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This supplementary material contains mathematical proofs (Section A), implementation details for the algorithms used in the
supervised learning experiments (Section B), pseudo-code for the M-learning algorithm (Section C), implementation details
for the Tetris experiments (Section D), additional results (Section E), and descriptions of the real-world data sets (Section F).

A. Mathematical Proofs
Theorem 1. Let y be distributed with meanXβ and variance σ2In×n, where ||β||2 <∞, σ2 > 0, and In×n is the identity
matrix of size n. Let β̄ := 1

p

∑p
i=1 βi denote the mean of the true weights. Then,

(1) The minimum-bias equal-weighting estimator of γ is β̄.
(2) For orthonormal data matrixX (i.e.,XTX = Ip×p),

(a) EW is the minimum-bias equal-weighting estimator,
(b) ∆bias2 = pβ̄

2
,

(c) ∆MSE = pβ̄
2 − pσ2,

(d) The squared mean weight β̄
2
, and thus ∆bias2 and ∆MSE, is higher on a directed set of weights than on an undirected

set of weights.

Proof. (1) The bias of an equal-weighting estimator can be written as follows:

||E[β̂ − β]||22 = ||E[γ1− β]||22

=

p∑
i=1

(γ − βi)2

=

p∑
i=1

(γ2 − 2γβi + β2
i ).

The derivative of the bias with respect to γ is then given by the following:

∂

∂γ

p∑
i=1

(γ2 − 2γβi + β2
i ) =

p∑
i=1

(2γ − 2βi),
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Equating this derivative to 0 yields the following:
p∑

i=1

(2γ − 2βi) = 0

2γp = 2

p∑
i=1

βi

γ =

∑p
i=1 βi
p

= β̄.

(2a) From here on, we assume thatX is orthonormal, that is,XTX = Ip×p. Recall that γEW is calculated using simple
(univariate) linear regression on the model

ŷ = γX1, (6)
where γ is the equal-weighting parameter to be estimated and 1 is a column-vector of ones of length p. Defining c := X1,
the simple linear regression estimate of Equation (6) is given by

γEW =
ryc
sc
, (7)

where ryc is the sample correlation coefficient between y and c, and sc is the standard deviation of c. For y = Xβ + ε
with E[ε] = 0, the expected value of EW’s γEW is given by

E[γEW ] = E[
ryc
sc

]

= E[
1
TXTy

1TXTX1
]

= E[
1
TXT (Xβ + ε)

1T1
]

= E[
1
TXTXβ

1T1
] + E[

ε

1T1
]

=

∑p
i=1 βi
p

+ 0

= β̄.

(2b) We compute the squared biases for EW and the 0-model. Let β̂EW = γEW1 and β̂0 = 0 the weight estimates for EW
and the 0-model, respectively. Then, the squared biases are given by

bias2(β̂EW ) = ||E[β̂EW ]− β||2

= (β̄1− β)T (β̄1− β)

= p
(
β̄
)2 − 2

p∑
i=1

β̄βi + βTβ

= βTβ − p
(
β̄
)2

= ||β||2 − p
(
β̄
)2

bias2(β̂0) = ||0− β||2

= ||β||2.

The difference in biases, ∆bias2, can be computed directly as follows:

∆bias2 = bias2(β̂0)− bias2(β̂EW )

= ||β||2 − (||β||2 − p
(
β̄
)2

)

= pβ̄
2
.
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(2c) The variance for the 0-model is clearly 0. For the EW model, we use Equation (7) to note that the EW estimate
β̂EW = 1(1TXTX1)−11TXTy is a linear function of y. The trace of its variance tr(V ar(β̂EW )) is thus written as
follows:

tr(1(1TXTX1)−11TXTV ar(y)X1(1TXTX1
T )−11T )

= σ2tr(1(1TXTX1)−11TXT IX1(1TXTX1
T )−11T )

= σ2p.

The result follows directly by adding these variances to the squared biases from Result 2b.

(2d) It remains to show that the squared average weight
(
β̄
)2

is larger on a set of directed predictors than on an undirected
set of predictors. Let β|| = (|β1|, . . . , |βp|) denote the weights on a positively directed data set. Then the following holds:

(
β||
)2 ≥ (β̄)2∣∣β||
∣∣ ≥ ∣∣β̄∣∣

β|| ≥
∣∣β̄∣∣ .

The last line follows directly from Jensen’s inequality for the convex function f(x) = |x|.

B. Supervised Learning Experiments
The regularization strength λ of all regularized linear models was chosen using k-fold cross validation. The cross-validation
parameter k was set to min(10, n), where n is the training set size.

Shrinkage toward equal weights (STEW). We used STEW with q = 2 for the experiments. Solutions were computed
using the closed-form solution described in the main article. The regularization strength λ was optimized on the training set
using k-fold cross validation on a log-spaced grid with maximum 100 candidate values (the search stops early when the
norm of the difference between actual and previously estimated weights is smaller than some small ε > 0).

Nonnegative lasso (NNLasso). We used the R package nnlasso (Mandal & Ma, 2016) to estimate non-negative least
squares with lasso penalty (NNLasso). The regularization strength λ was optimized using k-fold cross-validation and using
the built-in search path of the nnlasso package.

Ridge regression, the Lasso, and the elastic net. We used the R package glmnet (Friedman et al., 2015). The elastic net
has two main parameters. Parameter λ ≥ 0 controls the overall strength of regularization. Parameter 0 ≤ α ≤ 1 controls the
amount of ridge versus Lasso characteristics. The parameters α and λ were jointly optimized using k-fold cross-validation.
We tested α ∈ {0, 0.25, 0.5, 0.75, 1} and used the built-in search path of glmnet for λ. For ridge regression and the Lasso,
only λ has to be tuned.

Learning curves on real-world data sets (Figure 4) were computed as follows. We pre-processed each real-world data by
standardizing responses and predictors to have zero mean and unit variance. Missing predictor values were mean imputed
and observations with missing response values were removed from the data set. We set aside a random subset of 10% of the
observations as test set. We then progressively sampled training sets of increasing size using the remaining observations.
Results were averaged across 200 repetitions, each corresponding to a different train/test-split of the data.

C. Pseudo-Code for M-learning
Pseudo-code for M-learning can be found in Algorithm 1. The rollout procedure that is used within M-learning is given in
Algorithm 2.
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Algorithm 1 M-learning
Notation: p ∈ N is the number of features, A(s) is the set of actions available in state s.
Output: β ∈ Rp, a vector of action-utility weights, initialized randomly.
Input:
U(s, a) = f(β,φ(s, a)), where // action-utility function, e.g., linear U(s, a) = βTφ(s, a)
φ(s, a) ∈ Rp // vector of state-action features

D = ∅ // data structure to store choice sets (e.g., Table 2)
M ∈ N // number of rollouts
T ∈ N // rollout length
γ ∈ [0, 1] // discount factor
n(k) : N→ N // batch size at step k
πr(s,β) : S × Rp → R // rollout policy that returns an action for given s and β

s← state sampled from initial state distribution
for k = 0, 1, 2, . . . do

for all a ∈ A(s) do
Û(s, a)← Rollout(s, a,M, T, γ, πr(s,β))

end for
ã← argmax

a∈A(s)

Û(s, a)

Take action ã and observe new state s′

if s′ is not terminal then
D ← D ∪ {{ã,φ(s, a1),φ(s, a2), ...,φ(s, a|A(s)|)}} // append choice set to D
s← s′

else
s← state sampled from initial state distribution // reset episode

end if
Construct batch Dk using n(k) most recent choice sets from D
Update β using multinomial logistic regression on batch Dk

end for

Algorithm 2 Rollout(s, a,M, T, γ, πr(s,β))
Notation: G(s, a) : S ×A(s)→ S × R is a generative model that returns new state s′ and reward r for given s and a
Input:
s ∈ S // state
a ∈ A(s) // action to be evaluated
M ∈ N // number of rollouts
T ∈ N // rollout length
γ ∈ [0, 1] // discount factor
πr(s,β) : S × Rp → R // rollout policy that returns an action for given s and β

for all j = 1, . . . ,M do
(s′, r)← G(s, a)
Ûj ← r
s← s′

for all t = 1, . . . , T − 1 do
(s′, r)← G(s, πr(s,β))
Ûj ← Ûj + γtr
s← s′

end for
end for
return Û ← 1

M

∑M
j=1 Ûj
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D. Tetris Experiments
Our implementation of M-learning in Tetris is available at https://github.com/janmaltel/stew-tetris.

Dominance filters. We used simple and cumulative dominance filters as described by Şimşek et al. (2016). The use of these
filters considerably reduced the number of actions to be evaluated in a given state, and thus the computational cost of the
rollout procedure. The filters were used during learning but not during testing. Both filters require information about feature
directions. We set feature directions to the signs of the weights of the BCTS policy (Thiery & Scherrer, 2009). Cumulative
dominance filters also require an ordering of the features. We ordered features by decreasing magnitude of BCTS weights.
Feature directions and order are shown in Table 1

Feature Direction Order

Rows with holes negative 1
Column transitions negative 2

Holes negative 3
Landing height negative 4

Cumulative wells negative 5
Row transitions negative 6

Eroded piece cells positive 7
Hole depth negative 8

Table 1. Feature directions and order of the BCTS policy. The features are ordered from top to bottom by decreasing magnitude of the
corresponding weight.

Choice data sets. Discrete choice models are trained using a data set of observed choice decisions made by one or multiple
agents (e.g., Train, 2009). One observation in this data set consists of the set of alternatives available to the agent (also called
choice set) and the outcome of the decision, that is, the identity of the chosen alternative. Each alternative is described by a
set of features φ1, . . . , φp. Table 2 shows an example choice data set with 4 observations. Unlike standard classification or
regression data sets, one observation here corresponds to multiple rows, each describing one alternative in the choice set.
Note that the number of alternatives varies among different choice sets. In Tetris, the different alternatives are the different
placements of the falling tetrimino on the current board. The choice variable indicates for each placement whether it was
chosen or not.

choice set id choice rows with holes (φ1) ... hole depth (φ8)
0 0 φ1(s0, a1) ... φ8(s0, a1)
0 0 φ1(s0, a2) ... ...
0 1 φ1(s0, a3)
1 0 φ1(s1, a1)
1 1 φ1(s1, a2)
1 0 φ1(s1, a3)
1 0 φ1(s1, a4)
2 1 φ1(s2, a1)
2 0 φ1(s2, a2)
3 0 φ1(s3, a1) ...
3 0 φ1(s3, a2) ... ...
3 0 φ1(s3, a3) ... ...
3 0 φ1(s3, a4) ... ...
3 1 φ1(s3, a5) ... φ8(s3, a5)

Table 2. Sample choice data set with 4 observations. Choice sets are of varying size. The choice variable denotes the chosen alternative
for each choice set. Each alternative in a choice set is characterized by the 8 feature values φ1, . . . , φ8.

https://github.com/janmaltel/stew-tetris
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Figure 6. Quality of the policy learned as a function of the number of calls to the generative model (in thousands). Quality of the policy is
measured by the mean score obtained in 10 Tetris games. The learning curves show mean score across 100 replications of the algorithm.
M-learning algorithms used a per-iteration budget of 2,380 calls to the generative model and were tested after 3, 5, 10, 20, 50, 100, 200,
and 300 iterations. CBMPI used a per-iteration budget of 23,800 calls to the generative model and was tested after 1, 2, 3, 5, 10, 20, and
30 iterations. See Section E for further details.

E. Additional Results
CBMPI in Tetris. We compared the performance of M-learning to classification-based modified policy iteration (CBMPI,
Scherrer et al., 2015), the best-performing reinforcement learning algorithm for Tetris reported in the literature. On the
10× 10 board, the results reported by Scherrer et al. used a per-iteration budget of 8,000,000 calls to the generative model
of Tetris. In comparison, the per-iteration budget we used for M-learning in Figure 5 was 2,380. In order to compare the
algorithms meaningfully, we experimented with CBMPI using budgets in the same range as those used for M-learning.
CBMPI’s per-iteration budget is a function of the number of states from which rollouts are started (called the rollout set size
N ), the number of rollouts from each start state, M , and the rollout length, m. The best-performing version reported in
Scherrer et al. (2015) used N = 42, 000, M = 1, and m = 5, resulting in a budget of B = (m+ 1)MN |A| = 8, 000, 000.
In order to obtain smaller per-iteration budgets, we decreased the rollout set size N while keeping all other parameters
fixed. CBMPI using a budget of 2,380 (obtained by setting N = 13) resulted in highly unstable value function estimates.
The algorithm could not learn a useful policy. We then gradually increased CBMPI’s budget until value function estimates
stabilized. Figure 6 shows results for CBMPI using a per-iteration budget of 23, 800 (obtained by setting N = 124). CBMPI
achieved lower mean score than regularized versions of M-learning across the entire learning curve.

STEW in environments with high variance of weights. Figure 7 shows learning curves for STEW in an environment in
which the true weights are highly non-equal. We used the experimental setup of Section 5.1 with prior weight distribution
β ∼ U(0, 50).

Ordering of predictors in total variation models. The regularization behavior of total variation (TV) models depends
on the order of the predictors. We compared the regularization paths of TV models with different orders of predictors to
those of the l1 and l2 versions of STEW on the Rent data set. The first two panels from the left of the top row in Figure 8
reproduce the regularization paths for the l1 and l2 versions of STEW, shown in Figure 1 of the main article. The rightmost
panel of the top row shows the regularization path taken by a TV model, where the predictors have been ordered by the
value of the OLS estimates on the training set. The bottom row shows the regularization paths for three TV models with
randomly chosen orderings of predictors. The regularization behavior changes notably for different orderings of predictors.

Individual learning curves on real-world data sets. We show learning curves on the individual data sets that were used
to compute the average learning curves shown in figures 5c and 5f in the main article. Figure 9 corresponds to Figure 5c:
feature directions were estimated using an initial Lasso estimate on the entire data set. Figure 10 corresponds to Figure 5f:
feature directions were estimated on the training set using Pearson correlation coefficients.
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Figure 9. Median root mean squared error (RMSE) across 200 repetitions on individual data sets. Predictors were directed based on a
Lasso estimate on the entire data set.
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Figure 10. Median root mean squared error (RMSE) across 200 repetitions on individual data sets. Predictors were directed based on the
training set using Pearson correlation coefficients between features and response.
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F. Real-World Data Sets
Abalone. OBJECTS: 4177 abalones (sea snails). CRITERION: age (measured in visible rings). ATTRIBUTES: sex, length,
diameter, height, whole weight, shucked weight, viscera weight, shell weight. SOURCE: This data set comes from a study
by Nash et al. (1994). It is available from the UCI Machine Learning Repository (Dua & Graff, 2019).

Airfoil. OBJECTS: 1503 airfoils at various wind tunnel speeds and angles of attack. CRITERION: scaled sound pressure
level, in decibels. ATTRIBUTES: frequency, angle of attack, chord length, free-stream velocity, suction side displacement
thickness. SOURCE: This data set comes from a study by Brooks et al. (1989). It is available from the UCI Machine
Learning Repository (Dua & Graff, 2019).

Algae. OBJECTS: 340 samples from European rivers taken over a period of approximately one year. CRITERION: density
of algae type a. ATTRIBUTES: concentrations of eight chemicals, season (fall, winter, spring, summer), river size (small,
medium, large), fluid velocity (low, medium, high). SOURCE: The data set is from the 1999 Computational Intelligence and
Learning (COIL) competition. It is available from the UCI data repository (Dua & Graff, 2019), where it is labeled COIL
1999 competition data.

Cigarette. OBJECTS: 528 states in the USA (in different years). CRITERION: packs per capita. ATTRIBUTES: year,
consumer price index, state population, state personal income, average state, federal, and average local excise taxes for
fiscal year. SOURCE: The data set was assembled by Professor Jonhatan Gruber, MIT. It has been used in an introductory
econometrics textbook (Stock & Watson, 2003). It is available electronically from R package Ecdat (Croissant, 2013).

Concrete. OBJECTS: 1030 concrete samples. CRITERION: concrete compressive strength. ATTRIBUTES: cement
(kg/m3), blast furnace slag (kg/m3), fly ash (kg/m3), water (kg/m3), superplasticizer (kg/m3), coarse aggregate (kg/m3),
fine aggregate (kg/m3), age in days. SOURCE: This data set comes from a study by Yeh (1998). It is available from the UCI
Machine Learning Repository (Dua & Graff, 2019).

Diabetes. OBJECTS: 442 diabetes patients. CRITERION: a quantitative measure of disease progression one year after
baseline. ATTRIBUTES: age, sex, body mass index, average blood pressure and six blood serum measurements. SOURCE:
The data was used in Efron et al. (2004). It is available electronically from R package lars (Hastie & Efron, 2013).

Fish. OBJECTS: 413 female Arctic charr. CRITERION: number of eggs. ATTRIBUTES: age, weight, mean egg weight.
SOURCE: This prediction problem is from a study by Czerlinski et al. (1999). The data were collected by Christian Gillet
from the French National Institute for Agricultural Research. The data set used in this study was obtained via personal
communication in April 2012.

Lung. OBJECTS: 654 children. CRITERION: forced expiratory volume in liters. ATTRIBUTES: age in years, height in
inches, gender, exposure to smoking. SOURCE: The data were collected by Tager et al. (1979). The data set is reported in
Ekstrom & Sørensen (2010) and is electronically available from associated R package isdals (Ekstrom & Sorensen, 2014)
where it is labeled fev.

Mileage. OBJECTS: 398 cars built in 1970–1982. CRITERION: mileage. ATTRIBUTES: number of cylinders, engine
displacement, horsepower, vehicle weight, time to accelerate from 0 to 60 mph, model year, origin (American, European,
Japanese). SOURCE: The data set was prepared by the Committee on Statistical Graphics of the American Statistical
Association for its Second Exposition of Statistical Graphics Technology, held in conjunction with the Annual Meetings
in Toronto, August 15–18, 1983. It is electronically available from StatLib (Meyer & Vlachos, 1989), where it is labeled
cars. The version used in the current work is from the UCI Machine Learning Repository (Dua & Graff, 2019), named
Auto+MPG, in which 8 of the original cars were removed because their mileage values were missing.

Rent. OBJECTS: 2053 apartments in Munich, Germany. CRITERION: rent per square-meter in euros. ATTRIBUTES: size,
number of rooms, year of construction, whether the apartment is located at a good address, whether the apartment is located
at the best address, whether the apartment has warm water, whether the apartment has central heating, whether the bathroom
has tiles, whether there is special furniture in the bathroom, whether the apartment has an upmarket kitchen. SOURCE: The
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data set is reported in Fahrmeir et al. (2010) and is electronically available from R package catdata (Schauberger & Tutz,
2014).

Schooling. OBJECTS: 3010 individuals in the US. CRITERION: log of wage. ATTRIBUTES: lived in smsa 1966, lived in
smsa in 1976, grew up near 2-yr college, grew up near 4-yr college, grew up near 4-year public college, grew up near 4-year
private college, education in 1976, education in 1966, age in 1976, lived with mom and dad at age 14, single mom at 14,
step parent at 14, lived in south 1966, lived in south in 1976, mom-dad education class (1-9), black, enrolled in 1976, the
kww score, normed IQ score, married in 1976, library card in home at age 14, experience in 1976. SOURCE: The data set
comes from the National Longitudinal Survey of Young Men (NLSYM) and has been used by Card (1993). It is available
electronically from R package Ecdat (Croissant, 2013).

Wages. OBJECTS: 4360 males in the US (from 1980 to 1987). CRITERION: log of wage. ATTRIBUTES: year, years of
schooling, years of experience, whether the wage has been set by collective bargaining, ethnicity, whether married, whether
health problem, industry (12 levels), occupation (9 levels), residence (rural area, north east, nothern central, south). SOURCE:
The data set comes from the National Longitudinal Survey (NLS Youth Sample) and has been used by Vella et al. (1998). It
is available electronically from R package Ecdat (Croissant, 2013) where it is called Males.

White wine. OBJECTS: 4898 white wines. CRITERION: quality score (between 0 and 10). ATTRIBUTES: fixed acidity,
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol.
SOURCE: This data set comes from a study by Cortez et al. (2009). It is available from the UCI Machine Learning
Repository (Dua & Graff, 2019).
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