
Acceleration of SVRG and Katyusha X by Inexact Preconditioning

A. Proof of Lemma 1
In this section, we prove the results on the error generated
when solving the subproblem (3.2) inexactly by Procedure
1. Before proving Lemma 1, we will first prove a simpler
case in Lemma 3, where the subproblem iterator S is the
proximal gradient step.

Lemma 3. Take Assumption 1. Suppose in Procedure 1,
we choose S as the proximal gradient step with step size
γ = η λmin(M)

λ2
max(M) , and is repeat it p times, where p ≥ 1.

Then, wt+1 = wpt+1 is an approximate solution to (3.2) that
satisfies

0 ∈∂ψ(wt+1) +
1

η
M(wt+1 − wt) + ∇̃t +Mεpt+1,

(A.1)

‖εpt+1‖M ≤
c(p)

η
‖wt+1 − wt‖M , (A.2)

where

c(p) = (κ(M) + 1)κ(M)
τp + τp−1

1− τp
,

and τ =
√

1− κ−2(M) < 1.

Proof of Lemma 3. The optimization problem in (3.2) is of
the form

minimize
y∈Rd

h1(y) + h2(y), (A.3)

for h1(y) = ψ(y) and h2(y) = 1
2η‖y − wt‖

2
M + 〈∇̃, y〉.

With our choice of S as the proximal gradient descent step,
the iterations in Procedure 1 are

w0
t+1 = wt,

wi+1
t+1 = proxγh1

(
wit+1 − γ∇h2(wit+1)

)
,

wt+1 = wpt+1,

where i = 0, 1, ..., p− 1. From the definition of proxγh1
,

we have

0 ∈ ∂h1(wpt+1) +∇h2(wp−1t+1 ) +
1

γ
(wpt+1 − w

p−1
t+1 ).

Compare this with (A.1) gives

Mεpt+1 =
1

γ
(wpt+1 −w

p−1
t+1 ) +∇h2(wp−1t+1 )−∇h2(wpt+1).

To bound the right hand side, let w?t+1 be the solution of
(A.3), α = λmin(M)

η , and β = λmax(M)
η . Then h1(y) is convex

and h2(y) is α-strongly convex and β-Lipschitz differen-
tiable. Consequently, Prop. 26.16(ii) of (Bauschke et al.,
2017) gives

‖wit+1 − w?t+1‖ ≤ τ i‖w0
t+1 − w?t+1‖, ∀i = 0, 1, ..., p,

where τ =
√

1− γ(2α− γβ2).

Let ai = ‖wit+1 − w?t+1‖. Then, ai ≤ τ ia0. We can derive

‖Mεpt+1‖ ≤ (
1

γ
+ β)‖wpt+1 − w

p−1
t+1 ‖

≤ (
1

γ
+ β)(ap + ap−1) ≤ (

1

γ
+ β)(τp + τp−1)a0.

On the other hand, we have

‖wt+1 − wt‖ ≥ a0 − ap ≥ (1− τp)a0.

Combining these two equations yields

‖Mεpt+1‖ ≤ b(p)‖wt+1 − wt‖, (A.4)

where

b(p) = (
1

γ
+
λmax(M)

η
)
τp + τp−1

1− τp
. (A.5)

Finally, let the eigenvalues of M be 0 < λ1 ≤ λ2 ≤ ... ≤
λd, with orthonormal eigenvectors v1, v2, ..., vd. Let εpt+1

and wt+1 − wt be decomposed by

εpt+1 =

d∑
i=1

αivi,

wt+1 − wt =

d∑
i=1

βivi.

then

‖εpt+1‖M =

√√√√ d∑
i=1

λiα2
i ≤

√√√√ 1

λmin(M)

d∑
i=1

λ2iα
2
i

=

√
1

λmin(M)
‖Mεpt+1‖,

‖wt+1 − wt‖ =

√√√√ d∑
i=1

β2
i ≤

√√√√ 1

λmin(M)

d∑
i=1

λiβ2
i

=

√
1

λmin(M)
‖wt+1 − wt‖M .

Combine these two inequalities with (A.4), we arrive at

‖εpt+1‖M ≤ c(p)‖wt+1 − wt‖M , (A.6)

where

c(p) =
1

λmin(M)
b(p) =

1
γ + λmax(M)

η

λmin(M)

τp + τp−1

1− τp
.
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Now, we are ready to prove Lemma 1, the techniques are
similar to the proof of Lemma 3.

Proof of Lemma 1. We want to find c(p) such that

0 ∈∂ψ(wt+1) +
1

η
M(wt+1 − wt) + ∇̃t +Mεpt+1,

(A.7)

‖εpt+1‖M ≤
c(p)

η
‖wt+1 − wt‖M , (A.8)

Take i = r−1 and j = p0−1, then the optimality condition
of the problem in line 5 of Algorithm 3 is

0 ∈ ∂ψ(w
(r−1,p0)
t+1 )+

1

γ
(w

(r−1,p0)
t+1 −u(r−1,p0)t+1 )+∇h2(u

(r−1,p0)
t+1 ),

compare this with (A.7), we have

Mεpt+1 =
1

γ
(w

(r−1,p0)
t+1 − u(r−1,p0)t+1 ) +∇h2(u

(r−1,p0)
t+1 )

− 1

η
M(wt+1 − wt)− ∇̃t

=
1

γ
(w

(r−1,p0)
t+1 − u(r−1,p0)t+1 )

+
1

η
M(u

(r−1,p0)
t+1 − wt+1)

where

u
(r−1,p0)
t+1 =w

(r−1,p0−1)
t+1 +

θp0−2 − 1

θp0−1
(w

(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 ).

As a result,

‖Mεpt+1‖ ≤‖
1

γ
(w

(r−1,p0)
t+1 − u(r−1,p0)t+1 )‖ (A.9)

+ ‖1

η
M(u

(r−1,p0)
t+1 − wt+1)‖

≤‖ 1

γ
(w

(r−1,p0)
t+1 − w(r−1,p0−1)

t+1 ‖

+
1

γ
‖θp0−2 − 1

θp0−1
(w

(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 )‖

+ ‖1

η
M(w

(r−1,p0−1)
t+1 − wt+1)‖

+ ‖1

η

θp0−2 − 1

θp0−1
M(w

(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 )‖,

(A.10)

Let the solution of (3.2) be w?t+1. By Theorem 4.4 of (Beck
& Teboulle, 2009), for any 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ p0
we have

Ψ(w
(i,j)
t+1 )−Ψ(w?t+1) ≤

2λmax(M)‖w(i,0)
t+1 − w?t+1‖2

ηj2
.

On the other hand, the strong convexity of Ψ = h1 + h2
gives

Ψ(w
(i,j)
t+1 )−Ψ(w?t+1) ≥ λmin(M)

2η
‖w(i,j)

t+1 − w?t+1‖2.

Therefore,

‖w(i,j)
t+1 − w?t+1‖ ≤

√
4κ(M)

j2
‖w(i,0)

t+1 − w?t+1‖. (A.11)

Now, let us use (A.11) repeatedly to bound the right hand
side of (A.10). For example, the first term can be bounded
as

‖ 1

γ
(w

(r−1,p0)
t+1 − w(r−1,p0−1)

t+1 ‖

≤ 1

γ
‖w(r−1,p0)

t+1 − w?t+1‖

+
1

γ
‖w(r−1,p0−1)

t+1 − w?t+1‖

≤ 1

γ
(
4κ(M)

p20
)
r
2 ‖w(0,0)

t+1 − w?t+1‖

+
1

γ
(
4κ(M)

p20
)
r−1
2 (

4κ(M)

(p0 − 1)2
)

1
2 ‖w(0,0)

t+1 − w?t+1‖.

Similarly, the rest of the terms can be bounded as follows,

1

γ
‖θp0−2 − 1

θp0−1
(w

(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 )‖

≤ 1

γ
(
4κ(M)

p20
)
r−1
2 (

4κ(M)

(p0 − 1)2
)

1
2 ‖w(0,0)

t+1 − w?t+1‖

+
1

γ
(
4κ(M)

p20
)
r−1
2 (

4κ(M)

(p0 − 2)2
)

1
2 ‖w(0,0)

t+1 − w?t+1‖,

‖1

η
M(w

(r−1,p0−1)
t+1 − wt+1)‖

≤λmax(M)

η
(
4κ(M)

p20
)
r−1
2 (

4κ(M)

(p0 − 1)2
)

1
2 ‖w(0,0)

t+1 − w?t+1‖,

+
λmax(M)

η
(
4κ(M)

p20
)
r
2 ‖w(0,0)

t+1 − w?t+1‖,

‖1

η

θp0−2 − 1

θp0−1
M(w

(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 )‖

≤λmax(M)

η
(
4κ(M)

p20
)
r−1
2 (

4κ(M)

(p0 − 1)2
)

1
2 ‖w(0,0)

t+1 − w?t+1‖

+
λmax(M)

η
(
4κ(M)

p20
)
r−1
2 (

4κ(M)

(p0 − 2)2
)

1
2 ‖w(0,0)

t+1 − w?t+1‖,

where in the first and third estimate we have used θp0−2−1
θp0−1

≤
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θp0−2

θp0−1
< 1. On the other hand, we have

‖wt+1 − wt‖ = ‖w(r−1,p0)
t+1 − w(0,0)

t+1 ‖

≥ ‖w(0,0)
t+1 − w?t+1‖ − ‖w

(r−1,p0)
t+1 − w?t+1‖

≥ (1− (
4κ(M)

p20
)
r
2 )‖w(0,0)

t+1 − w?t+1‖.

As a result, taking γ = λmax(M)
η , w(0,0)

t+1 = wt, w
(r−1,p0)
t+1 =

wt+1 and τ = ( 4κ(M)
p20

)
1

2p0 yields

‖Mεpt+1‖ ≤ 2
λmax(M)

η

b(p)

1− τp
‖wt+1 − wt‖,

where

b(p) =τp−p0
(
(

4κ(M)

(p0 − 1)2
)

1
2 + (

4κ(M)

(p0 − 2)2
)

1
2

)
+ τp + τp−p0(

4κ(M)

(p0 − 1)2
)

1
2 . (A.12)

Similar to the end of proof of Lemma 3, we have

‖Mεpt+1‖M ≤ 2
κ(M)

η

b(p)

1− τp
‖wt+1 − wt‖M .

Now, let us choose p0 such that τ = ( 4κ(M)
p20

)
1

2p0 is mini-
mized, a simple calculation yields

p?0 = 2e
√
κ(M).

In order for p0 to be an integer, we can take

p0 = d2e
√
κ(M)e,

then

τ = (
4κ(M)

p20
)

1
2p0 ≤ (

1

e2
)

1

2d2e
√
κ(M)e ≤ (

1

e2
)

1

2(2e
√
κ(M)+1)

= exp(− 1

2e
√
κ(M) + 1

).

Finally, Let us show that b(p) in (A.12) can be bounded by
7τp, and the desired bound (A.8) on ‖εpt+1‖M follows.

First, we have

τ−p0(
4κ(M)

p0 − 1
)

1
2 = (

p0
p0 − 1

)
1
p0 ,

and
p0 = d2e

√
κ(M)e ≥ d2ee = 6.

On the other hand, a simple calculation shows that ( p0
p0−1 )

1
p0

is decreasing in p0, therefore

τ−p0(
4κ(M)

p0 − 1
)

1
2 ≤ (

6

5
)

1
6 < 2,

Similarly, one can show that

τ−p0(
4κ(M)

p0 − 2
)

1
2 ≤ (

6

4
)

1
6 < 2.

Combining these two inequalities with (B.2) yields

b(p) ≤ 7τp.

B. Proof of Theorem 1
In this section, we proceed to establish the convergence of
inexact preconditioned SVRG as in Algorithm 1. The proof
is similar to that of Theorem D.1 of (Allen-Zhu, 2018).

Before proving Theorem 1, let us first prove several lemmas.

First, the inexact optimality condition (4.1) gives the follow-
ing descent:
Lemma 4. Under Assumption 1, suppose that (4.1) holds.
Then, for any u ∈ Rd we have

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u)

≤ 〈∇̃t, wt − wt+1〉+
‖u− wt‖2M

2η

− 1

2η
‖u− wt+1‖2M −

1

2η
‖wt+1 − wt‖2M

+ 〈Mεpt+1, u− wt+1〉.

Proof. First, let us rewrite the left hand side as

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u)

= 〈∇̃t, wt − wt+1〉+ 〈∇̃t, wt+1 − u〉+ ψ(wt+1)− ψ(u).

By (4.1) and the definition of subdifferential we have

ψ(u) ≥ ψ(wt+1)−〈∇̃t+
1

η
M(wt+1−wt)+Mεpt+1, u−wt+1〉.

Combining these two gives

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u)

≤〈∇̃t, wt − wt+1〉

+ 〈1
η
M(wt+1 − wt) +Mεpt+1, u− wt+1〉

=〈∇̃t, wt − wt+1〉+
‖u− wt‖2M

2η

− 1

2η
‖u− wt+1‖2M −

1

2η
‖wt+1 − wt‖2M

+ 〈Mεpt+1, u− wt+1〉,

where in the last equality we have applied

〈a−b, c−a〉M = −1

2
‖a−b‖2M−

1

2
‖a−c‖2M+

1

2
‖b−c‖M .
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Based on lemma 4, we have

Lemma 5. Under Assumption 1, if the iterator S in Proce-
dure 1 is proximal gradient descent or FISTA with restart,
then, for any a > 0, η ≤ 1−2c(p)a

2LMf
, and u ∈ Rd we have

E[F (wt+1)− F (u)]

≤E[η‖∇̃t −∇f(wt)‖2M−1 +
1− ησMf

2η
‖u− wt‖2M

− (
1

2η
− c(p)

2ηa
)‖u− wt+1‖2M ].

Proof. We have

E[F (wt+1)− F (u)]

= E[f (wt+1)− f(u) + ψ (wt+1)− ψ(u)]

≤E[f (wt) + 〈∇f (wt) , wt+1 − wt〉

+
LMf
2
‖wt − wt+1‖2M − f(u) + ψ (wt+1)− ψ(u)]

E[〈∇f (wt) , wt − u〉 −
σMf
2
‖u− wt‖2M

+ 〈∇f (wt) , wt+1 − wt〉+
LMf
2
‖wt − wt+1‖2M

+ ψ (wt+1)− ψ(u)]

=E[〈∇̃t, wt − u〉 −
σMf
2
‖u− wt‖2M (B.1)

+ 〈∇f (wt) , wt+1 − wt〉

+
LMf
2
‖wt − wt+1‖2M + ψ (wt+1)− ψ(u)], (B.2)

where the first and second inequality are due to the strong
convexity and smoothness under ‖ · ‖M in Assumption 1,
respectively. the last equality is due to E[∇̃t] = ∇f(wt).

On the other hand, recall that Lemma 4 gives

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u)

〈∇̃t, wt − wt+1〉+
‖u− wt‖2M

2η

− 1

2η
‖u− wt+1‖2M −

1

2η
‖wt+1 − wt‖2M

+ 〈Mεpt+1, u− wt+1〉,

For the last term we can apply Cauchy-Schwartz as follows,

〈Mεpt+1, u− wt+1〉 ≤ ‖εpt+1‖M‖u− wt+1‖M ,

from Lemma 3 and Lemma 1 we know that

‖εpt+1‖M ≤
c(p)

η
‖wt+1 − wt‖M .

Therefore, by Young’s inequality, we have for any a > 0
that

〈Mεpt+1, u− wt+1〉

≤c(p)a
2η
‖wt+1 − wt‖2M +

c(p)

2aη
‖u− wt+1‖2M .

Applying this to Lemma 4 yields

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u)

≤〈∇̃t, wt − wt+1〉+
‖u− wt‖2M

2η

− 1

2η
‖u− wt+1‖2M −

1

2η
‖wt+1 − wt‖2M

+ 〈Mεpt+1, u− wt+1〉

〈∇̃t, wt − wt+1〉+
‖u− wt‖2M

2η

− (
1

2η
− c(p)

2aη
)‖u− wt+1‖2M

− (
1

2η
− c(p)a

2η
)‖wt+1 − wt‖2M

Applying this to (B.2), we arrive at

E[F (wt+1)− F (u)]

≤E[〈∇̃t −∇f (wt) , wt − wt+1〉

−
1− c(p)a− ηLMf

2η
‖wt − wt+1‖2M

+
1− ησMf

2η
‖u− wt‖2M − (

1

2η
− c(p)

2aη
)‖u− wt+1‖2M ]

E[
η

2(1− c(p)a− ηLMf )
‖∇̃t −∇f(wt)‖2M−1

+
1− ησMf

2η
‖u− wt‖2M − (

1

2η
− c(p)

2aη
)‖u− wt+1‖2M ],

where in the second inequality we have applied

〈u1, u2〉 = 〈M− 1
2u1,M

1
2u2〉 ≤ ‖u1‖M−1‖u2‖M

≤ 1

2b
‖u1‖2M−1

1
+
b

2
‖u2‖2

M
1
2

for any b > 0.

Finally, since η ≤ 1−2c(p)a
2LMf

, we have η
2(1−c(p)a−ηLMf )

≤ η,

which gives the desired result.

Lemma 6. Under Assumption 1, we have

E[‖∇̃t −∇f(wt)‖2M−1 ] ≤ (LMf )2‖w0 − wt‖2M .
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Proof. We have

E[‖∇̃t −∇f(wt)‖2M−1 ]

=E[‖∇f(w0) +∇fit(wt)−∇fit(w0)−∇f(wt)‖2M−1 ]

=E[‖
(
∇fit(wt)−∇fit(w0)

)
−
(
∇f(wt)−∇f(w0)

)
‖2M−1 ]

≤E[‖∇fit(wt)−∇fit(w0)‖2M−1 ]

≤(LMf )2‖wt − w0‖2M ,

where in the first inequality, we have applied E[‖ξ −
E ξ‖2] = E[‖ξ‖2 − ‖E ξ‖2 with ξ = M−

1
2

(
∇fit(wt) −

∇fit(w0)
)
, and in the second inequality follows from As-

sumption 1.

Lemma 7. (Fact 2.3 of (Allen-Zhu, 2018)). LetC1, C2, ...
be a sequence of numbers, and N ∼Geom(p), then

1. EN [CN − CN+1] = p
1−pEN [C0 − CN ], and

2. EN [CN ] = (1− p)E [CN+1] + pC0.

Lemma 8. Under Assumption 1, if η ≤
min{ 1−2c(p)a

2LMf
, 1
2
√
mLMf

} and m ≥ 2, then, for any

u ∈ Rd we have

E[F (wD+1)− F (u)]

≤E[− 1

4mη
‖wD+1 − w0‖2M +

〈w0 − wD+1, w0 − u〉M
mη

− (
σMf
4
− c(p)

2aη
)‖wD+1 − u‖2M ].

Proof. By Lemmas 5 and 6, we know that

E[F (wt+1)− F (u)]

E[η(LMf )2‖w0 − wt‖2M +
1− ησMf

2η
‖u− wt‖2M

− (
1

2η
− c(p)

2ηa
)‖u− wt+1‖2M ].

Let D ∼Geom( 1
m ) as in Algorithm 1 and take t = D, then

E[F (wD+1)− F (u)]

≤E[η(LMf )2‖w0 − wD‖2M +
1

2η
‖u− wD‖2M

− 1

2η
‖u− wD+1‖2M −

σMf
2
‖u− wD‖2M

+
c(p)

2ηa
‖u− wD+1‖2M ]

=E[η(LMf )2‖wD − w0‖2M +
‖u− w0‖2M − ‖u− wD‖2M

2(m− 1)η

−
σMf
2
‖u− wD‖2M +

c(p)

2aη
‖u− wD+1‖2M ]

=E[
m− 1

m
η(LMf )2‖wD+1 − w0‖2M

+
‖u− w0‖2M − ‖u− wD+1‖2M

2mη
]

−
σMf
2m
‖u− w0‖2M −

σMf (m− 1)

2m
‖u− wD+1‖2M

+
c(p)

2aη
‖u− wD+1‖2M ]

≤E[η(LMf )2‖wD+1 − w0‖2M +
‖u− w0‖2M − ‖u− wD+1‖2M

2mη

−
σMf
4
‖u− wD+1‖2M +

c(p)

2aη
‖u− wD+1‖2M ]

≤E[− 1

4mη
‖w0 − wD+1‖2M

+
‖u− w0‖2M − ‖u− wD+1‖2M + ‖w0 − wD+1‖2M

2mη

−
σMf
4
‖wD+1 − u‖2M +

c(p)

2aη
‖u− wD+1‖2M ]

=E[− 1

4mη
‖wD+1 − w0‖2M +

〈w0 − wD+1, w0 − u〉M
mη

− (
σMf
4
− c(p)

2aη
)‖wD+1 − u‖2M ],

where the first equality follows from the item 1 of Lemma 7
withCN = ‖u−wN‖2M , the second inequality follows from
item 2 with CN = ‖wd − w0‖2M , item 2 with CN = ‖u−
w0‖2M −‖u−wN‖2M , and item 1 with CN = ‖u−wD‖2M ,
then third inequality makes use of m ≥ 2 and the fourth
inequality makes use of η ≤ 1

2
√
mLMf

.

Now, let us proceed to prove Theorem 1. With Lemma 8, it
can be proved in a similar way as Theorem 3 of (Hannah
et al., 2018b).

Proof of Theorem 1. Without loss of generality, we can as-
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sume x? = arg minx∈Rd F (x) = 0 and F (x∗) = 0.

According to Lemma 8, for any u ∈ Rd, and η ≤
min{ 1−2c(p)a

2LMf
, 1
2
√
mLMf

} we have

E[F (xj+1)− F (u)]

≤E[− 1

4mη
‖xj+1 − xj‖2M

+
〈xj − xj+1, xj − u〉M

mη
− (

σMf
4
− c(p)

2aη
)‖xj+1 − u‖2M ],

or equivalently,

E[F (xj+1)− F (u)]

≤E[
1

4mη
‖xj+1 − xj‖2M +

1

2mη
‖xj − u‖2M

− 1

2mη
‖xj+1 − u‖2M − (

σMf
4
− c(p)

2aη
)‖xj+1 − u‖2M ].

In the following proof, we will omit E.

Setting u = x∗ = 0 and u = xj yields the following two
inequalities:

F (xj+1) ≤ 1

4mη
(‖xj+1 − xj‖2M + 2‖xj‖2M )

− 1

2mη

(
1 +

1

2
mη(σMf −

2c(p)

aη
)
)
‖xj+1‖2M ,

(B.3)

F (xj+1)− F (xj) (B.4)

≤− 1

4mη

(
1 +mη(σMf −

2c(p)

aη
)
)
‖xj+1 − xj‖2M .

(B.5)

Define τ = 1
2mη(σMf −

2c(p)
aη ), multiply (1 + 2τ) to (B.3),

then add it to (B.5) yields

2(1 + τ)F (xj+1)− F (xj)

≤ 1

2mη
(1 + 2τ)

(
‖xj‖2M − (1 + τ)‖xj+1‖2M

)
.

Multiplying both sides by (1 + τ)j gives

2(1 + τ)j+1F (xj+1)− (1 + τ)jF (xj)

≤ 1

2mη
(1 + 2τ)

(
(1 + τ)j‖xj‖2M − (1 + τ)j+1‖xj+1‖2M

)
.

Summing over j = 0, 1, ..., k − 1, we have

(1 + τ)kF (xk) +

k−1∑
j=0

(1 + τ)jF (xj)− F (x0)

≤ 1

2mη
(1 + 2τ)(‖x0‖2M − (1 + τ)k‖xk‖2M ).

Since F (xj) ≥ 0, we have

F (xk)(1 + τ)k ≤ F (x0) +
1

2mη
(1 + 2τ)‖x0‖2.

By the strong convexity of F , we have F (x0) ≥ σMf
2 ‖x

0‖2M ,
therefore

F (xk)(1 + τ)k ≤ F (x0)(2 +
1

2τ
). (B.6)

Finally, recall that a > 0 can be chosen arbitrarily, so we
can take

a =
4c(p)

ησMf
,

and

η ≤min{1− 2c(p)a

2LMf
,

1

2
√
mLMf

}

= min{
1− 8c2(p)

ησMf

2LMf
,

1

2
√
mLMf

}, (B.7)

τ =
1

2
mη(σMf −

2c(p)

aη
) =

1

4
mησMf .

In order for the choice of η in (B.7) to be possible, we need

2LMf η
2 − η + 8

c2(p)

σMf
≤ 0 (B.8)

to have one solution at least, which requires

64κMf c
2(p) ≤ 1,

under which η = 1
4LMf

satisfy (B.8). As a result, m ≥ 4

makes (B.7) into

η ≤ 1

2
√
mLMf

,

and the desired convergence result follows from (B.6).

C. Proof of Lemma 2
Proof. From Lemma 1, we know that

c(p) = 14κ(M)
τp

1− τp
,

where
τ ≤ exp(− 1

2e
√
κ(M) + 1

).

Therefore, in order for 64κMf c
2(p) ≤ 1, we need

κMf κ
2(M)(

τp

1− τp
)2 ≤ 1

64× 142
= c1,
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which is equivalent to

τp ≤ c1√
κMf κ(M) +

√
c1
.

Thus, it suffices to require that

[exp(− 1

2e
√
κ(M) + 1

)]p ≤ c√
κMf κ(M) +

√
c1
,

which gives

p ≥ (2e
√
κ(M) + 1) ln

√
κMf κ(M) +

√
c1

c1
.

D. Proof of Theorem 2
The proof of Theorem 2 is similar to that of Theorem 4.3 of
(Allen-Zhu, 2018), so we provide a proof sketch here and
omit the details.

1. In (Allen-Zhu, 2018), the proof of Theorem 4.3 is
based on Lemma 3.3, here the proof of Theorem 2 is
based on Lemma 8, which is an analog of Lemma of
3.3 in our settings.

2. Based on Lemma 8, the proof of Theorem 2 follows
in nearly the same way as Theorem 4.3 of (Allen-Zhu,
2018), the only difference is that one needs to replace
σ by σMf −

2c(p)
aη .

3. By setting

a =
4c(p)

ησMf
,

and
64κMf c

2(p) ≤ 1

as in the proof of Theorem 1, the τ in Theorem 4.3 of
(Allen-Zhu, 2018) becomes 1

2mησ
M
f , and the conver-

gence result of Theorem 2 follows.

E. Proof of Theorems 3 and 4
Proof of Theorem 3. From Remark 5, we know that the gra-
dient complexity of SVRG can be expressed as

C1(m, ε) = O(
n+m

ln(1 + 1
4mησf )

ln
1

ε
).

Taking the largest possible step size η = 1
2
√
mLf

as in
Theorem 1, we have

C1(m, ε) = O(
n+m

ln(1 +
√
m

8κf
)

ln
1

ε
).

Let us first find the optimal m = m? for SVRG, let

g(m) =
n+m

ln(1 +
√
m

8κf
)
,

then

g′(m) =

ln(1 +
√
m

8κf
)−

√
m

8κf

1+
√
m

8κf

n+m
2m

ln2(1 + z)
.

Taking derivative to the numerator gives

[ln(1 +

√
m

8κf
)−

√
m

8κf

1 +
√
m

8κf

n+m

2m
]′

= (n+m)

1
32κf

m−
3
2 + 2 m−1

(16κf )2

(1 +
√
m

8κf
)2

> 0,

Therefore, m? is given by g′(m) = 0. Let z =
√
m

8κf
> 0,

then

g′(m) =
ln(1 + z)− z

1+z
n+m
2m

ln2(1 + z)
.

Since ln(1 + z) > z
1+z for z > 0, we know that g′(n) > 0,

therefore, m? < n.

Let m = ns where 0 < s < 1, we would like to have
g′(ns) < 0, i,e.,

ln(1 + z)
z

1+z

<
1 + n1−s

2
.

so that m? ∈ (ns, n).

Since κf > n
1
2 , we have z =

√
m

8κf
< 1

8 , on the other hand,
we have

[
ln(1 + z)

z
1+z

<
1 + n1−s

2
]′z > 0.

Therefore, it suffices to have

n1−s > 18 ln
9

8
− 1 := c0 > 1.

As a result, we have m? ∈ ( nc0 , n), and

C1(m?, ε) = O(
n+m?

ln(1 +
√
m?

8κf
)

ln
1

ε
)

= O(
n
√
n

8κf

ln
1

ε
) = O(κf

√
n ln

1

ε
),

where in the second equality we have used κf > n
1
2 .

For our iPreSVRG in Algorithm 1, we have

C ′1(m, ε) = O(
n+ (1 + pd)m

ln(1 + 1
4mησ

M )
ln

1

ε
),
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thanks to Lemma 2, p can be chosen as

p = O(
√
κ(M) ln

(√
κMf κ(M)

)
,

furthermore, we can take η = 1
2
√
mLf

due to Theorem 1.

Under these settings, we have

C ′1(m, ε) = O(
n+ (1 + pd)m

ln(1 + 1
8

√
m

κMf
)

ln
1

ε
).

Let us take m = m′ = d n
1+pde.

If n > 1 + pd, or equivalently κf < n2d−2, then

C ′1(m′, ε) = O(
n

ln(1 + 1
8

√
n√

pdκMf
)

ln
1

ε
).

Since p = O
(√

κ(M) ln
(√

κMf κ(M)
))
, we know that

when (κMf )2
√
κ(M)d < n, or equivalently κf < n2d−2,

we have

ln(1 +
1

8

√
n√

pdκMf
) = O(lnn),

therefore
C ′1(m′, ε) = O(n ln

1

ε
),

and

minm≥1 C
′
1(m, ε)

minm≥1 C1(m, ε)
≤ C ′1(m′, ε)

C1(m?, ε)
= O(

√
n

κf
).

If n ≤ 1 + pd, or equivalently κf > n2d−2, then m = 1
and

C ′1(m, ε) = O(

√
κ(M)d

ln(1 + 1
8

1
κMf

)
ln

1

ε
),

therefore

minm≥1 C
′
1(m, ε)

minm≥1 C1(m, ε)
≤ C ′1(1, ε)

C1(m?, ε)
= O(

√
κ(M)d

κf
√
n ln(1 + 1

8
1
κMf

)
).

Since κ(M) ≈ κf � κMf , this ratio becomes O( d√
nκf

)

Proof of Theorem 4. The proof of Theorem 4 is similar and
is omitted.


