A. Proof of Lemma 1

In this section, we prove the results on the error generated when solving the subproblem (3.2) inexacty by Procedure 1. Before proving Lemma 1, we will first prove a simpler case in Lemma 3, where the subproblem iterator \(S \) is the proximal gradient step.

Lemma 3. Take Assumption 1. Suppose in Procedure 1, we choose \(S \) as the proximal gradient step with step size \(\gamma = \eta \frac{\lambda_{\min}(M)}{\lambda_{\max}(M)} \), and is repeat it \(p \) times, where \(p \geq 1 \). Then, \(w_{t+1} = w_{t+1}^p \) is an approximate solution to (3.2) that satisfies

\[
0 \in \nabla \psi(w_{t+1}) + \frac{1}{\eta} M(w_{t+1} - w_t) + \nabla \hat{t} + M \varepsilon_{t+1}^p,
\]

(A.1)

\[
\|\varepsilon_{t+1}^p\|_M \leq \frac{c(p)}{\eta} \|w_{t+1} - w_t\|_M,
\]

(A.2)

where

\[
c(p) = (\kappa(M) + 1)\kappa(M) \frac{\tau^p + \tau^{p-1}}{1 - \tau^p},
\]

and \(\tau = \sqrt{1 - \kappa^2(M)} < 1 \).

Proof of Lemma 3. The optimization problem in (3.2) is of the form

\[
\min_{y \in \mathbb{R}^d} h_1(y) + h_2(y),
\]

(A.3)

for \(h_1(y) = \psi(y) \) and \(h_2(y) = \frac{1}{2\eta} \|y - w_t\|_M^2 + \| \hat{\nabla} \). With our choice of \(S \) as the proximal gradient descent step, the iterations in Procedure 1 are

\[
w_{t+1}^0 = w_t,
\]

\[
w_{t+1}^i = \text{prox}_{\gamma h_i}(w_{t+1}^i - \gamma \nabla h_2(w_{t+1}^i)),
\]

\[
w_{t+1} = w_{t+1}^p,
\]

where \(i = 0, 1, ..., p - 1 \). From the definition of \(\text{prox}_{\gamma h_i} \), we have

\[
0 \in \partial h_1(w_{t+1}^p) + \nabla h_2(w_{t+1}^p) + \frac{1}{\gamma} (w_{t+1}^p - w_{t+1}^{p-1}).
\]

Compare this with (A.1) gives

\[
M \varepsilon_{t+1}^p = \frac{1}{\gamma} (w_{t+1}^p - w_{t+1}^{p-1}) + \nabla h_2(w_{t+1}^p) - \nabla h_2(w_{t+1}).
\]

To bound the right hand side, let \(w_{t+1}^* \) be the solution of (A.3), \(\alpha = \frac{\lambda_{\min}(M)}{\eta} \), and \(\beta = \frac{\lambda_{\max}(M)}{\eta} \). Then \(h_1(y) \) is convex and \(h_2(y) \) is \(\alpha \)-strongly convex and \(\beta \)-Lipschitz differentiable. Consequently, Prop. 26.16(ii) of (Bauschke et al., 2017) gives

\[
\|w_{t+1} - w_{t+1}^*\| \leq \tau^i \|w_{t+1}^0 - w_{t+1}^i\|, \quad \forall i = 0, 1, ..., p,
\]

where \(\tau = \sqrt{1 - \gamma(2\alpha - \gamma^2)} \).

Let \(a_i = \|w_{t+1}^i - w_{t+1}^*\| \). Then, \(a_i \leq \tau^i a_0 \). We can derive

\[
\|M \varepsilon_{t+1}^p\| \leq \frac{1}{\gamma} (\frac{1}{\gamma} + \beta) \|w_{t+1}^p - w_{t+1}^{p-1}\|
\]

\[
\leq \left(\frac{1}{\gamma} + \beta \right) (a_p + a_{p-1}) \leq \left(\frac{1}{\gamma} + \beta \right) (\tau^p + \tau^{p-1}) a_0.
\]

On the other hand, we have

\[
\|w_{t+1} - w_t\| \geq a_0 - a_p \geq (1 - \tau^p) a_0.
\]

Combining these two equations yields

\[
\|M \varepsilon_{t+1}^p\| \leq b(p) \|w_{t+1} - w_t\|,
\]

(A.4)

where

\[
b(p) = \left(\frac{1}{\gamma} + \frac{\lambda_{\max}(M)}{\eta} \right) \frac{\tau^p + \tau^{p-1}}{1 - \tau^p}.
\]

(A.5)

Finally, let the eigenvalues of \(M \) be \(0 < \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_d \), with orthonormal eigenvectors \(v_1, v_2, ..., v_d \). Let \(\varepsilon_{t+1}^p \) and \(w_{t+1} - w_t \) be decomposed by

\[
\varepsilon_{t+1}^p = \sum_{i=1}^d \alpha_i v_i,
\]

\[
w_{t+1} - w_t = \sum_{i=1}^d \beta_i v_i,
\]

then

\[
\|\varepsilon_{t+1}^p\|_M = \sqrt{\sum_{i=1}^d \lambda_i \alpha_i^2} \leq \sqrt{\frac{1}{\lambda_{\min}(M)} \sum_{i=1}^d \lambda_i^2 \alpha_i^2},
\]

\[
= \sqrt{\frac{1}{\lambda_{\min}(M)} \|M \varepsilon_{t+1}^p\|},
\]

\[
\|w_{t+1} - w_t\| = \sqrt{\sum_{i=1}^d \beta_i^2} \leq \sqrt{\frac{1}{\lambda_{\min}(M)} \sum_{i=1}^d \lambda_i \beta_i^2},
\]

\[
= \sqrt{\frac{1}{\lambda_{\min}(M)} \|w_{t+1} - w_t\|_M}.
\]

Combine these two inequalities with (A.4), we arrive at

\[
\|\varepsilon_{t+1}^p\|_M \leq c(p) \|w_{t+1} - w_t\|_M,
\]

(A.6)

where

\[
c(p) = \frac{1}{\lambda_{\min}(M)} b(p) = \frac{1}{\lambda_{\min}(M)} \frac{1}{\lambda_{\min}(M)} \frac{\tau^p + \tau^{p-1}}{1 - \tau^p}.
\]

\[\square\]
Now, we are ready to prove Lemma 1, the techniques are similar to the proof of Lemma 3.

Proof of Lemma 1. We want to find \(c(p) \) such that

\[
0 \in \partial \psi(w_{t+1}) + \frac{1}{\eta} M(w_{t+1} - w_t) + \nabla \epsilon_t + M \xi_t^{p},
\]

(A.7)

\[
\| \xi_t^{p} \|_M \leq \frac{c(p)}{\eta} \| w_{t+1} - w_t \|_M,
\]

(A.8)

Take \(i = r - 1 \) and \(j = p_0 - 1 \), then the optimality condition of the problem in line 5 of Algorithm 3 is

\[
0 \in \partial \psi(u^{(r-1,p_0)}_{t+1}) + \frac{1}{\gamma} \left(w^{(r-1,p_0)}_{t+1} - u^{(r-1,p_0)}_{t+1} \right) + \nabla h_2(u^{(r-1,p_0)}_{t+1}),
\]

compare this with (A.7), we have

\[
M \xi_t^{p} = \frac{1}{\gamma} \left(w^{(r-1,p_0)}_{t+1} - u^{(r-1,p_0)}_{t+1} \right) + \nabla h_2(u^{(r-1,p_0)}_{t+1}) - \frac{1}{\eta} M(w_{t+1} - w_t) - \nabla \epsilon_t
\]

\[
= \frac{1}{\gamma} \left(u^{(r-1,p_0)}_{t+1} - u^{(r-1,p_0)}_t \right) + \frac{1}{\eta} M(u^{(r-1,p_0)}_{t+1} - w_t)
\]

where

\[
u^{(r-1,p_0)}_{t+1} = w^{(r-1,p_0)}_{t+1} + \frac{\theta_{p_0} - 1}{\theta_{p_0} - 1} \left(w^{(r-1,p_0)}_{t+1} - u^{(r-1,p_0)}_{t+1} \right)
\]

As a result,

\[
\| M \xi_t^{p} \| \leq \frac{1}{\gamma} \| u^{(r-1,p_0)}_{t+1} - u^{(r-1,p_0)}_t \| + \frac{1}{\eta} \| M(w_{t+1} - w_t) - \nabla \epsilon_t \|
\]

(A.9)

\[
\leq \frac{1}{\gamma} \| u^{(r-1,p_0)}_{t+1} - u^{(r-1,p_0)}_t \| + \frac{1}{\eta} \| M \| \| w_{t+1} - w_t \|
\]

(A.10)

Let the solution of (3.2) be \(u^*_{t+1} \). By Theorem 4.4 of (Beck & Teboulle, 2009), for any \(0 \leq i \leq r - 1 \) and \(0 \leq j \leq p_0 \) we have

\[
\Psi(w^{(i,j)}_{t+1}) - \Psi(u^*_{t+1}) \leq \frac{2\lambda_{\text{max}}(M) \| u^{(i,0)}_{t+1} - u^*_{t+1} \|^2}{\eta^2}.
\]

On the other hand, the strong convexity of \(\Psi = h_1 + h_2 \) gives

\[
\Psi(w^{(i,j)}_{t+1}) - \Psi(u^*_{t+1}) \geq \frac{\lambda_{\text{min}}(M)}{2\eta} \| w^{(i,j)}_{t+1} - u^*_{t+1} \|^2.
\]

Therefore,

\[
\| w^{(i,j)}_{t+1} - u^*_{t+1} \| \leq \sqrt{\frac{4\kappa(M)}{\eta^2}} \| w^{(i,0)}_{t+1} - u^*_{t+1} \|. \tag{A.11}
\]

Now, let us use (A.11) repeatedly to bound the right hand side of (A.10). For example, the first term can be bounded as

\[
\| w^{(r-1,p_0)}_{t+1} - w^{(r-1,p_0-1)}_{t+1} \| \leq \frac{1}{\gamma} \| w^{(r-1,p_0)}_{t+1} - w^*_{t+1} \|
\]

Similarly, the rest of the terms can be bounded as follows,

\[
\| w^{(r-1,p_0-1)}_{t+1} - w^*_{t+1} \| \leq \frac{1}{\gamma} \| w^{(0)}_{t+1} - w^*_{t+1} \|
\]

where in the first and third estimate we have used \(\frac{\theta_{p_0} - 2}{\theta_{p_0} - 1} \leq \frac{\theta_{p_0} - 2}{\theta_{p_0} - 1} \leq 1 \).
where
\[\frac{\theta_{p_0-2}}{\theta_{p_0-1}} < 1. \]
On the other hand, we have
\[
\|w_{t+1} - w_t\| = \|w_{t+1}^{(r-1,p_0)} - w_t^{(0,0)}\|
\geq \|w_{t+1}^{(0,0)} - w_{t+1}\| - \|w_{t+1}^{(r-1,p_0)} - w_{t+1}^*\|
\geq (1 - \frac{4\kappa(M)}{p_0^2}) \|w_{t+1}^{(0,0)} - w_{t+1}^*\|.
\]
As a result, taking \(\gamma = \frac{\lambda_{\max}(M)}{\eta}, \)
\(w_{t+1}^{(0,0)} = w_t, \) \(w_{t+1}^{(r-1,p_0)} = w_{t+1} \)
and \(\tau = \left(\frac{4\kappa(M)}{p_0^2} \right)^{\frac{1}{p_0}} \) yields
\[
\|M\varepsilon_{t+1}^p\|_M \leq 2\frac{\lambda_{\max}(M)}{\eta} \frac{b(p)}{1 - \tau^p} \|w_{t+1} - w_t\|,
\]
where
\[
b(p) = \tau^{p_0} \left(\left(\frac{4\kappa(M)}{p_0 - 1} \right)^{\frac{1}{2}} + \left(\frac{4\kappa(M)}{p_0 - 2} \right)^{\frac{1}{2}} \right) + \tau^p + \tau^{p_0} \left(\frac{4\kappa(M)}{p_0 - 1} \right)^{\frac{1}{2}}.
\]
(A.12)
Similarly to the end of proof of Lemma 3, we have
\[
\|M\varepsilon_{t+1}^p\|_M \leq 2\frac{\kappa(M)}{\eta} \frac{b(p)}{1 - \tau^p} \|w_{t+1} - w_t\|_M.
\]
Now, let us choose \(p_0 \) such that \(\tau = \left(\frac{4\kappa(M)}{p_0^2} \right)^{\frac{1}{p_0}} \) is minimized, a simple calculation yields
\[
p_0^* = 2e\sqrt{\kappa(M)}.
\]
In order for \(p_0 \) to be an integer, we can take
\[
p_0 = \left[2e\sqrt{\kappa(M)} \right],
\]
then
\[
\tau = \left(\frac{4\kappa(M)}{p_0^2} \right)^{\frac{1}{p_0}} \leq \left(\frac{1}{c^2} \right)^{\frac{1}{2(2\sqrt{\kappa(M)} + 1)}} \leq \left(\frac{1}{c^2} \right)^{\frac{1}{2(2\sqrt{\kappa(M)} + 1)}}
\leq \exp \left(-\frac{1}{2e\sqrt{\kappa(M)} + 1} \right).
\]
Finally, Let us show that \(b(p) \) in (A.12) can be bounded by \(7\tau^p \), and the desired bound (A.8) on \(\|\varepsilon_{t+1}^p\|_M \) follows.
First, we have
\[
\tau^{-p_0} \left(\frac{4\kappa(M)}{p_0 - 1} \right)^{\frac{1}{2}} = \left(\frac{p_0}{p_0 - 1} \right)^{\frac{1}{p_0}},
\]
and
\[
p_0 = \left[2e\sqrt{\kappa(M)} \right] \geq [2e] = 6.
\]
On the other hand, a simple calculation shows that \(\left(\frac{p_0}{p_0 - 1} \right)^{\frac{1}{p_0}} \) is decreasing in \(p_0 \), therefore
\[
\tau^{-p_0} \left(\frac{4\kappa(M)}{p_0 - 1} \right)^{\frac{1}{2}} \leq \left(\frac{6}{5} \right)^{\frac{1}{p_0}} < 2,
\]
Similarly, one can show that
\[
\tau^{-p_0} \left(\frac{4\kappa(M)}{p_0 - 2} \right)^{\frac{1}{2}} \leq \left(\frac{6}{5} \right)^{\frac{1}{p_0}} < 2.
\]
Combining these two inequalities with (B.2) yields
\[
b(p) \leq 7\tau^p.
\]
\[\square\]

B. Proof of Theorem 1

In this section, we proceed to establish the convergence of inexact preconditioned SVRG as in Algorithm 1. The proof is similar to that of Theorem D.1 of (Allen-Zhu, 2018).

Before proving Theorem 1, let us first prove several lemmas.

First, the inexact optimality condition (4.1) gives the following descent:

Lemma 4. Under Assumption 1, suppose that (4.1) holds. Then, for any \(u \in \mathbb{R}^d \) we have
\[
\langle \nabla_t, w_t - u \rangle + \psi(w_{t+1}) - \psi(u)
\leq \langle \nabla_t, w_t - w_{t+1} \rangle + \frac{\|u - w_t\|^2_M}{2\eta}
- \frac{1}{2\eta} \|w_{t+1} - w_t\|^2_M
- \frac{1}{\eta} \|w_{t+1} - w_t\|^2_M
+ \langle M\varepsilon_{t+1}^p, u - w_{t+1} \rangle.
\]

Proof. First, let us rewrite the left hand side as
\[
\langle \nabla_t, w_t - u \rangle + \psi(w_{t+1}) - \psi(u)
= \langle \nabla_t, w_t - w_{t+1} \rangle + \langle \nabla_t, w_{t+1} - u \rangle + \psi(w_{t+1}) - \psi(u).
\]
By (4.1) and the definition of subdifferential we have
\[
\psi(u) \geq \psi(w_{t+1}) - \langle \nabla_t, w_{t+1} - w_t \rangle + M\varepsilon_{t+1}^p, u - w_{t+1} \rangle.
\]
Combining these two gives
\[
\langle \nabla_t, w_t - u \rangle + \psi(w_{t+1}) - \psi(u)
\leq \langle \nabla_t, w_t - w_{t+1} \rangle
+ \langle \frac{1}{\eta} M(w_{t+1} - w_t) + M\varepsilon_{t+1}^p, u - w_{t+1} \rangle
= \langle \nabla_t, w_t - w_{t+1} \rangle + \frac{\|u - w_t\|^2_M}{2\eta}
- \frac{1}{2\eta} \|w_{t+1} - w_t\|^2_M
- \frac{1}{2\eta} \|w_{t+1} - w_t\|^2_M
+ \langle M\varepsilon_{t+1}^p, u - w_{t+1} \rangle,
\]
where in the last equality we have applied
\[
\langle a - b, c - a \rangle_M = -\frac{1}{2} \|a - b\|^2_M - \frac{1}{2} \|a - c\|^2_M + \frac{1}{2} \|b - c\|^2_M.
\]
\[\square\]
Based on lemma 4, we have

Lemma 5. Under Assumption 1, if the iterator S in Procedure 1 is proximal gradient descent or FISTA with restart, then, for any $a > 0$, $\eta \leq \frac{1-2c\eta}{2\eta_L^2}$, and $u \in \mathbb{R}^d$ we have

$$
\mathbb{E}[F(w_{t+1}) - F(u)] \\
\leq \mathbb{E}[\eta \nabla_t - \nabla f(w_t)]^2_{M-1} + \frac{1 - \eta \sigma_M}{2\eta} \|u - w_t\|^2_M \\
- \left(\frac{1}{2\eta} - \frac{c(p)}{2\eta a} \right) \|u - w_{t+1}\|^2_M.
$$

Proof. We have

$$
\mathbb{E}[F(w_{t+1}) - F(u)] \\
= \mathbb{E}[f(w_{t+1}) - f(u) + \psi(w_{t+1}) - \psi(u)] \\
\leq \mathbb{E}[f(w_t) + \nabla f(w_t), w_{t+1} - w_t] \\
+ \frac{L_M}{2} \|w_t - w_{t+1}\|^2_M - f(u) + \psi(w_{t+1}) - \psi(u)] \\
\mathbb{E}[(\nabla f(w_t), w_t - u) - \frac{\sigma_M}{2} \|u - w_t\|^2_M \\
+ \langle \nabla f(w_t), w_{t+1} - w_t \rangle + \frac{L_M}{2} \|w_t - w_{t+1}\|^2_M \\
+ \psi(w_{t+1}) - \psi(u)] \\
= \mathbb{E}[(\nabla_t, w_t - u) - \frac{\sigma_M}{2} \|u - w_t\|^2_M \\
+ \langle \nabla f(w_t), w_{t+1} - w_t \rangle \\
+ \frac{L_M}{2} \|w_t - w_{t+1}\|^2_M + \psi(w_{t+1}) - \psi(u)],
$$

(B.1)

where the first and second inequality are due to the strong convexity and smoothness under $\| \cdot \|_M$ in Assumption 1, respectively. The last equality is due to $\mathbb{E}[\nabla_t] = \nabla f(w_t)$.

On the other hand, recall that Lemma 4 gives

$$
\langle \nabla_t, w_t - u \rangle + \psi(w_{t+1}) - \psi(u) \\
\langle \nabla_t, w_t - w_{t+1} \rangle + \frac{1 - \eta \sigma_M}{2\eta} \|u - w_t\|^2_M \\
- \left(\frac{1}{2\eta} - \frac{c(p)}{2\eta a} \right) \|u - w_{t+1}\|^2_M + \langle M \epsilon^p_{t+1}, u - w_{t+1} \rangle,
$$

For the last term we can apply Cauchy-Schwartz as follows,

$$
\langle M \epsilon^p_{t+1}, u - w_{t+1} \rangle \leq \epsilon^p_{t+1} \|u - w_{t+1}\|_M,
$$

from Lemma 3 and Lemma 1 we know that

$$
\|\epsilon^p_{t+1}\|_M \leq \frac{c(p)}{\eta} \|w_{t+1} - w_t\|_M.
$$

Therefore, by Young’s inequality, we have for any $a > 0$ that

$$
\langle M \epsilon^p_{t+1}, u - w_{t+1} \rangle \\
\leq \frac{c(p) a}{2\eta} \|w_{t+1} - w_t\|^2_M + \frac{c(p)}{2a\eta} \|u - w_{t+1}\|^2_M.
$$

Applying this to Lemma 4 yields

$$
\langle \nabla_t, w_t - u \rangle + \psi(w_{t+1}) - \psi(u) \\
\langle \nabla_t, w_t - w_{t+1} \rangle + \frac{1 - \eta \sigma_M}{2\eta} \|u - w_t\|^2_M \\
- \left(\frac{1}{2\eta} - \frac{c(p)}{2\eta a} \right) \|u - w_{t+1}\|^2_M \\
- \left(\frac{1}{2\eta} - \frac{c(p) a}{2\eta} \right) \|u - w_{t+1}\|^2_M
$$

(B.2)

where in the second inequality we have applied

$$
\langle u_1, u_2 \rangle = \langle M^{-\frac{1}{2}} u_1, M^{\frac{1}{2}} u_2 \rangle \leq \|u_1\|_{M^{-\frac{1}{2}}} \|u_2\|_M \\
\leq \frac{1}{2b} \|u_1\|^2_{M^{-\frac{1}{2}}} + \frac{b}{2} \|u_2\|^2_M
$$

for any $b > 0$.

Finally, since $\eta \leq \frac{1-2c\eta}{2\eta_L^2}$, we have $\frac{\eta}{2(1-c(p)a-\eta L_f^2)} \leq \eta$, which gives the desired result.

\[\square \]

Lemma 6. Under Assumption 1, we have

$$
\mathbb{E}[\|\nabla_t - \nabla f(w_t)\|^2_{M-1}] \leq \langle L_f^M \rangle^2 \|w_0 - w_t\|^2_M.
$$

Acceleration of SVRG and Katyusha X by Inexact Preconditioning
Proof. We have

\[
E[\|\nabla \ell - \nabla f(w_t)\|^2_{M^{-1}}] = E[\|\nabla f(w_0) + \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_0) - \nabla f(w_t)\|^2_{M^{-1}}]
\]

where in the first inequality, we have applied \(E[\frac{1}{N} \nabla f] = 0\) and in the second inequality follows from Assumption 1.

Lemma 7. (Fact 2.3 of (Allen-Zhu, 2018)). Let \(C_1, C_2, \ldots\) be a sequence of numbers, and \(N \sim \text{Geom}(p)\), then

1. \(E_N [C_N - C_{N+1}] = \frac{p}{1-p} E_N [C_0 - C_N]\), and

2. \(E_N [C_N] = (1-p) E \left[C_{N+1}\right] + p C_0\).

Lemma 8. Under Assumption 1, if \(\eta \leq \min\{\frac{1-2c(p)a}{2\sqrt{mL_f^2}}, \frac{1}{2\sqrt{mL_f^2}}\}\) and \(m \geq 2\), then for any \(u \in \mathbb{R}^d\) we have

\[
E[F(w_{D+1}) - F(u)] \leq E[-\frac{1}{4m\eta} \|w_{D+1} - w_0\|^2_M + \frac{(w_0 - w_{D+1}, w_0 - u)_M}{m\eta} - \left(\frac{\sigma^2}{4} - \frac{c(p)}{2a\eta}\right) \|w_{D+1} - u\|^2_M].
\]

Proof. By Lemmas 5 and 6, we know that

\[
E[F(w_{t+1}) - F(u)] = E[\eta (L_f^M)^2 \|w_0 - w_t\|^2_M + \frac{1 - \eta \sigma^2}{2\eta} \|w_0 - u\|^2_M
\]

where the first equality follows from the item 1 of Lemma 7 with \(C_N = \|u - w_N\|^2_M\), the second inequality follows from item 2 with \(C_N = \|w_0 - w_{D+1}\|^2_M\), item 2 with \(C_N = \|u - w_0\|^2_M\), and item 1 with \(C_N = \|u - w_D\|^2_M\), then third inequality makes use of \(m \geq 2\) and the fourth inequality makes use of \(\eta \leq \frac{1}{2\sqrt{mL_f^2}}\).

Now, let us proceed to prove Theorem 1. With Lemma 8, it can be proved in a similar way as Theorem 3 of (Hannah et al., 2018b).

Proof of Theorem 1. Without loss of generality, we can as-
According to Lemma 8, for any \(u \in \mathbb{R}^d \), and \(\eta \leq \min\{\frac{1 - 2c(p)\alpha}{2L_f^M}, \frac{1}{2\sqrt{mL_f}}\} \) we have
\[
\mathbb{E}[F(x^{j+1}) - F(u)] \\
\leq \mathbb{E}[\frac{1}{4\eta m}(\|x^{j+1} - x^j\|_M^2 + \frac{1}{2\eta m}\|x^j - u\|_M^2) \\
+ \frac{1}{m\eta}(\|x^j - u\|_M^2 - (\sigma_f^M/4 - c(p)/2\eta))\|x^{j+1} - u\|_M^2],
\]
or equivalently,
\[
\mathbb{E}[F(x^{j+1}) - F(u)] \\
\leq \mathbb{E}[\frac{1}{4\eta m}\|x^{j+1} - x^j\|_M^2 + \frac{1}{2\eta m}\|x^j - u\|_M^2] \\
- \frac{1}{2\eta m}\|x^{j+1} - u\|_M^2 - (\sigma_f^M/4 - c(p)/2\eta)\|x^{j+1} - u\|_M^2].
\]

In the following proof, we will omit \(\mathbb{E} \).

Setting \(u = x^* = 0 \) and \(u = x^j \) yields the following two inequalities:
\[
F(x^{j+1}) \leq \frac{1}{4\eta m}(\|x^{j+1} - x^j\|_M^2 + 2\|x^j\|_M^2) \\
- \frac{1}{2\eta m}(1 + \frac{1}{2\eta m}(\sigma_f^M - 2c(p)/\eta))\|x^{j+1}\|_M^2.
\]

(B.3)

\[
F(x^{j+1}) - F(x^j) \\
\leq - \frac{1}{4\eta m}(1 + \frac{1}{2\eta m}(\sigma_f^M - 2c(p)/\eta))\|x^{j+1} - x^j\|_M^2.
\]

(B.4)

Define \(\tau = \frac{1}{2\eta m}(\sigma_f^M - 2c(p)/\eta) \), multiply \((1 + 2\tau) \) to (B.3), then add it to (B.5) yields
\[
2(1 + \tau)F(x^{j+1}) - F(x^j) \\
\leq \frac{1}{2m\eta}(1 + 2\tau)(\|x^j\|_M^2 - (1 + \tau)\|x^{j+1}\|_M^2).
\]

Multiplying both sides by \((1 + \tau)^j \) gives
\[
2(1 + \tau)^j F(x^{j+1}) - (1 + \tau)^j F(x^j) \\
\leq \frac{1}{2m\eta}(1 + 2\tau)(1 + \tau)^j\|x^j\|_M^2 - (1 + \tau)^j\|x^{j+1}\|_M^2).
\]

Summing over \(j = 0, 1, \ldots, k - 1 \), we have
\[
(1 + \tau)^k F(x^k) + \sum_{j=0}^{k-1} (1 + \tau)^j F(x^j) - F(x^0) \\
\leq \frac{1}{2m\eta}(1 + 2\tau)(\|x^0\|_M^2 - (1 + \tau)^k\|x^k\|_M^2).
\]

Since \(F(x^j) \geq 0 \), we have
\[
F(x^k)(1 + \tau)^k \leq F(x^0) + \frac{1}{2m\eta}(1 + 2\tau)\|x^0\|_M^2.
\]

By the strong convexity of \(F \), we have \(F(x^0) + \frac{\sigma_f^M}{2\tau}\|x^0\|_M^2 \), therefore
\[
F(x^k)(1 + \tau)^k \leq F(x^0)(2 + \frac{1}{2\tau}). \tag{B.6}
\]

Finally, recall that \(a > 0 \) can be chosen arbitrarily, so we can take
\[
a = \frac{4c(p)}{\eta \sigma_f^M},
\]
and
\[
\eta \leq \min\{\frac{1 - 2c(p)\alpha}{2L_f^M}, \frac{1}{2\sqrt{mL_f}}\} \\
= \min\{\frac{1 - 8c^2(p)/\eta \sigma_f^M}{2L_f^M}, \frac{1}{2\sqrt{mL_f}}\}, \tag{B.7}
\]
\[
\tau = \frac{1}{2\eta}(\sigma_f^M - 2c(p)/\eta) = \frac{1}{4}\eta \sigma_f^M.
\]

In order for the choice of \(\eta \) in (B.7) to be possible, we need
\[
2L_f^M\eta^2 - \eta + 8c^2(p)/\sigma_f^M \leq 0 \tag{B.8}
\]

to have one solution at least, which requires
\[
64\kappa_f^M c^2(p) \leq 1,
\]
under which \(\eta = \frac{1}{2L_f^M} \) satisfy (B.8). As a result, \(m \geq 4 \) makes (B.7) into
\[
\eta \leq \frac{1}{2\sqrt{mL_f}},
\]
and the desired convergence result follows from (B.6). \(\Box \)

C. Proof of Lemma 2

Proof. From Lemma 1, we know that
\[
c(p) = 14\kappa(M)\frac{\tau^p}{1 - \tau^p},
\]
where
\[
\tau = \exp(-\frac{1}{2e\sqrt{\kappa(M)} + 1}).
\]

Therefore, in order for \(64\kappa_f^M c^2(p) \leq 1 \), we need
\[
\kappa_f^M \kappa^2(M)(\frac{\tau^p}{1 - \tau^p})^2 \leq \frac{1}{64 \times 14^2} = c_1,
\]
which is equivalent to
\[\tau^p \leq \frac{c_1}{\sqrt[2]{\kappa^p} + \sqrt{c_1}}. \]

Thus, it suffices to require that
\[\left(\exp\left(-\frac{1}{2e\sqrt{\kappa}M}\right) + 1\right)^p \leq \frac{c}{\sqrt[2]{\kappa^p} M} + \sqrt{c_1}, \]
which gives
\[p \geq (2e\sqrt{\kappa}M + 1) \ln \frac{\sqrt[2]{\kappa^p} M + \sqrt{c_1}}{c_1}. \]

\[\square \]

D. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 4.3 of (Allen-Zhu, 2018), so we provide a proof sketch here and omit the details.

1. In (Allen-Zhu, 2018), the proof of Theorem 4.3 is based on Lemma 3.3, here the proof of Theorem 2 is based on Lemma 8, which is an analog of Lemma of 3.3 in our settings.

2. Based on Lemma 8, the proof of Theorem 2 follows in nearly the same way as Theorem 4.3 of (Allen-Zhu, 2018), the only difference is that one needs to replace \(a \) by \(a_j = 2\exp(p) / a \eta \).

3. By setting
\[a = \frac{4e\exp(p)}{\eta M^2}, \]
and
\[64\kappa^p e^2 (p) \leq 1 \]
as in the proof of Theorem 1, the \(\tau \) in Theorem 4.3 of (Allen-Zhu, 2018) becomes \(1/\sqrt[2]{m} \eta \sigma \kappa^p \), and the convergence result of Theorem 2 follows.

E. Proof of Theorems 3 and 4

Proof of Theorem 3. From Remark 5, we know that the gradient complexity of SVRG can be expressed as
\[C_1(m, \varepsilon) = \mathcal{O}\left(\frac{n + m}{\ln(1 + \frac{\sqrt{n}}{\kappa \sigma})} \ln \frac{1}{\varepsilon}\right). \]

Taking the largest possible step size \(\eta = \frac{1}{\sqrt[2]{M} \kappa} \) as in Theorem 1, we have
\[C_1(m, \varepsilon) = \mathcal{O}\left(\frac{n + m}{\ln(1 + \frac{\sqrt{n}}{\kappa \sigma})} \ln \frac{1}{\varepsilon}\right). \]

Let us first find the optimal \(m = m^* \) for SVRG, let
\[g(m) = \frac{n + m}{\ln(1 + \frac{\sqrt{n}}{\kappa \sigma})}, \]
then
\[g'(m) = \frac{\ln(1 + \frac{\sqrt{n}}{\kappa \sigma}) - \frac{\sqrt{n}}{\kappa \sigma} m + m}{\ln^2(1 + \frac{\sqrt{n}}{\kappa \sigma})}. \]

Taking derivative to the numerator gives
\[\left[\ln(1 + \frac{\sqrt{n}}{\kappa \sigma}) - \frac{\sqrt{n}}{\kappa \sigma} m + m \right]' = (n + m) \frac{\frac{1}{2} m \kappa f^2}{\left(1 + \frac{\sqrt{n}}{\kappa \sigma}\right)^2} > 0, \]

Therefore, \(m^* \) is given by \(g'(m) = 0 \). Let \(z = \frac{\sqrt{n}}{\kappa \sigma} > 0 \), then
\[g'(m) = \frac{\ln(1 + z) - \frac{z}{1 + z} \frac{n + m}{2m}}{\ln^2(1 + z)}. \]

Since \(\ln(1 + z) > \frac{z}{1 + z} \) for \(z > 0 \), we know that \(g'(n) > 0 \), therefore, \(m^* < n \).

Let \(m = n^s \) where \(0 < s < 1 \), we would like to have \(g'(n^s) < 0 \), i.e.,
\[\ln(1 + z) - \frac{z}{1 + z} \frac{n + m}{2m} \]
since \(\kappa f > n^{\frac{1}{2}} \), we have \(z = \frac{\sqrt{n}}{\kappa \sigma} < \frac{1}{8} \), on the other hand, we have
\[\left[\frac{n + m}{\ln^2(1 + z)} \right]' = \frac{1}{\ln^2(1 + z)} > 0. \]

Therefore, it suffices to have
\[n^{1-s} > 18 \ln \frac{9}{8} - 1 := c_0 > 1. \]

As a result, we have \(m^* \in (\frac{n}{c_0}, n) \), and
\[C_1(m^*, \varepsilon) = \mathcal{O}\left(\frac{n + m^*}{\ln(1 + \frac{\sqrt{n}}{\kappa \sigma} \ln \frac{1}{\varepsilon})}\right) \]
\[= \mathcal{O}\left(\frac{n}{\sqrt{n}} \ln \frac{1}{\varepsilon}\right) = \mathcal{O}\left(\kappa f \sqrt{n} \ln \frac{1}{\varepsilon}\right), \]

where in the second equality we have used \(\kappa f > n^{\frac{1}{2}} \).

For our iPreSVRG in Algorithm 1, we have
\[C_1^i(m, \varepsilon) = \mathcal{O}\left(\frac{n + (1 + pd)m}{\ln(1 + \frac{\sqrt{n}}{\kappa \sigma})} \ln \frac{1}{\varepsilon}\right), \]
thanks to Lemma 2, \(p \) can be chosen as
\[
p = \mathcal{O}(\sqrt{\kappa(M)} \ln (\sqrt{\kappa_f^M} \kappa(M)))
\]
furthermore, we can take \(\eta = \frac{1}{\sqrt{mL_f}} \) due to Theorem 1.
Under these settings, we have
\[
C_1'(m, \varepsilon) = \mathcal{O}(\frac{n + (1+pd)m}{\ln(1 + \frac{1}{\sqrt{m\kappa_f^M}})} \ln \frac{1}{\varepsilon}).
\]
Let us take \(m = m' = \left\lceil \frac{n}{1+pd} \right\rceil \).
If \(n > 1 + pd \), or equivalently \(\kappa_f < n^2d^{-2} \), then
\[
C_1'(m', \varepsilon) = \mathcal{O}(\frac{n}{\ln(1 + \frac{1}{\sqrt{n\kappa_f^M}})} \ln \frac{1}{\varepsilon}).
\]
Since \(p = \mathcal{O}\left(\sqrt{\kappa(M)} \ln (\sqrt{\kappa_f^M} \kappa(M))\right) \), we know that
when \((\kappa_f^M)^2 \sqrt{\kappa(M)} d < n \), or equivalently \(\kappa_f < n^2d^{-2} \),
we have
\[
\ln(1 + \frac{1}{\sqrt{n\kappa_f^M}}) = \mathcal{O}(\ln n),
\]
therefore
\[
C_1'(m', \varepsilon) = \mathcal{O}(n \ln \frac{1}{\varepsilon}),
\]
and
\[
\min_{m \geq 1} \frac{C_1'(m, \varepsilon)}{C_1'(m', \varepsilon)} \leq \frac{C_1'(m', \varepsilon)}{C_1'(m^*, \varepsilon)} = \mathcal{O}(\frac{\sqrt{n}}{\kappa_f}).
\]
If \(n \leq 1 + pd \), or equivalently \(\kappa_f > n^2d^{-2} \), then \(m = 1 \)
and
\[
C_1'(m, \varepsilon) = \mathcal{O}(\frac{\sqrt{\kappa(M)d}}{\ln(1 + \frac{1}{\sqrt{\kappa_f^M}})} \ln \frac{1}{\varepsilon}),
\]
therefore
\[
\min_{m \geq 1} \frac{C_1'(m, \varepsilon)}{C_1'(1, \varepsilon)} \leq \frac{C_1'(1, \varepsilon)}{C_1'(m^*, \varepsilon)} = \mathcal{O}(\frac{\sqrt{\kappa(M)d}}{\kappa_f \sqrt{n} \ln(1 + \frac{1}{\sqrt{\kappa_f^M}})}).
\]
Since \(\kappa(M) \approx \kappa_f \gg \kappa_f^M \), this ratio becomes \(\mathcal{O}(\frac{d}{\sqrt{\kappa_f^M}}) \).

Proof of Theorem 4. The proof of Theorem 4 is similar and is omitted.