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Abstract
Learning from small data sets is difficult in the ab-
sence of specific domain knowledge. We present a
regularized linear model called STEW, which ben-
efits from a generic and prevalent form of prior
knowledge: feature directions. STEW shrinks
weights toward each other, converging to an equal-
weights solution in the limit of infinite regulariza-
tion. We provide theoretical results on the equal-
weights solution that explains how STEW can
productively trade-off bias and variance. Across
a wide range of learning problems, including
Tetris, STEW outperformed existing linear mod-
els, including ridge regression, the Lasso, and
the non-negative Lasso, when feature directions
were known. The model proved to be robust to
unreliable (or absent) feature directions, outper-
forming alternative models under diverse condi-
tions. Our results in Tetris were obtained by using
a novel approach to learning in sequential deci-
sion environments based on multinomial logistic
regression.

1. Introduction
Domain knowledge can be very useful in machine learning,
especially when training data are costly or difficult to ob-
tain. We explore a particular type of domain knowledge in
supervised learning: feature directions. The direction of a
feature indicates whether the feature is associated positively
or negatively with the response variable. In many applica-
tions, feature directions are known or can be estimated with
ease. For example, in learning how to play the game of
Tetris, most players would agree that the number of holes is
associated negatively with the game score.

How can such domain knowledge be fruitfully incorporated
into the learning process? We present an approach based
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on regularization. Specifically, we propose a model that
introduces a bias toward giving all features equal weight. We
call this model Shrinkage Toward Equal Weights (STEW).

The ordinary least squares (OLS) solution to linear regres-
sion is unbiased but can have high variance when the training
set is small. Regularization reduces variance by introducing
assumptions about the data and anchoring the weights in a
way that reflects these assumptions. For example, Lasso-
type models (Tibshirani, 1996; Bühlmann & van de Geer,
2011) assume that the features are irrelevant and shrink
weights toward zero with increasing regularization strength.

Rather than shrinking the weights toward zero, STEW
shrinks them toward each other, converging to equal weights
in the limit of infinite regularization. We study properties of
the equal-weights model as a source of intuition regarding
when, and why, STEW can perform well. We provide theo-
retical evidence that EW has relatively low bias and that this
bias is further reduced when feature directions are known.

Our empirical analysis shows that these properties translate
from the equal-weights model to STEW. When information
on directions is available, STEW routinely outperforms
existing models including the non-negative Lasso, which
also incorporates feature directions. Unlike methods that
are based on non-negativity constraints, we found STEW
to be robust when the underlying assumption of known
feature directions was violated, that is, when the information
about directions was unreliable or absent. Finally, we found
STEW to be remarkably useful when learning to play Tetris.

Our results in Tetris were obtained using a novel approach to
learning in sequential decision environments. This approach,
called M-learning, is built around multinomial logistic re-
gression. Here, we describe M-learning and present results
from when it is used for learning to play Tetris, with or
without regularization. A subsequent article will more fully
explore the properties and behavior of M-learning.

2. Background
We consider the linear regression problem where the objec-
tive is to predict a response y ∈ R by

ŷ = β0 +

p∑
j=1

βjxj , (1)
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where x1, . . . , xp are feature values and β0, . . . , βp are fea-
ture weights. To estimate feature weights, a training set
of n observations, (yi, x1i, . . . , xpi), i = 1, . . . , n, is avail-
able. Following the standard in the regularization litera-
ture (e.g., Friedman et al., 2009), we assume that features
and responses are standardized so that 1

n

∑n
i=1 yi = 0,

1
n

∑n
i=1 xij = 0, and 1

n

∑n
i=1 x

2
ij = 1, for j = 1, . . . , p.

It follows that β0 is zero and thus can be omitted. We use
matrix notation, with y ∈ Rn denoting the response vector,
X ∈ Rn×p the feature matrix, and β = (β1, . . . , βp) the
weight vector. The Ordinary least squares (OLS) estimate is
the set of weights that minimizes the residual sum of squares
‖y −Xβ‖22 on the training set.

Regularized linear models. Most regularized linear mod-
els minimize a penalized residual sum of squares of the form
L(β, λ) = ‖y −Xβ‖22 + λP (β), where P is the penalty
function and λ ≥ 0 is the strength of the penalty. Well
known penalty functions use the lq-norm of the weight vec-
tor, ‖β‖q . For example, ridge regression (Hoerl & Kennard,
1970) uses the l2 penalty, the Lasso (Tibshirani, 1996) uses
the l1 penalty, and the elastic net (Zou & Hastie, 2005) uses
a convex combination of the l1 and the l2 penalties. These
models shrink all weights toward zero as λ→∞. We refer
to them as models that shrink toward zero.

Equal-weighting models. An equal-weighting model is
the linear model of Equation (1) where all feature weights
have the same value (γ):

ŷ = γ

p∑
j=1

xj . (2)

We define Equal Weights (EW) as the least-squares estima-
tor of γ and denote the corresponding estimate with γEW .
EW has a long history of use in the social sciences. It ap-
peared in a seminal paper by Dawes & Corrigan (1974) that
showed that even so-called improper models (such as EW)
could outperform human expert judgements. The article
also demonstrated that EW can compete well with OLS
on real-world data sets, stimulating further work on equal-
weighting models in the 1970s, continuing to this day (Ein-
horn & Hogarth, 1975; Wainer, 1976; Davis-Stober et al.,
2010; Graefe, 2015; Lichtenberg & Şimşek, 2017). Equal-
weighting models have also been found to be useful in other
types of problems, including paired comparison (Gigerenzer
et al., 1999) and portfolio optimization (DeMiguel et al.,
2009).

Directability of features. The direction of a feature is
defined as the sign of the corresponding weight, which
can be positive or negative. An environment is said to be
directable if the directions of the features are known. In a
directable environment, features can be “directed” so that
the weights are all positive (for example, by recoding any
feature with a negative weight by multiplying its values
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Figure 1. Weight estimates, as a function of the regularization
strength λ, for STEW with q = 1 and q = 2, ridge regression, and
the Lasso on the Rent data set with seven standardized features.

by −1). Many problems are naturally constrained to have
only positive weights (for example mixing problems, see
Slawski & Hein, 2013, and references therein). In other
problems, features can be directed intuitively by the user,
as supported by experimental evidence (Dana & Thomas,
2006; Katsikopoulos et al., 2010). Even without any prior
knowledge, directions can be estimated from relatively few
training data (Şimşek & Buckmann, 2015).

Notice that EW is a sensible model only if the features are
directed so that the true weights have identical signs. The
rationale for the use of EW in psychology and decision
making is the assumption that people are good in choos-
ing relevant features and know—through intuition or past
experience—how to direct them (Einhorn & Hogarth, 1975).
The model we propose, STEW, can also use this knowledge
fruitfully.

3. Shrinkage Toward Equal Weights
Motivated by the surprisingly high performance of equal-
weighting models in the literature—not only in regression
but also in classification, paired comparison, and portfolio
optimization—we propose to use the equal-weights model
as a prior in regularization. In other words, we make the
initial assumption that features have equal impact on the re-
sponse variable. This assumption leads to the regularization
penalty λ

∑
i<j | |βi| − |βj | |q, for q > 0, which penalizes

differences in the magnitude of the weights. It leaves the
choice of feature directions free. However, the differences
of absolute values within the penalty function make the loss
function difficult to optimize. We therefore use a penalty
function that assumes a directable environment.
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We define Shrinkage Toward Equal Weights (STEW) as a
regularized linear model which penalizes the lq-norm of all
pairwise differences between weights. Specifically, STEW
minimizes the loss function below:

LSTEW (β, λ, q) = ‖y −Xβ‖22 + λ
∑
i<j

|βi − βj |q, (3)

where q > 0 and λ ≥ 0 determine the regularization be-
havior. When λ = 0, STEW is equivalent to OLS, just
like models that shrink weights toward zero. But with in-
creasing regularization strength λ, STEW shrinks weights
toward each other rather than toward zero. In the limit as
λ→∞, STEW becomes equivalent to EW, with all weights
converging to γEW . Figure 1 illustrates this difference in
regularization behavior for STEW with q = 1 and q = 2
compared to Lasso and ridge regression on the Rent data set
(described in Supplementary Material).

In matrix notation, Equation (3) can be written as follows:

LSTEW (β, λ, q) = ‖y −Xβ‖22 + λ ‖Dβ‖qq , (4)

where D is a pairwise difference matrix with p(p − 1)/2
rows and p columns. The rows of D are the unique permu-
tations of the vector (1,−1, 0, . . . , 0) with p entries such
that the entry ‘1’ precedes the entry ‘−1’. With q = 1,
Equation (4) has no closed-form solution but can be solved
numerically, for example, by using the generalized Lasso
framework (Tibshirani & Taylor, 2011). With q = 2, min-
imizing Equation (4) is a Tikhonov regularization prob-
lem (Tikhonov et al., 2013) and admits the closed form
solution below:

argmin
β

LSTEW (β, λ, 2) = (XTX + λDTD)−1XTy.

We use q = 2 in the remainder of this article due to the
computational advantages of its closed-form solution.

Related work. Similar to STEW, non-negative least squares
(NNLS) and non-negative Lasso (NNLasso) benefit from
positive (or directable) features. NNLS minimizes the resid-
ual sum of squares while constraining weights to be posi-
tive. Although positivity constraints alone were found to
have regularizing properties (Meinshausen, 2013; Slawski
& Hein, 2013), NNLS has been combined with l1-penalty
as well (Efron et al., 2004; Slawski & Hein, 2013; Wu et al.,
2014). The resulting model is NNLasso and minimizes the
loss function LNNLasso(β, λ) = ‖y −Xβ‖22 + λ ‖β‖1,
such that βi ≥ 0,∀i = 1, . . . , p.

Also related are total variation (TV) models (for example,
Chambolle, 2004), which are motivated by environments
in which features are spatially or temporarily correlated,
such as the pixels of an image or the time points of a time
series. TV models estimate smooth functions by penalizing
the difference between the weights of adjacent features. In

a one-dimensional setting, TV models minimize the loss
function LTV (β, λ) = ‖y −Xβ‖22+λ

∑p
j=2 |βj−βj−1|.

TV models have been developed for and used with data sets
where a natural adjacency relationship exists. TV models are
also used in biostatistics when the data allows a meaningful
order of features, for example, in protein mass spectroscopy.
The fused Lasso (Tibshirani et al., 2005) considers a Lasso-
type l1-penalty in addition to a TV-type smoothness penalty.

There is a surface similarity between STEW and TV models:
both models penalize differences between weights. But the
exact form of the penalty differs between the models. TV
models penalize the differences between adjacent weights
while STEW penalizes all pairwise differences between
the weights. This difference is a direct consequence of
the different motivations behind the two models and it re-
sults in meaningful differences in regularization behavior.
Specifically, TV models shrink weights together in patches
or clusters that are defined by the adjacency relationships
(sample regularization paths are shown in the Supplemen-
tary Material), which is quite different than the behavior of
STEW (Figure 1). It should be noted that imposing an arbi-
trary adjacency relationship onto a dataset (to be used with
a TV model) is not well justified: different adjacency rela-
tionships result in arbitrarily different solutions along the
regularization path. The Supplementary Material presents
a comparison of regularization paths taken by TV models
with different orderings of features of the Rent data set.

4. Bias-Variance Analysis of Equal-Weighting
Models

Regularized linear models search for a happy medium be-
tween OLS, which has low bias but high variance, and a
model that has high bias but low variance. For both STEW
and models that shrink toward zero, the low-variance model
is an equal-weighting model: STEW regularizes toward the
EW model (γ = γEW ) while models that shrink toward
zero regularize toward what we call the 0-model (γ = 0).

Theorem 1 shows results on the bias-variance decompo-
sition of mean squared error for equal-weighting models,
providing intuition on when and why EW—and therefore
STEW—can perform well.

Mean squared error MSE(β̂) = E||β̂ − β||2 can be decom-
posed into two components, squared bias and the trace of
the variance-covariance matrix, Σβ̂, as follows: MSE(β̂) =

bias2 + variance = ||E[β̂]−β||2 + tr(Σβ̂). Let β̂EW and
β̂0 denote the weight estimates of the EW model and the
0-model, respectively. Their differences in squared bias and
mean squared error are defined as ∆bias2 := bias2(β̂0)−
bias2(β̂EW ) and ∆MSE := MSE(β̂0) −MSE(β̂EW ), re-
spectively.
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Theorem 1. Let y ∼ (Xβ, σ2In×n), where ||β||2 < ∞,
σ2 > 0, and In×n is the identity matrix of size n. Let
β̄ := 1

p

∑p
i=1 βi denote the mean of the true weights. Then,

(1) The minimum-bias equal-weighting estimator of γ is β̄.
(2) For orthonormal data matrixX (i.e.,XTX = Ip×p),

(a) EW is the minimum-bias equal-weighting estimator,
(b) ∆bias2 = pβ̄

2
,

(c) ∆MSE = pβ̄
2 − pσ2,

(d) The squared mean weight β̄
2
, and thus ∆bias2 and

∆MSE, is higher on a directed set of weights than
on an undirected set of weights.

The proofs are provided in the Supplementary Material.
Result 1 shows that minimum bias is achieved by setting
the equal-weighting constant (γ) to the mean of the true
weights (β̄

2
). Result 2a shows that, in the special case of

an orthonormal data matrix, γEW is an unbiased estimate
of the mean of the true weights and thus attains minimum
bias. Result 2b shows that the difference in bias between
the 0-model and EW increases with the square of the mean
of true weights, in other words, with increasing distance of
the true mean of weights from zero. It follows that EW has
lower mean squared error than the 0-model if the decrease
in bias is not canceled out by the increase in variance that
results from estimating γEW . In the case of an orthonormal
data matrix, this variance simply equals the product of the
noise parameter σ2 and the number of features p (Result
2c).

Result 2d examines the impact of knowing feature direc-
tions. When feature directions are known, features can be
recoded to have the same direction, for example, by multi-
plying the values of all negative features by−1. This simple
operation does not change the biases of the 0-model, OLS,
ridge regression, and the Lasso. It does, however, reduce
the bias of the EW model.

5. Empirical Analysis
We present simulation experiments that examine how much
the results of Theorem 1 transfer from EW to STEW in a
diverse set of environments.

5.1. Simulated Environments

We sampled data from the true model Y = X1β1 + · · · +
X20β20 +ε, whereXi

i.i.d∼ N (0, 1) and ε i.i.d∼ N (0, 1). The
defining property of each environment was the prior distri-
bution from which the weights β = (β1, . . . , β20) were
sampled. For each environment, 400 data sets were sampled
to compare the predictive accuracy of STEW, the Lasso,
ridge regression, NNLasso, and EW. We also tested NNLS,
which is NNLasso without the lasso regularization but omit
it from the plots because its performance always lagged be-

hind NNLasso. The regularization strength λ for each model
was tuned using cross-validation. Full implementation de-
tails are provided in the Supplementary Material. In all
environments, when training sets were large enough, STEW,
ridge regression, and the Lasso performed equally well, with
MSE converging to irreducible error. Our discussion will
thus focus on small-to-medium sample sizes.

Directable environments. We first analyze the ideal use
case for STEW: when weights are known to be positive
(equivalently, if features are directable). Recall that, in
such an environment, STEW, EW, and NNLasso are able
to directly use the knowledge that the weights are positive.
On the other hand, ridge regression and the Lasso cannot
incorporate this information directly; they learn it from the
data.

Figure 2a shows the predictive performance of various mod-
els when β ∼ U(2, 8). STEW performed best overall. EW
performed relatively well when training sets were small—
although it was outperformed (as expected) by all adaptively
regularizing models for large sample sizes. STEW was able
to combine the strengths of different models. For small
sample sizes, STEW regularized toward the EW solution
and outperformed all competing models, including EW. For
large sample sizes, STEW performed as well as the other
adaptively regularizing linear models. Notice that, for small
sample sizes, NNLasso was far behind STEW, even though
it also directly used the knowledge that the weights are
positive.

One possible explanation for the superior performance of
STEW compared to NNLasso is that the prior distribution
of the weights has relatively low variance. When variance is
low, weights are relatively close to each other, creating an en-
vironment that supports EW, and therefore STEW. We there-
fore examine two additional environments, β ∼ U(4, 6)
and β ∼ U(0, 10), that are identical to β ∼ U(2, 8) in the
shape of the distribution and its mean but differ in their
variance. The results are shown in panels b and c of Fig-
ure 2. STEW remained the best performing model in all
three environments but its relative advantage compared to
the next best model, NNLasso, decreased with increasing
variance. In additional experiments, we increased the vari-
ance to unrealistically high levels, up to β ∼ U(0, 50). The
results, provided in the Supplementary Material, remained
qualitatively similar.

Effect of directability. Weight priors used in panels d–f of
Figure 2 follow a uniform distribution as before. They all
have a support of length 2 but differ in the region of support.
From panel d to f, the environments decrease in the pro-
portion of weights that are positive. In the β ∼ U(0, 2)
environment, all weights are positive. This prior there-
fore represents a fully-directable environment. The slightly
shifted β ∼ U(−0.5, 1.5) environment can be interpreted as
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Figure 2. Prediction error in environments defined by uniform weight priors with the same mean but different variance (a–c), with shifting
support (d–f), and varying degrees of sparsity (g–i). Probability density functions of the weight priors are shown in green in the top-right
corner of each panel.
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Figure 3. Prediction error (a) and empirical bias-variance decom-
position (b) in a Gaussian environment.

a situation in which the user can direct some but not all the
weights. Finally, the β ∼ U(−1, 1) environment is symmet-
ric around 0; weights cannot be directed. With decreasing
directability of weights, the performance of STEW, EW, and

NNLasso decreased relative to the performance of models
which do not use information about the direction of features.
Yet STEW remained the best performing model even in an
undirectable environment. In contrast, NNLasso performed
considerably worse than ridge regression and the Lasso.

High-dimensional environments with sparsity. On learn-
ing curves presented so far, the early parts of the curves
correspond to moderate p > n situations with more features
than observations. But pwas of the same order of magnitude
as n. For the following set of experiments, we increased the
number of features to p = 200. In addition, we introduced
sparsity by setting some proportion of weights to exactly
zero. Weights were sampled from U(1, 3) and subsequently,
conditional on the outcome of a coin flip, set to zero. This
coin flip had success probability P[β = 0] = ω, where ω
is the expected degree of sparsity in the environment. For
example, if ω = 0.7, on average, 70% of the weights have
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Figure 4. Median root mean squared error (RMSE) with standard-error band across 200 repetitions. The first column shows results on the
Rent data set, the second column on the Diabetes data set, and the third column on all 13 data sets. Features were directed based on the
intuition of the authors (a), based on a Lasso estimate on the whole data set (b, c), or based on the training set (d–f).

a value of zero while 30% of the weights follow a U(1, 3)
distribution. Panels g to i of Figure 2 show the results.
With 50% sparsity, STEW outperformed all other models on
large parts of the learning curve, especially when n << p.
With increasing sparsity, Lasso-type models increasingly
benefited from their variable selection property. With 90%
sparsity, Lasso-type models outperformed STEW across
large parts of the learning curve.

Empirical bias-variance analysis. Weights in the envi-
ronment of Figure 3 follow a Gaussian distribution with
zero mean and unit variance, β ∼ N (0, 1). This is the
ideal environment for ridge regression from a Bayesian per-
spective (Hoerl & Kennard, 1970). Surprisingly, STEW
outperformed all other models including ridge regression
across the entire learning curve. The figure also shows the
empirical bias-variance decomposition of mean squared er-
ror, revealing the different approaches ridge regression and
STEW take towards regularization. For small sample sizes,
ridge regression reduced variance to almost zero, with er-
ror consisting almost entirely of bias. On the other hand,
STEW was able to substantially lower bias by allowing
some variance.

5.2. Real-World Environments

We compared the prediction performance of STEW, EW,
elastic net, and NNLasso on 13 real-world data sets under

different conditions regarding how directable features are.
The Supplementary Material contains detailed descriptions
of each data set.

We first consider the Rent data set (Tutz, 2011) where the
problem is to estimate the response rent per m2 for 2053
apartments based on 10 features. In the first stage of our
analysis, we directed features based on our intuition. For
example, the features the apartment has warm water (yes =
1, no = 0) and the year of construction (in years) were both
expected to be positively associated with the response. Fig-
ure 4a shows that both EW and STEW clearly outperformed
competing models across the entire learning curve on the
intuitively directed Rent data set, with EW performing even
better than STEW.

Intuitively guessing feature directions is not always easy.
In the Diabetes data set, in which a quantitative measure
of disease progression of 442 diabetes patients needs to
be predicted based on age, sex, body mass index, average
blood pressure, and six blood serum measurements, we
could not intuitively guess the directions of most features.
However, a physician probably could. We simulated this
type of expert knowledge as follows. We estimated a Lasso
model on the entire data set and chose the regularization
strength that resulted in the lowest cross-validated prediction
error. We discarded all features whose Lasso weight was
zero and positively directed the remaining features, that is,
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we multiplied all features with −1 whose Lasso weight was
negative. Figure 4b shows learning curves for Diabetes
obtained in this way. EW performed best until a training set
size of 25 but fell behind for training set sizes larger than 40.
STEW could not match EW’s performance on small training
sample sizes. Yet, it clearly outperformed the elastic net and
NNLasso on small training set sizes and performed equally
well with larger training set sizes.

Average learning curves across all 13 data sets are shown in
Figure 4c. EW performed best on very small training sets,
STEW on small to medium training sets, and all adaptively-
regularized linear models performed equally well on large
training set sizes. Individual learning curves (available in
the Supplementary Material) show that STEW outperformed
both the elastic net and NNLasso on 5 out of 13 data sets,
while showing comparable performance in the remaining 8
data sets.

Even when no information about feature directions is avail-
able, directions can still be estimated from the training set,
for example, from Pearson correlation coefficients between
the features and the response. Panels d to f of Figure 4 show
learning curves when directions were estimated in this way.
Averaged across many data sets, STEW did not outperform
the competing models but it was robust in the sense that it
did not perform worse than the elastic net.

5.3. Tetris

We next present a novel algorithm for learning how to act
in sequential decision environments. Multinomial logistic
regression plays a central role in our approach. We call the
algorithm M-learning. The pseudo-code is provided in the
Supplementary Material. Below we describe its application
to the game of Tetris and evaluate how useful the STEW
penalty is within this context.

Tetris. Tetris can be formulated as a Markov decision pro-
cess, where the state consists of the board configuration and
the identity of the falling tetrimino. Available actions are
the possible placements of the tetrimino on the board. We
denote the set of states by S and the actions available in state
s ∈ S by A(s). In Tetris, the number of actions available in
a given state s, denoted by |A(s)|, ranges from 0 to 34. A
reward of 1 is received for each cleared line. The game ends
when a state allows no legal placement. The objective is to
find a policy π : S → A that maximizes the total reward
received, in other words, the game score. An overview of
machine learning solutions to Tetris can be found in Algorta
& Şimşek (2019).

M-learning in Tetris. The algorithm learns an action-utility
function, U(s, a), from which the policy is derived. Specif-
ically, the policy is to choose the action with the highest
utility, π(s) = argmax

a∈A(s)

U(s, a).
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Figure 5. Quality of the policy learned as a function of the itera-
tions of the algorithm. Each learning curve shows means across
100 replications of the algorithm. Quality of the policy is measured
by the mean score obtained by the policy in 10 Tetris games.

For Tetris, we represent U(s, a) as a linear function of a
set of features, U(s, a) = βTφ(s, a), where φ(s, a) denote
feature values that correspond to selecting action a in state s.
As usual, β denotes the feature weights. Feature weights are
initialized to random values, then periodically updated using
multinomial logistic regression. A single training sample
for updating feature weights is generated as follows.

(1) For every available action in the current state, generate
M independent rollouts of length T , where a rollout is a
forward simulation of the game beginning at the current
state. In this simulation, actions are selected by maximizing
U(s, a) unless an immediate clearing of one or more lines
is possible, in which case the action that clears the highest
number of lines is selected.

(2) Execute the action that returned the highest mean total
reward in the rollouts. Let ã denote this action.

(3) To the training set of multinomial logistic regression,
add one new sample, (ã,φ(s, a1), ...,φ(s, a|A(s)|)), where
the predictors are the feature values of all available actions
in state s and the response variable is the identity of the
selected action.

Periodically (in our case, after each decision in the game),
feature weights are updated through multinomial logistic
regression on the accumulated training set. The new set of
weights maximizes the likelihood of the selected actions
in the training set if the agent were to use action-selection
probabilities π̃(s, a) = eU(s,a)∑

a′∈A(s) eU(s,a′) .

Regularized versions of M-learning are easily obtained by
adding a penalty term P (β) to the log-likelihood function,
logL(β|D) =

∑
(si,ai)∈D log(p(si, ai)) − λP (β), where
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ai is the action that was selected in state si in the training
set D and λ ≥ 0 is the regularization strength. Note that
log(p(si, ai)) depends on β because U(s, a) depends on
β. In addition to STEW and ridge penalty, we examine
a version of M-learning that maximizes the log-likelihood
under non-negativity constraints for all weights.

M-learning is a novel approach to learning in sequen-
tial decision environments. In the literature, the most
closely-related algorithm is classification-based reinforce-
ment learning (Lagoudakis & Parr, 2003), which uses a
similar rollout mechanism but does not make use of discrete-
choice modeling.

Experiments. We used a board size of 10×10, with rollout
parameters M = 7, T = 10. Given that the number of
actions is always smaller than 34, the maximum number of
calls to the generative model of Tetris for one iteration of the
algorithm was at most 34TM = 2380. Multinomial logistic
regression in iteration k used the most recent n(k) training
samples, where n(k) = min(50, bk2 c + 2). The regular-
ization strength λ was tuned using cross-validation. Eight
features were used to describe a state-action pair: landing
height, number of eroded piece cells, row transitions, col-
umn transitions, number of holes, number of board wells,
hole depth, and number of rows with holes. These features
are from earlier work by Thiery & Scherrer (2009) who
describe them in detail. Simple and cumulative dominance
filters were applied to all versions of the algorithm as de-
scribed by Şimşek et al. (2016). Directions for all features
were obtained from the weights of the BCTS policy (Thiery
& Scherrer, 2009). Features were coded so that they all had
positive direction. We present results with four versions of
M-learning: STEW penalty, ridge penalty, non-negativity
(NN) constraints, and no regularization. In addition, we
show the performance of the equal-weights (EW) model as
a baseline.

Results. After each iteration of the algorithm, the quality
of the learned policy was evaluated by playing 10 games of
Tetris. Figure 5 shows mean scores across 100 replications,
with shaded areas corresponding to standard error of the
mean. STEW led to the highest learning rate, reaching an
average score of more than 1000 lines after only 3 iterations,
or equivalently, when multinomial logistic regression was
trained with only three samples. With alternative penalties,
a considerably higher number of samples was needed to
achieve comparable play.

While our focus in this article is STEW, it should be noted
that the performance obtained by M-learning is remark-
able for Tetris. After 100 iterations, the algorithm reached
an average score of 4,800 lines. At this point, the algo-
rithm has made no more than 238,000 calls to the generative
model. In the literature, the best results for Tetris have been
achieved by CBMPI (Gabillon et al., 2013; Scherrer et al.,

2015) but these were obtained using a per-iteration budget
of 8,000,000 calls to the generative model. When CBMPI is
applied with budgets similar to those used for M-learning,
CBMPI performance dropped substantially. In the Supple-
mentary Material, we report experimental results comparing
M-learning with CBMPI on small budgets.

6. Discussion
One may reasonably assume that STEW would perform
well only in environments in which the true feature weights
are almost equal. This is clearly not the case. STEW has
proven to be useful in a wide range of synthetic and real-
world environments where any assumption of equal weights
is clearly violated.

To understand how STEW can outperform models that
shrink toward zero, it has been instructive to contrast the
two models that are obtained in the limit of infinite regu-
larization: EW and the 0-model. Our theoretical results
show that EW has lower bias than the 0-model and that this
difference increases with increasing directability of features.
On data sets that require strong regularization (for example,
small data sets), STEW inherits this relatively lower bias.

Sign-constrained models such as NNLS or NNLasso also
utilize information on feature directions but generally did
not perform as well as STEW in fully directable environ-
ments. Furthermore, when directions were not available,
or were unreliable, these models failed to produce useful
estimates whereas STEW performed on par with other regu-
larized linear models.

STEW showed surprisingly high prediction accuracy across
a variety of p > n environments. Yet, unlike Lasso-type
models, STEW has no built-in variable-selection mecha-
nism. It is thus clearly not meant to be a model for sparse
recovery, that is, STEW is not expected to identify the non-
zero weights in a sparse environment. It could, however,
potentially be developed further to include a sparsity com-
ponent or used in conjunction with existing methods for
variable selection. One possibility is a two-stage model,
similar to Lasso + OLS (Efron et al., 2004; Belloni & Cher-
nozhukov, 2013). The first stage of this model consists
of fitting a Lasso model on the entire training data and
subsequently discarding all features whose Lasso-estimates
are zero. The final estimate is then obtained by fitting the
second-stage model on the reduced set of features. STEW
could prove useful as a second-stage model because the
initial Lasso estimate not only takes care of discarding irrel-
evant features but also provides information about feature
directions. STEW and Lasso-type models exploit different
types of priors (or information) about the environment. De-
veloping models that can exploit both types of information
is a fruitful direction for future research.
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els. In Proceedings of the NIPS 2016 Workshop on Im-
perfect Decision Makers, PMLR, volume 58, pp. 13–25,
2017.

Meinshausen, N. Sign-constrained least squares estimation
for high-dimensional regression. Electronic Journal of
Statistics, 7:1607–1631, 2013.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B.,
and Geist, M. Approximate modified policy iteration and
its application to the game of Tetris. Journal of Machine
Learning Research, 16:1629–1676, 2015.
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