 1 1 1 1 0 0 0 0 0
worker B 1 1 1 1 0 1 0 0 0 0

The above limitations make dBCC impractical for crowd-
sourcing aggregation, and motivate our proposed model in
the next section.

4. The Proposed Model
4.1. Fitting the Joint Distribution over Worker Labels

We begin with a toy example to illustrate the relation be-
tween modelling the correlation between workers and tensor
decomposition. Suppose there are two workers A and B
who have labelled 10 class-0 items, the labels they generate
are shown in Table 1.

The joint distribution over their labels is

p(yA, yB |z = 0) =

yA = 0 yA = 1[ ]
0.4 0.1 yB = 0
0.1 0.4 yB = 1

.

For each worker, the marginal distribution is [ 0.50.5 ], then
following Equation (1), we calculate the outer product of
two marginal distributions and obtain a very poor approxi-
mation to the joint, [ 0.25 0.25

0.25 0.25 ]. This is partly due to being
constrained to rank-1 approximations owing to the worker
conditional independence assumption. If using two rank-1
matrices, we could obtain a far better approximation,

p(yA, yB |z=0)≈ 1

2

[
.9
.1

]
⊗
[
.9
.1

]
+
1

2

[
.1
.9

]
⊗
[
.1
.9

]
=

[
.41 .09
.09 .41

]
,

where ⊗ is the tensor product. In general, the joint worker
label distribution of more workers can be approximated by
a linear combination of more rank-1 tensors, known also as
tensor rank decomposition (Hitchcock, 1927), i.e.,

p(y1, . . . , yW |z=k)≈
M∑
m=1

πkm~v1km⊗· · ·⊗~vWkm . (4)

This approach is more flexible than the Markov network
in dBCC as the quality of approximation can be controlled
by the number of components M instead of being con-
strained to a fixed capacity. Since the number of parameters
is O(WK2M) which is linear in W instead of quadratic,
this approach scales to large cohort of workers unlike dBCC.

4.2. Integrating with Tensor Decomposition

We interpret the tensor decomposition as a mixture model
where ~v1km ⊗ · · · ⊗~vWkm are the mixture components and
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πkm the mixture weights, so that we have

p(y1, . . . , yW |z) =
M∑
m=1

p(g = m|z)
W∏
j=1

p(yj |z, g = m) .

Here g is an auxiliary latent variable used for indexing mix-
ture components. We treat the M components under class
k as its M subtypes and use subtypes to explain the corre-
lation between worker labels given class k. For example,
in Table 1, the first 4 items and the last 4 items could be
two subtypes under class 0: a difficult subtype and an easy
subtype. This can explain the fact that both workers mis-
classify the first 4 items and correctly classify the last 4.
The remaining 2 items in the middle can be treated as half-
difficult and half-easy, thus could belong to two subtypes
with probability [0.5, 0.5]. The mixture components capture
the worker’s different behaviours under different subtypes.
In this case, two workers have 10% recall on the difficult
items and 90% on the easy ones.

Although worker labels are still assumed to be independently
generated under subtypes, the assumption is already weaker
than that in the iBCC model, endowing the model with more
capacity to capture detailed structures under classes.

Unlike the dBCC model, marginalisation is straight-forward
in the mixture model. Given a set of workersW , the likeli-
hood of observing {yj |j ∈ W} can be written as

p({yj}j∈W |z) =
∑

{yj}j /∈W

p(y1, . . . , yW |z)

=

M∑
m=1

p(g = m|z)
∏
j∈W

p(yj |z, g = m) . (5)

4.3. The Generative Process and Joint Distribution

Based on the iBCC model, we add the mixture weight and
components index variables ~πk and gi, and enlarge ~vjkmM
times to capture worker behaviour under different subtypes.
There are K ×M subtypes in total, and we assume item
i belongs to the gi-th subtype of class zi. The proposed
model is shown in Figure 2 and its generative process is:

1. for k in 1 . . .K

(a) ~πk|aπ ∼ Dir(aπ1M )

(b) for m in 1 . . .M , for j in 1 . . .W

• ~vjkm|~βk ∼ Dir(~βk)

2. ~τ |~α ∼ Dir(~α)

3. for i in 1 . . . N

(a) zi|~τ ∼ Cat(~τ)

(b) gi|~πzi ∼ Cat(~πzi)

yij zi ~τ

gi~πk

~vjkm

~α
aπ

~βk

i = 1 . . . Nm = 1 . . .M

k = 1 . . .K

j = 1 . . .W

Figure 2. The plate notation for our proposed model.

(c) for j ∈ Wi

• yij |~vjzigi ∼ Cat(~vjzigi)

The generative process is very similar to that of iBCC’s,
except that worker reliability is captured at subtype level
instead of class level. Following the generative process, the
joint distribution is

p(π, V, τ, Z,G, Y |aπ, α, β)
=p(π|aπ)p(V |β) · p(τ |α)p(Z|τ)p(G|π, Z)p(Y |Z,G, V )

∝
∏
k

∏
m π

aπ−1
km ·

∏
j

∏
k

∏
m

∏
l v
βkl−1
jkml

·
∏
k τ

αk−1
k ·

∏
i τzi ·

∏
i πzigi ·

∏
i

∏
j∈Wi

vjzigiyij .

4.4. The Inference Algorithm

The goal of inference is to find the most likely Z
given the worker labels Y and all hyper-parameters, i.e.
argmaxZ p(Z|Y, aπ, α, β), which is intractable to solve di-
rectly. It is possible to derive an expectation maximisation
(EM) algorithm for solving maxπ,V p(π, V |Y, aπ, α, β) so
that point estimates for π and V can be obtained, i.e. π∗ and
V ∗, then plug them into p(Z|π∗, V ∗, Y, aπ, α, β) to find the
most likely Z, just like the EM algorithm for DS.

However, empirical results show that the overall perfor-
mance of DS is worse than its Bayesian version iBCC (Sec-
tion 5), due to that the point estimates π∗ and V ∗ lose the un-
certainty information. Therefore, we favor a fully Bayesian
inference algorithm, and adopt a mean-field variational ap-
proach that seeks to find a distribution q that approximates
p(τ, Z,G, π, V |Y, aπ, α, β) so that the following holds

argmaxZ p(Z|Y, aπ, α, β)
= argmaxZ

∑
G

∫
p(τ, Z,G, π, V |Y, aπ, α, β) dτdπdV

≈ argmaxZ
∑
G

∫
q(τ, Z,G, π, V ) dτdπdV

=argmaxZ q(Z).

Where q is assumed to be factorised as

q(τ, Z,G, π, V ) =Dir(~τ |~ν) ·
∏
i q(zi, gi) ·

∏
k Dir(~πk|~ηk)

·
∏
k

∏
m

∏
j Dir(~vkmj |~µkmj).
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Since the joint distribution is fully factorised in q, it’s easy
to solve argmaxZ q(Z) by finding k that maximises every
individual q(zi = k), i.e. ẑi = argmaxk q(zi = k) .

Let ρikm = q(zi = k, gi = m) and γik = q(zi = k), then
follow the standard mean-field variational Bayes steps, we
can derive the update rules shown below

ρikm ∝ eEq log τk+Eq log πkm+
∑
j∈Wi

Eq log vkmjyij

γik =
∑
m ρikm

νk = αk +
∑
i γik

ηkm = aπ +
∑
i ρikm

µjkml = βkl +
∑
i∈Nj ρikm1[yij = l] .

The expectations are calculated as follows

Eq log τk = ψ(νk)− ψ(
∑
k νk)

Eq log πkm = ψ(ηkm)− ψ(
∑
m ηkm)

Eq log vjkml = ψ(µjkml)− ψ(
∑
l µjkml) ,

where ψ(·) is the digamma function. The Evidence Lower
BOund (ELBO) is

Eq log p(τ, Z,G, Y, π, V |aπ, α, β)− log q(τ, Z,G, π, V )

=
∑
k(νk − 1)Eq log τk +

∑
k

∑
m(ηkm − 1)Eq log πkm

+
∑
j

∑
k

∑
m

∑
l(µjkml − 1)Eq log vjkml

− logB(~α)−K logB(aπ1M )−WM
∑
k logB(~βk)

+H(Dir(~τ |~ν)) +
∑
iH(q(zi, gi)) +

∑
kH(Dir(~πk|~ηk))

+
∑
j

∑
k

∑
mH(Dir(~vjkm|~µjkm)),

where H(·) denotes entropy, and B(·) is the multivariate
beta function. The ELBO lower bounds p(Y |aπ, α, β), so
is considered a criterion of how well q approximates p. Be-
cause of the factorisation assumption of q, it has one single
mode; owing to properties of KL divergence, minimizing
KL(q‖p) will see q approximate one mode in p. However,
p is unlikely to have only one mode, therefore one has to
run the algorithm many times with different initialisations
and pick the best q based on ELBO.

4.5. Comparison to Item Clustering

000 100

011 111

001

010

101

110

Figure 3. A toy example
for item clustering on a
cube. denote 300
items and 100 items.

Both iBCC and our proposed
EBCC models can be considered
as clustering methods. For an
item, although we have no in-
formation about its content, its
worker labels serve as features.
The only unusual thing is that
the feature vector of an item may
have missing values due to that
not all workers have labelled all
items. Fortunately, the gener-
ative distribution in iBCC and

EBCC, as shown in Equation (2) and (5), can handle this by
marginalising out missing values.

Figure 3 shows the distribution over worker labels from
3 workers on 1600 items where all workers have labelled
all items. Colors indicate the majority voting aggregation
results. Note that this example is symmetric with respect to
workers, so all workers are equally good and the majority
voting aggregation is reasonable. We run both iBCC and
EBCC(M = 3) on this toy dataset. iBCC fits two clusters
with their centroids at 000 and 111,

12%

[
.99
.01

]
⊗
[
.99
.01

]
⊗
[
.99
.01

]
+88%

[
.43
.57

]
⊗
[
.43
.57

]
⊗
[
.43
.57

]
.

The cluster at 111 is very flat because the most mass of this
cluster is at 111’s three neighbours and it has to cover them.
Consequently, cluster 111 takes some mass from cluster
000 due to its flatness, which makes the latter much sharper.
EBCC, on the other hand, is flexible enough to fit all four
clusters at 000, 110, 101, and 011,

23%

[
.9
.1

]
⊗
[
.9
.1

]
⊗
[
.9
.1

]
+77%


1
3 [
.9
.1 ]⊗[ .1.9 ]⊗[ .1.9 ]

+ 1
3 [
.1
.9 ]⊗[ .9.1 ]⊗[ .1.9 ]

+ 1
3 [
.1
.9 ]⊗[ .1.9 ]⊗[ .9.1 ]

 ,

with three clusters grouped together under class 1. The
shapes of four clusters are also similar which is reasonable
due to the symmetry of the distribution.

Arguably, iBCC can also fit all four clusters if we relax the
constraint that the number of learned clusters has to be the
same as the number of classes. We call the relaxed iBCC
the Item Clustering model (IC). IC can learn a rectangle
K ′ × K confusion matrix for every worker, where K ′ is
the number of clusters (K ′ > K). We run IC on the same
toy dataset and find it finds the same four clusters as EBCC
does, with the portions being [ 14 ,

1
4 ,

1
4 ,

1
4 ].

However, IC doesn’t model the latent true labels of items,
so after obtaining the clustering results, post-processing is
required to mapK ′ clusters toK classes. Another drawback
is that prior knowledge, such as workers are better than
random guessing, can’t be encoded in IC because the true
label of every cluster is unknown during inference.

Therefore, our proposed EBCC is superior to IC, as the
hierarchical generative process of true labels zi and clusters
(subtypes, gi) defines the mapping from clusters to classes,
so that it can directly encode prior knowledge for every class
and doesn’t require any post-processing.

5. Experiments
Initialisation. We first initialise γik by majority voting,
i.e. γik = 1

|Wi|
∑
j∈Wi

1[yij = k], then multiply it with a
random vector drawn from Dir(1M ) to initialise ~ρik. For
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every dataset, we run the algorithm R times with different
random initialisations, and pick the solution with the highest
ELBO.

Hyperparameter settings. We set aπ = 0.1/M to en-
courage sparsity of clusters; and βkk = 4, βkk′ = 1, k 6= k′

to encode that we believe workers are better than random
guessing. This is equivalent to assuming that every worker
has correctly labelled 4 items under every class, and has
made all kinds of mistakes once, i.e. labelling a class-k item
as k′, k 6= k′. We explore two strategies to initialise αk: (1)
set αk = 1 to make the Dirichlet prior for ~τ uninformative;
(2) set αk =

∑
i γ

(0)
ik where γ(0)ik is the MV initialisation for

γik. The intuition is that MV can provide a reliable estimate
of the class portion in the dataset. We use a superscript Emp.

to indicate that the second strategy is used.

Number of components. M must be large enough so that
the model has capacity to fit the data. Empirically, over all
the datasets studied, we find the number of effective sub-
types learned by EBCC is < 10 even when larger values
of M were used. There are two key reasons: (1) subtypes
are learned to explain correlation between workers, which
requires pairs of workers to label the same items. Some of
the datasets had little overlap between pairs of workers, and
thus a small value of M is sufficient; and (2) the Dirichlet
prior for ~πk, i.e. Dir(0.1/M · 1M ) used in experiments,
encourages sparseness in the distribution of subtypes, there-
fore the solution tends to use few subtypes. However, if M
is too large, the risk of overfitting is increased as the model
has much more capacity, also there will be much more local
optima as the parameter space increases, so it would be
more difficult to converge to the global optimum.

Therefore, we suggest practitioners use M = 10 and suffi-
ciently large R, since we observe consistent improvement
for all values of M as R increases. We run experiments on
real-world datasets with M = 10, R = 1000, and synthetic
datasets with M = 2, 5, R = 10 since the synthetic datasets
have much smaller parameter space (only 5 workers) and
fewer subtypes per class (2).

5.1. Synthetic Datasets

We run MV, iBCC, and EBCC on synthetic datasets to show
that correlations between worker labels can be captured and
exploited to assist truth inference. In all datasets, there are
5 workers classifying items into two categories. Every class
has two subtypes and all subtypes are distributed evenly
with exactly 25% items belonging to each. All worker labels
are randomly generated according to their reliability. The
first two workers’ performances vary on different subtypes
with an average accuracy of 50% per class, while the last
three workers perform consistently with an accuracy of 70%
across subtypes. Table 2 summarises the settings.

Table 2. Accuracy of 5 workers on different subtypes.

z g w1 w2 w3 w4 w5 portion

0 0 0.9 0.9 0.7 0.7 0.7 25%
0 1 0.1 0.1 0.7 0.7 0.7 25%

1 0 0.9 0.1 0.7 0.7 0.7 25%
1 1 0.1 0.9 0.7 0.7 0.7 25%

100 500 2000 10000 50000 200000

Total number of items (#items).

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

u
ra

cy

MV

iBCC

EBCC(M = 2)

EBCC(M = 5)

Figure 4. MV, iBCC, and EBCC on synthetic datasets.

The first two workers are likely to agree with each other
on class-0 items, but generate different labels to class-1
items. This observation is helpful for inferring the truth,
and we expect the EBCC model which directly captures
such information will benefit from it. Following the settings
in Table 2, we run MV, iBCC, and EBCC (M = 2, 5) on
datasets with different sizes {1, 2, 5}×{102, 103, 104, 105}.
Figures 4 shows the results of three methods. Solid lines
show the mean accuracy of 10000 runs for sizes ≤ 5000
and 1000 runs for the remaining, and shaded regions plot
mean accuracy ± one standard deviation of the accuracy.

The performance of MV is very stable at 72.0% while iBCC
starts with 67.4% then surpasses MV when #items > 500
and finally converges to 78.4%. The first two workers are
completely random on the class level with their confusion
matrices being [ 0.5 0.5

0.5 0.5 ]. iBCC can estimate their confusion
matrices reliably as more data is available and effectively
ignore them during the inference. That’s why iBCC con-
verges to the theoretic MV performance of the last three
workers: 0.73 + 3 · 0.72 · 0.3 = 0.784. EBCC has the
ability to capture the special correlation between the first
two workers, therefore achieve the highest accuracy 85.9%
and consistently outperform MV and iBCC. There is little
difference between M = 2 and M = 5 for EBCC, which
suggests insensitivity to over-parameterisation.

Surprisingly, the performance of both EBCC models gets
worse when #items > 50k with their variance increasing
and decreasing when 50k ≤ #items ≤ 200k. We have
examined the estimates of parameters and found that EBCC
actually converges to the same solution as iBCC does. But
the ELBO of iBCC’s solution is lower than the ELBO of the
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correct solution, therefore we conclude that this is an opti-
misation problem and that our algorithm gets stuck on bad
local optima. As is commonly known, this is a weakness for
batch learning on large-scale datasets, therefore we believe
a stochastic optimisation algorithm would likely mitigate
the problem.

5.2. Real-world Datasets

There are 17 real-world datasets used in this paper coming
from three crowdsourcing dataset collections, namely the
union of (Venanzi et al., 2015)1 (8 datasets), (Zheng et al.,
2017)2 (7 datasets), and the GitHub repository for Spectral-
MethodsMeetEM paper (Zhang et al., 2014)3 (5 datasets),
noting that 3 datasets are in common between the last two
collections.

They cover a range of tasks: sentiment analysis for tweets
about weather CF (Josephy et al., 2014), music genre classi-
fication based on 30 sec music samples MS and sentiment
analysis for movie reviews SP (Rodrigues et al., 2013),
judging if a provided Uniform Resource Identifier (URI)
is relevant to a named entity extracted from news where
every URI describes an entity ZCall, ZCin, ZCus (Demar-
tini et al., 2012), judging whether two product descriptions
refer to the same product for entity resolution prod (Wang
et al., 2012), sentiment analysis for company mentioned
in tweets senti (Zheng et al., 2017), facial expression
classification face (Mozafari et al., 2014), judging age-
appropriateness (P, PG, R, X) of a website given its link
adult (Mason & Suri, 2012), determining whether an
image contains at least one duck bird (Welinder et al.,
2010), labeling the breed of dogs dog (Zhang et al., 2014),
recognising textual entailment rte (Snow et al., 2008), as-
sessing the quality of retrieved documents trec (TREC
2011 crowdsourcing track)4, judging the relevance of web
search results web (Zhou et al., 2012). Finally, CF* and
SP* are re-annotaed versions of CF and SP by Venanzi et al.
(2015).

Methods. Zheng et al. (2017) compared 17 existing aggre-
gation methods and released their implementations, and 10
of them supporting a multi-class setting are used in our ex-
periment including MV, ZenCrowd (Demartini et al., 2012),
GLAD (Whitehill et al., 2009), DS (Dawid & Skene, 1979),
Minimax (Zhou et al., 2012), iBCC-EP (Kim & Ghahra-
mani, 2012), CBCC (Venanzi et al., 2014), LFC (Raykar
et al., 2010), CATD (Li et al., 2014), and CRH (Aydin et al.,
2014). We also include a mean-field variational inference
implementation of iBCC (iBCC-MF) to compare with our

1https://github.com/orchidproject/active-crowd-toolkit
2https://zhydhkcws.github.io/crowd truth inference/index.html
3https://github.com/zhangyuc/SpectralMethodsMeetEM
4https://sites.google.com/site/treccrowd/2011
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Figure 5. Mean accuracy on 17 real-world datasets. The baseline
of the bar plot is the average of all methods’ mean accuracies.

proposed method implemented by the same technique. We
run EBCC with M = 10, R = 1000 and two settings for
αk as discussed in hyperparameter settings.

Results. Figure 5 shows the mean accuracy of every
method on 17 datasets and Figure 6 presents the accuracies
on all datasets. More details are provided on our GitHub
repository.5

EBCCEmp.M=10 has the highest mean accuracy of 84.5%,
outperforming the best existing method iBCC-MF which
achieves 83.4%. Overall, confusion-matrix-based proba-
bilistic models (EM, iBCC, CBCC, LFC) perform similarly
with mean accuracy within range [82.9%, 83.4%], followed
by three “1-coin” models, namely, CATD (82.8%), GLAD
(82.3%), ZC (82.2%). This name arises from these models
only learning a single parameter per worker to capture their
accuracy. However, a worker may behave differently across
classes or subtypes, which “1-coin” models cannot capture.
Minimax is an interesting model in that it largely outper-
forms others on bird and web but performs the worst on
MS, the three ZCs, and prod. This may be due to Minimax
not being a probabilistic model thus its objective function
is not well regularised and often too aggressive. This may
also explain the results for CRH, another non-probabilistic
model.

On most datasets, EBCCEmp.M=10 is either the best method, or
very close to the best. There are only 4 datasets where
EBCC is more than 1% below the best: web(12.0%),
adult(2.11%), bird(1.86%), face(1.03%). These are
the datasets with the lowest average worker accuracy among
all datasets: web(37%), face(60%), bird(64%), adult(65%).
Note that on bird EBCCEmp.M=10 is second only to Minimax,
whose unstable performance would prevent it from being
used in practice. For the other three datasets, it appears
that EBCCEmp.M=10 is overfitting the noise more so than other
methods, which follows as EBCC has many more parame-
ters. We suggest using lower capacity models for very noisy

5https://github.com/yuan-li/truth-inference-at-scale
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Figure 6. Accuracies of all methods on 17 real-world datasets.

datasets, e.g. iBCC or even 1-coin models such as ZC.

Apart from mean accuracy, we identify a failure case for
EBCCM=10. Its accuray on the web dataset is 46.9%,
which is much lower than EBCCEmp.M=10’s on the same dataset.
After examining the estimates of parameters, we found that
it learns a very skewed class distribution ~τ with the value
of one class (A) being zero, consequently it doesn’t classify
any items into class A. Further analysis shows that many
workers confuse class A with another two classes, which
absorb all clusters from class A in the learning process.
Our solution is to set the prior of ~τ to be the class distri-
bution estimated by majority voting to encode our belief.
As shown in Figure 5 and 6, EBCCEmp.

M=10 achieves better
overall performance than EBCCM=10 does.

6. Conclusion
We have developed a Bayesian model for aggregating crowd-
sourced labels that is capable of capturing correlations be-
tween labels of different workers. Our model, enhanced
Bayesian classifier combination (EBCC), achieves this by in-
troducing a mixture of subtypes per true class, while worker
performance varying per subtype induces inter-worker cor-
relation. The efficacy of EBCC is demonstrated in exten-
sive experiments on synthetic data, which confirms the
importance of worker correlation, and over a suite of 17
crowd-sourced datasets drawn from a wide variety of do-
mains, where EBCC achieves state-of-the-art for 10/17 of
the datasets. We intend to explore the application of stochas-
tic optimisation to EBCC in future work, which should
improve the method’s robustness.
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