A. Proof of Lemma 1

In this section, we prove the results on the error generated when solving the subproblem (3.2) inexactly by Procedure 1. Before proving Lemma 1, we will first prove a simpler case in Lemma 3, where the subproblem iterator S is the proximal gradient step.
Lemma 3. Take Assumption 1. Suppose in Procedure 1, we choose S as the proximal gradient step with step size $\gamma=\eta \frac{\lambda_{\min }(M)}{\lambda_{\max }^{2}(M)}$, and is repeat it p times, where $p \geq 1$. Then, $w_{t+1}=w_{t+1}^{p}$ is an approximate solution to (3.2) that satisfies

$$
\begin{gather*}
\mathbf{0} \in \partial \psi\left(w_{t+1}\right)+\frac{1}{\eta} M\left(w_{t+1}-w_{t}\right)+\tilde{\nabla}_{t}+M \varepsilon_{t+1}^{p} \tag{A.1}\\
\left\|\varepsilon_{t+1}^{p}\right\|_{M} \leq \frac{c(p)}{\eta}\left\|w_{t+1}-w_{t}\right\|_{M} \tag{A.2}
\end{gather*}
$$

where

$$
c(p)=(\kappa(M)+1) \kappa(M) \frac{\tau^{p}+\tau^{p-1}}{1-\tau^{p}}
$$

and $\tau=\sqrt{1-\kappa^{-2}(M)}<1$.
Proof of Lemma 3. The optimization problem in (3.2) is of the form

$$
\begin{equation*}
\underset{y \in \mathbb{R}^{\mathrm{d}}}{\operatorname{minimize}} h_{1}(y)+h_{2}(y) \tag{A.3}
\end{equation*}
$$

for $h_{1}(y)=\psi(y)$ and $h_{2}(y)=\frac{1}{2 \eta}\left\|y-w_{t}\right\|_{M}^{2}+\langle\tilde{\nabla}, y\rangle$. With our choice of S as the proximal gradient descent step, the iterations in Procedure 1 are

$$
\begin{aligned}
& w_{t+1}^{0}=w_{t} \\
& w_{t+1}^{i+1}=\operatorname{prox}_{\gamma h_{1}}\left(w_{t+1}^{i}-\gamma \nabla h_{2}\left(w_{t+1}^{i}\right)\right) \\
& w_{t+1}=w_{t+1}^{p}
\end{aligned}
$$

where $i=0,1, \ldots, p-1$. From the definition of $\operatorname{prox}_{\gamma h_{1}}$, we have

$$
\mathbf{0} \in \partial h_{1}\left(w_{t+1}^{p}\right)+\nabla h_{2}\left(w_{t+1}^{p-1}\right)+\frac{1}{\gamma}\left(w_{t+1}^{p}-w_{t+1}^{p-1}\right) .
$$

Compare this with (A.1) gives
$M \varepsilon_{t+1}^{p}=\frac{1}{\gamma}\left(w_{t+1}^{p}-w_{t+1}^{p-1}\right)+\nabla h_{2}\left(w_{t+1}^{p-1}\right)-\nabla h_{2}\left(w_{t+1}^{p}\right)$.
To bound the right hand side, let w_{t+1}^{\star} be the solution of (A.3), $\alpha=\frac{\lambda_{\min }(M)}{\eta}$, and $\beta=\frac{\lambda_{\max }(M)}{\eta}$. Then $h_{1}(y)$ is convex and $h_{2}(y)$ is α-strongly convex and β-Lipschitz differentiable. Consequently, Prop. 26.16(ii) of (Bauschke et al., 2017) gives

$$
\left\|w_{t+1}^{i}-w_{t+1}^{\star}\right\| \leq \tau^{i}\left\|w_{t+1}^{0}-w_{t+1}^{\star}\right\|, \quad \forall i=0,1, \ldots, p
$$

where $\tau=\sqrt{1-\gamma\left(2 \alpha-\gamma \beta^{2}\right)}$.
Let $a_{i}=\left\|w_{t+1}^{i}-w_{t+1}^{\star}\right\|$. Then, $a_{i} \leq \tau^{i} a_{0}$. We can derive

$$
\begin{aligned}
\left\|M \varepsilon_{t+1}^{p}\right\| & \leq\left(\frac{1}{\gamma}+\beta\right)\left\|w_{t+1}^{p}-w_{t+1}^{p-1}\right\| \\
& \leq\left(\frac{1}{\gamma}+\beta\right)\left(a_{p}+a_{p-1}\right) \leq\left(\frac{1}{\gamma}+\beta\right)\left(\tau^{p}+\tau^{p-1}\right) a_{0}
\end{aligned}
$$

On the other hand, we have

$$
\left\|w_{t+1}-w_{t}\right\| \geq a_{0}-a_{p} \geq\left(1-\tau^{p}\right) a_{0}
$$

Combining these two equations yields

$$
\begin{equation*}
\left\|M \varepsilon_{t+1}^{p}\right\| \leq b(p)\left\|w_{t+1}-w_{t}\right\| \tag{A.4}
\end{equation*}
$$

where

$$
\begin{equation*}
b(p)=\left(\frac{1}{\gamma}+\frac{\lambda_{\max }(M)}{\eta}\right) \frac{\tau^{p}+\tau^{p-1}}{1-\tau^{p}} \tag{A.5}
\end{equation*}
$$

Finally, let the eigenvalues of M be $0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq$ λ_{d}, with orthonormal eigenvectors $v_{1}, v_{2}, \ldots, v_{d}$. Let ε_{t+1}^{p} and $w_{t+1}-w_{t}$ be decomposed by

$$
\begin{aligned}
\varepsilon_{t+1}^{p} & =\sum_{i=1}^{d} \alpha_{i} v_{i} \\
w_{t+1}-w_{t} & =\sum_{i=1}^{d} \beta_{i} v_{i}
\end{aligned}
$$

then

$$
\begin{aligned}
\left\|\varepsilon_{t+1}^{p}\right\|_{M} & =\sqrt{\sum_{i=1}^{d} \lambda_{i} \alpha_{i}^{2}} \leq \sqrt{\frac{1}{\lambda_{\min }(M)} \sum_{i=1}^{d} \lambda_{i}^{2} \alpha_{i}^{2}} \\
& =\sqrt{\frac{1}{\lambda_{\min }(M)}}\left\|M \varepsilon_{t+1}^{p}\right\|, \\
\left\|w_{t+1}-w_{t}\right\| & =\sqrt{\sum_{i=1}^{d} \beta_{i}^{2}} \leq \sqrt{\frac{1}{\lambda_{\min }(M)} \sum_{i=1}^{d} \lambda_{i} \beta_{i}^{2}} \\
& =\sqrt{\frac{1}{\lambda_{\min }(M)}\left\|w_{t+1}-w_{t}\right\|_{M} .}
\end{aligned}
$$

Combine these two inequalities with (A.4), we arrive at

$$
\begin{equation*}
\left\|\varepsilon_{t+1}^{p}\right\|_{M} \leq c(p)\left\|w_{t+1}-w_{t}\right\|_{M} \tag{A.6}
\end{equation*}
$$

where

$$
c(p)=\frac{1}{\lambda_{\min }(M)} b(p)=\frac{\frac{1}{\gamma}+\frac{\lambda_{\max }(M)}{\eta}}{\lambda_{\min }(M)} \frac{\tau^{p}+\tau^{p-1}}{1-\tau^{p}}
$$

Now, we are ready to prove Lemma 1, the techniques are similar to the proof of Lemma 3.

Proof of Lemma 1. We want to find $c(p)$ such that

$$
\mathbf{0} \in \partial \psi\left(w_{t+1}\right)+\frac{1}{\eta} M\left(w_{t+1}-w_{t}\right)+\tilde{\nabla}_{t}+M \varepsilon_{t+1}^{p}
$$

$$
\begin{equation*}
\left\|\varepsilon_{t+1}^{p}\right\|_{M} \leq \frac{c(p)}{\eta}\left\|w_{t+1}-w_{t}\right\|_{M} \tag{A.8}
\end{equation*}
$$

Take $i=r-1$ and $j=p_{0}-1$, then the optimality condition of the problem in line 5 of Algorithm 3 is

On the other hand, the strong convexity of $\Psi=h_{1}+h_{2}$ gives

$$
\Psi\left(w_{t+1}^{(i, j)}\right)-\Psi\left(w_{t+1}^{\star}\right) \geq \frac{\lambda_{\min }(M)}{2 \eta}\left\|w_{t+1}^{(i, j)}-w_{t+1}^{\star}\right\|^{2}
$$

Therefore,

$$
\begin{equation*}
\left\|w_{t+1}^{(i, j)}-w_{t+1}^{\star}\right\| \leq \sqrt{\frac{4 \kappa(M)}{j^{2}}}\left\|w_{t+1}^{(i, 0)}-w_{t+1}^{\star}\right\| \tag{A.7}
\end{equation*}
$$

Now, let us use (A.11) repeatedly to bound the right hand side of (A.10). For example, the first term can be bounded
$\mathbf{0} \in \partial \psi\left(w_{t+1}^{\left(r-1, p_{0}\right)}\right)+\frac{1}{\gamma}\left(w_{t+1}^{\left(r-1, p_{0}\right)}-u_{t+1}^{\left(r-1, p_{0}\right)}\right)+\nabla h_{2}\left(u_{t+1}^{\left(r-1, p_{0}\right)}\right)$,

$$
\begin{aligned}
& \| \frac{1}{\gamma}\left(w_{t+1}^{\left(r-1, p_{0}\right)}-w_{t+1}^{\left(r-1, p_{0}-1\right)} \|\right. \\
\leq & \frac{1}{\gamma}\left\|w_{t+1}^{\left(r-1, p_{0}\right)}-w_{t+1}^{\star}\right\| \\
& +\frac{1}{\gamma}\left\|w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}^{\star}\right\| \\
\leq & \frac{1}{\gamma}\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r}{2}}\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\| \\
& +\frac{1}{\gamma}\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r-1}{2}}\left(\frac{4 \kappa(M)}{\left(p_{0}-1\right)^{2}}\right)^{\frac{1}{2}}\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\|
\end{aligned}
$$

Similarly, the rest of the terms can be bounded as follows,
where
$u_{t+1}^{\left(r-1, p_{0}\right)}=w_{t+1}^{\left(r-1, p_{0}-1\right)}+\frac{\theta_{p_{0}-2}-1}{\theta_{p_{0}-1}}\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}^{\left(r-1, p_{0}-2\right)}\right) \cdot \frac{1}{\gamma}\left\|\frac{\theta_{p_{0}-2}-1}{\theta_{p_{0}-1}}\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}^{\left(r-1, p_{0}-2\right)}\right)\right\|$
As a result,

$$
\begin{align*}
\left\|M \varepsilon_{t+1}^{p}\right\| \leq & \left\|\frac{1}{\gamma}\left(w_{t+1}^{\left(r-1, p_{0}\right)}-u_{t+1}^{\left(r-1, p_{0}\right)}\right)\right\| \tag{A.9}\\
& +\left\|\frac{1}{\eta} M\left(u_{t+1}^{\left(r-1, p_{0}\right)}-w_{t+1}\right)\right\| \\
\leq & \| \frac{1}{\gamma}\left(w_{t+1}^{\left(r-1, p_{0}\right)}-w_{t+1}^{\left(r-1, p_{0}-1\right)} \|\right. \\
& +\frac{1}{\gamma}\left\|\frac{\theta_{p_{0}-2}-1}{\theta_{p_{0}-1}}\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}^{\left(r-1, p_{0}-2\right)}\right)\right\| \\
& +\left\|\frac{1}{\eta} M\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}\right)\right\| \\
& +\left\|\frac{1}{\eta} \frac{\theta_{p_{0}-2}-1}{\theta_{p_{0}-1}} M\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}^{\left(r-1, p_{0}-2\right)}\right)\right\|
\end{align*}
$$

$$
\begin{equation*}
\left\|\frac{1}{\eta} \frac{\theta_{p_{0}-2}-1}{\theta_{p_{0}-1}} M\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}^{\left(r-1, p_{0}-2\right)}\right)\right\| \tag{A.10}
\end{equation*}
$$

Let the solution of (3.2) be w_{t+1}^{\star}. By Theorem 4.4 of (Beck \& Teboulle, 2009), for any $0 \leq i \leq r-1$ and $0 \leq j \leq p_{0}$ we have

$$
\begin{aligned}
\leq & \frac{\lambda_{\max }(M)}{\eta}\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r-1}{2}}\left(\frac{4 \kappa(M)}{\left(p_{0}-1\right)^{2}}\right)^{\frac{1}{2}}\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\| \\
& +\frac{\lambda_{\max }(M)}{\eta}\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r-1}{2}}\left(\frac{4 \kappa(M)}{\left(p_{0}-2\right)^{2}}\right)^{\frac{1}{2}}\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\|
\end{aligned}
$$

$$
\Psi\left(w_{t+1}^{(i, j)}\right)-\Psi\left(w_{t+1}^{\star}\right) \leq \frac{2 \lambda_{\max }(M)\left\|w_{t+1}^{(i, 0)}-w_{t+1}^{\star}\right\|^{2}}{\eta j^{2}}
$$

$$
\begin{aligned}
& \left\|\frac{1}{\eta} M\left(w_{t+1}^{\left(r-1, p_{0}-1\right)}-w_{t+1}\right)\right\| \\
\leq & \frac{\lambda_{\max }(M)}{\eta}\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r-1}{2}}\left(\frac{4 \kappa(M)}{\left(p_{0}-1\right)^{2}}\right)^{\frac{1}{2}}\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\|, \\
& +\frac{\lambda_{\max }(M)}{\eta}\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r}{2}}\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\|
\end{aligned}
$$

where in the first and third estimate we have used $\frac{\theta_{p_{0}-2}-1}{\theta_{p_{0}-1}} \leq$
$\frac{\theta_{p_{0}-2}}{\theta_{p_{0}-1}}<1$. On the other hand, we have

$$
\begin{aligned}
& \left\|w_{t+1}-w_{t}\right\|=\left\|w_{t+1}^{\left(r-1, p_{0}\right)}-w_{t+1}^{(0,0)}\right\| \\
& \geq\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\|-\left\|w_{t+1}^{\left(r-1, p_{0}\right)}-w_{t+1}^{\star}\right\| \\
& \geq\left(1-\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{r}{2}}\right)\left\|w_{t+1}^{(0,0)}-w_{t+1}^{\star}\right\| .
\end{aligned}
$$

As a result, taking $\gamma=\frac{\lambda_{\max }(M)}{\eta}, w_{t+1}^{(0,0)}=w_{t}, w_{t+1}^{\left(r-1, p_{0}\right)}=$ w_{t+1} and $\tau=\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{1}{2 p_{0}}}$ yields

$$
\left\|M \varepsilon_{t+1}^{p}\right\| \leq 2 \frac{\lambda_{\max }(M)}{\eta} \frac{b(p)}{1-\tau^{p}}\left\|w_{t+1}-w_{t}\right\|
$$

where

$$
\begin{align*}
b(p)= & \tau^{p-p_{0}}\left(\left(\frac{4 \kappa(M)}{\left(p_{0}-1\right)^{2}}\right)^{\frac{1}{2}}+\left(\frac{4 \kappa(M)}{\left(p_{0}-2\right)^{2}}\right)^{\frac{1}{2}}\right) \\
& +\tau^{p}+\tau^{p-p_{0}}\left(\frac{4 \kappa(M)}{\left(p_{0}-1\right)^{2}}\right)^{\frac{1}{2}} \tag{A.12}
\end{align*}
$$

Similar to the end of proof of Lemma 3, we have

$$
\left\|M \varepsilon_{t+1}^{p}\right\|_{M} \leq 2 \frac{\kappa(M)}{\eta} \frac{b(p)}{1-\tau^{p}}\left\|w_{t+1}-w_{t}\right\|_{M}
$$

Now, let us choose p_{0} such that $\tau=\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{1}{2 p_{0}}}$ is minimized, a simple calculation yields

$$
p_{0}^{\star}=2 e \sqrt{\kappa(M)} .
$$

In order for p_{0} to be an integer, we can take

$$
p_{0}=\lceil 2 e \sqrt{\kappa(M)}\rceil,
$$

then

$$
\begin{aligned}
\tau & =\left(\frac{4 \kappa(M)}{p_{0}^{2}}\right)^{\frac{1}{2 p_{0}}} \leq\left(\frac{1}{e^{2}}\right)^{\frac{1}{2\lceil 2 e \sqrt{\kappa(M)}}} \leq\left(\frac{1}{e^{2}}\right)^{\frac{1}{2(2 e \sqrt{\kappa(M)}+1)}} \\
& =\exp \left(-\frac{1}{2 e \sqrt{\kappa(M)}+1}\right)
\end{aligned}
$$

Finally, Let us show that $b(p)$ in (A.12) can be bounded by $7 \tau^{p}$, and the desired bound (A.8) on $\left\|\varepsilon_{t+1}^{p}\right\|_{M}$ follows.

First, we have

$$
\tau^{-p_{0}}\left(\frac{4 \kappa(M)}{p_{0}-1}\right)^{\frac{1}{2}}=\left(\frac{p_{0}}{p_{0}-1}\right)^{\frac{1}{p_{0}}},
$$

and

$$
p_{0}=\lceil 2 e \sqrt{\kappa(M)}\rceil \geq\lceil 2 e\rceil=6 .
$$

On the other hand, a simple calculation shows that $\left(\frac{p_{0}}{p_{0}-1}\right)^{\frac{1}{p_{0}}}$ is decreasing in p_{0}, therefore

$$
\tau^{-p_{0}}\left(\frac{4 \kappa(M)}{p_{0}-1}\right)^{\frac{1}{2}} \leq\left(\frac{6}{5}\right)^{\frac{1}{6}}<2
$$

Similarly, one can show that

$$
\tau^{-p_{0}}\left(\frac{4 \kappa(M)}{p_{0}-2}\right)^{\frac{1}{2}} \leq\left(\frac{6}{4}\right)^{\frac{1}{6}}<2
$$

Combining these two inequalities with (B.2) yields

$$
b(p) \leq 7 \tau^{p}
$$

B. Proof of Theorem 1

In this section, we proceed to establish the convergence of inexact preconditioned SVRG as in Algorithm 1. The proof is similar to that of Theorem D. 1 of (Allen-Zhu, 2018).

Before proving Theorem 1, let us first prove several lemmas.
First, the inexact optimality condition (4.1) gives the following descent:
Lemma 4. Under Assumption 1, suppose that (4.1) holds. Then, for any $u \in \mathbb{R}^{\mathrm{d}}$ we have

$$
\begin{aligned}
& \left\langle\tilde{\nabla}_{t}, w_{t}-u\right\rangle+\psi\left(w_{t+1}\right)-\psi(u) \\
& \leq\left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle+\frac{\left\|u-w_{t}\right\|_{M}^{2}}{2 \eta} \\
& -\frac{1}{2 \eta}\left\|u-w_{t+1}\right\|_{M}^{2}-\frac{1}{2 \eta}\left\|w_{t+1}-w_{t}\right\|_{M}^{2} \\
& +\left\langle M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle
\end{aligned}
$$

Proof. First, let us rewrite the left hand side as
$\left\langle\tilde{\nabla}_{t}, w_{t}-u\right\rangle+\psi\left(w_{t+1}\right)-\psi(u)$
$=\left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle+\left\langle\tilde{\nabla}_{t}, w_{t+1}-u\right\rangle+\psi\left(w_{t+1}\right)-\psi(u)$.
By (4.1) and the definition of subdifferential we have
$\psi(u) \geq \psi\left(w_{t+1}\right)-\left\langle\tilde{\nabla}_{t}+\frac{1}{\eta} M\left(w_{t+1}-w_{t}\right)+M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle$.
Combining these two gives

$$
\begin{aligned}
& \left\langle\tilde{\nabla}_{t}, w_{t}-u\right\rangle+\psi\left(w_{t+1}\right)-\psi(u) \\
\leq & \left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle \\
& +\left\langle\frac{1}{\eta} M\left(w_{t+1}-w_{t}\right)+M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle \\
= & \left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle+\frac{\left\|u-w_{t}\right\|_{M}^{2}}{2 \eta} \\
& -\frac{1}{2 \eta}\left\|u-w_{t+1}\right\|_{M}^{2}-\frac{1}{2 \eta}\left\|w_{t+1}-w_{t}\right\|_{M}^{2} \\
& +\left\langle M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle
\end{aligned}
$$

where in the last equality we have applied

$$
\langle a-b, c-a\rangle_{M}=-\frac{1}{2}\|a-b\|_{M}^{2}-\frac{1}{2}\|a-c\|_{M}^{2}+\frac{1}{2}\|b-c\|_{M} .
$$

Based on lemma 4, we have
Lemma 5. Under Assumption 1, if the iterator S in Procedure 1 is proximal gradient descent or FISTA with restart, then, for any $a>0, \eta \leq \frac{1-2 c(p) a}{2 L_{f}^{M}}$, and $u \in \mathbb{R}^{\mathrm{d}}$ we have

$$
\begin{aligned}
& \mathbb{E}\left[F\left(w_{t+1}\right)-F(u)\right] \\
\leq & \mathbb{E}\left[\eta\left\|\tilde{\nabla}_{t}-\nabla f\left(w_{t}\right)\right\|_{M^{-1}}^{2}+\frac{1-\eta \sigma_{f}^{M}}{2 \eta}\left\|u-w_{t}\right\|_{M}^{2}\right. \\
& \left.-\left(\frac{1}{2 \eta}-\frac{c(p)}{2 \eta a}\right)\left\|u-w_{t+1}\right\|_{M}^{2}\right] .
\end{aligned}
$$

Proof. We have

$$
\begin{align*}
& \mathbb{E}\left[F\left(w_{t+1}\right)-F(u)\right] \\
& =\mathbb{E}\left[f\left(w_{t+1}\right)-f(u)+\psi\left(w_{t+1}\right)-\psi(u)\right] \\
\leq & \mathbb{E}\left[f\left(w_{t}\right)+\left\langle\nabla f\left(w_{t}\right), w_{t+1}-w_{t}\right\rangle\right. \\
& \left.+\frac{L_{f}^{M}}{2}\left\|w_{t}-w_{t+1}\right\|_{M}^{2}-f(u)+\psi\left(w_{t+1}\right)-\psi(u)\right] \\
& \mathbb{E}\left[\left\langle\nabla f\left(w_{t}\right), w_{t}-u\right\rangle-\frac{\sigma_{f}^{M}}{2}\left\|u-w_{t}\right\|_{M}^{2}\right. \\
& +\left\langle\nabla f\left(w_{t}\right), w_{t+1}-w_{t}\right\rangle+\frac{L_{f}^{M}}{2}\left\|w_{t}-w_{t+1}\right\|_{M}^{2} \\
& \left.+\psi\left(w_{t+1}\right)-\psi(u)\right] \\
= & \mathbb{E}\left[\left\langle\tilde{\nabla}_{t}, w_{t}-u\right\rangle-\frac{\sigma_{f}^{M}}{2}\left\|u-w_{t}\right\|_{M}^{2}\right. \tag{B.1}\\
& +\left\langle\nabla f\left(w_{t}\right), w_{t+1}-w_{t}\right\rangle \\
& \left.+\frac{L_{f}^{M}}{2}\left\|w_{t}-w_{t+1}\right\|_{M}^{2}+\psi\left(w_{t+1}\right)-\psi(u)\right], \tag{B.2}
\end{align*}
$$

where the first and second inequality are due to the strong convexity and smoothness under $\|\cdot\|_{M}$ in Assumption 1, respectively. the last equality is due to $\mathbb{E}\left[\nabla_{t}\right]=\nabla f\left(w_{t}\right)$.

On the other hand, recall that Lemma 4 gives

$$
\begin{aligned}
& \left\langle\tilde{\nabla}_{t}, w_{t}-u\right\rangle+\psi\left(w_{t+1}\right)-\psi(u) \\
& \left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle+\frac{\left\|u-w_{t}\right\|_{M}^{2}}{2 \eta} \\
& -\frac{1}{2 \eta}\left\|u-w_{t+1}\right\|_{M}^{2}-\frac{1}{2 \eta}\left\|w_{t+1}-w_{t}\right\|_{M}^{2} \\
& +\left\langle M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle
\end{aligned}
$$

For the last term we can apply Cauchy-Schwartz as follows,

$$
\left\langle M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle \leq\left\|\varepsilon_{t+1}^{p}\right\|_{M}\left\|u-w_{t+1}\right\|_{M}
$$

from Lemma 3 and Lemma 1 we know that

$$
\left\|\varepsilon_{t+1}^{p}\right\|_{M} \leq \frac{c(p)}{\eta}\left\|w_{t+1}-w_{t}\right\|_{M}
$$

Therefore, by Young's inequality, we have for any $a>0$ that

$$
\begin{aligned}
& \left\langle M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle \\
\leq & \frac{c(p) a}{2 \eta}\left\|w_{t+1}-w_{t}\right\|_{M}^{2}+\frac{c(p)}{2 a \eta}\left\|u-w_{t+1}\right\|_{M}^{2}
\end{aligned}
$$

Applying this to Lemma 4 yields

$$
\begin{aligned}
& \left\langle\tilde{\nabla}_{t}, w_{t}-u\right\rangle+\psi\left(w_{t+1}\right)-\psi(u) \\
\leq & \left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle+\frac{\left\|u-w_{t}\right\|_{M}^{2}}{2 \eta} \\
& -\frac{1}{2 \eta}\left\|u-w_{t+1}\right\|_{M}^{2}-\frac{1}{2 \eta}\left\|w_{t+1}-w_{t}\right\|_{M}^{2} \\
& +\left\langle M \varepsilon_{t+1}^{p}, u-w_{t+1}\right\rangle \\
& \left\langle\tilde{\nabla}_{t}, w_{t}-w_{t+1}\right\rangle+\frac{\left\|u-w_{t}\right\|_{M}^{2}}{2 \eta} \\
& -\left(\frac{1}{2 \eta}-\frac{c(p)}{2 a \eta}\right)\left\|u-w_{t+1}\right\|_{M}^{2} \\
& -\left(\frac{1}{2 \eta}-\frac{c(p) a}{2 \eta}\right)\left\|w_{t+1}-w_{t}\right\|_{M}^{2}
\end{aligned}
$$

Applying this to (B.2), we arrive at

$$
\begin{aligned}
& \mathbb{E}\left[F\left(w_{t+1}\right)-F(u)\right] \\
& \leq \mathbb{E}\left[\left\langle\tilde{\nabla}_{t}-\nabla f\left(w_{t}\right), w_{t}-w_{t+1}\right\rangle\right. \\
& \quad-\frac{1-c(p) a-\eta L_{f}^{M}}{2 \eta}\left\|w_{t}-w_{t+1}\right\|_{M}^{2} \\
& \left.\quad+\frac{1-\eta \sigma_{f}^{M}}{2 \eta}\left\|u-w_{t}\right\|_{M}^{2}-\left(\frac{1}{2 \eta}-\frac{c(p)}{2 a \eta}\right)\left\|u-w_{t+1}\right\|_{M}^{2}\right] \\
& \\
& \mathbb{E}\left[\frac{\eta}{2\left(1-c(p) a-\eta L_{f}^{M}\right)}\left\|\tilde{\nabla}_{t}-\nabla f\left(w_{t}\right)\right\|_{M^{-1}}^{2}\right. \\
& \left.\quad+\frac{1-\eta \sigma_{f}^{M}}{2 \eta}\left\|u-w_{t}\right\|_{M}^{2}-\left(\frac{1}{2 \eta}-\frac{c(p)}{2 a \eta}\right)\left\|u-w_{t+1}\right\|_{M}^{2}\right]
\end{aligned}
$$

where in the second inequality we have applied

$$
\begin{aligned}
& \left\langle u_{1}, u_{2}\right\rangle=\left\langle M^{-\frac{1}{2}} u_{1}, M^{\frac{1}{2}} u_{2}\right\rangle \leq\left\|u_{1}\right\|_{M^{-1}}\left\|u_{2}\right\|_{M} \\
& \leq \frac{1}{2 b}\left\|u_{1}\right\|_{M_{1}^{-1}}^{2}+\frac{b}{2}\left\|u_{2}\right\|_{M^{\frac{1}{2}}}^{2} \quad \text { for any } b>0 .
\end{aligned}
$$

Finally, since $\eta \leq \frac{1-2 c(p) a}{2 L_{f}^{M}}$, we have $\frac{\eta}{2\left(1-c(p) a-\eta L_{f}^{M /}\right)} \leq \eta$, which gives the desired result.

Lemma 6. Under Assumption 1, we have

$$
\mathbb{E}\left[\left\|\tilde{\nabla}_{t}-\nabla f\left(w_{t}\right)\right\|_{M^{-1}}^{2}\right] \leq\left(L_{f}^{M}\right)^{2}\left\|w_{0}-w_{t}\right\|_{M}^{2}
$$

Proof. We have

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\tilde{\nabla}_{t}-\nabla f\left(w_{t}\right)\right\|_{M^{-1}}^{2}\right] \\
= & \mathbb{E}\left[\left\|\nabla f\left(w_{0}\right)+\nabla f_{i_{t}}\left(w_{t}\right)-\nabla f_{i_{t}}\left(w_{0}\right)-\nabla f\left(w_{t}\right)\right\|_{M^{-1}}^{2}\right] \\
= & \mathbb{E}\left[\left\|\left(\nabla f_{i_{t}}\left(w_{t}\right)-\nabla f_{i_{t}}\left(w_{0}\right)\right)-\left(\nabla f\left(w_{t}\right)-\nabla f\left(w_{0}\right)\right)\right\|_{M^{-1}}^{2}\right] \\
\leq & \mathbb{E}\left[\left\|\nabla f_{i_{t}}\left(w_{t}\right)-\nabla f_{i_{t}}\left(w_{0}\right)\right\|_{M^{-1}}^{2}\right] \\
\leq & \left(L_{f}^{M}\right)^{2}\left\|w_{t}-w_{0}\right\|_{M}^{2},
\end{aligned}
$$

where in the first inequality, we have applied $\mathbb{E}[\| \xi$ $\left.\mathbb{E} \xi \|^{2}\right]=\mathbb{E}\left[\|\xi\|^{2}-\|\mathbb{E} \xi\|^{2}\right.$ with $\xi=M^{-\frac{1}{2}}\left(\nabla f_{i_{t}}\left(w_{t}\right)-\right.$ $\left.\nabla f_{i_{t}}\left(w_{0}\right)\right)$, and in the second inequality follows from Assumption 1 .

Lemma 7. (Fact 2.3 of (Allen-Zhu, 2018)). Let C_{1}, C_{2}, \ldots be a sequence of numbers, and $N \sim \operatorname{Geom}(p)$, then

$$
\text { 1. } \mathbb{E}_{N}\left[C_{N}-C_{N+1}\right]=\frac{p}{1-p} \mathbb{E}_{N}\left[C_{0}-C_{N}\right] \text {, and }
$$

$$
\text { 2. } \mathbb{E}_{N}\left[C_{N}\right]=(1-p) \mathbb{E}\left[C_{N+1}\right]+p C_{0} \text {. }
$$

Lemma 8. Under Assumption 1, if $\eta \leq$ $\min \left\{\frac{1-2 c(p) a}{2 L_{f}^{M}}, \frac{1}{2 \sqrt{m} L_{f}^{M}}\right\}$ and $m \geq 2$, then, for any $u \in \mathbb{R}^{\mathrm{d}}$ we have

$$
\begin{aligned}
& \mathbb{E}\left[F\left(w_{D+1}\right)-F(u)\right] \\
\leq & \mathbb{E}\left[-\frac{1}{4 m \eta}\left\|w_{D+1}-w_{0}\right\|_{M}^{2}+\frac{\left\langle w_{0}-w_{D+1}, w_{0}-u\right\rangle_{M}}{m \eta}\right. \\
& \left.-\left(\frac{\sigma_{f}^{M}}{4}-\frac{c(p)}{2 a \eta}\right)\left\|w_{D+1}-u\right\|_{M}^{2}\right] .
\end{aligned}
$$

Proof. By Lemmas 5 and 6, we know that

$$
\begin{aligned}
& \mathbb{E}\left[F\left(w_{t+1}\right)-F(u)\right] \\
& \mathbb{E}\left[\eta\left(L_{f}^{M}\right)^{2}\left\|w_{0}-w_{t}\right\|_{M}^{2}+\frac{1-\eta \sigma_{f}^{M}}{2 \eta}\left\|u-w_{t}\right\|_{M}^{2}\right. \\
& \left.-\left(\frac{1}{2 \eta}-\frac{c(p)}{2 \eta a}\right)\left\|u-w_{t+1}\right\|_{M}^{2}\right]
\end{aligned}
$$

Let $D \sim \operatorname{Geom}\left(\frac{1}{m}\right)$ as in Algorithm 1 and take $t=D$, then

$$
\begin{aligned}
& \mathbb{E}\left[F\left(w_{D+1}\right)-F(u)\right] \\
& \leq \mathbb{E}\left[\eta\left(L_{f}^{M}\right)^{2}\left\|w_{0}-w_{D}\right\|_{M}^{2}+\frac{1}{2 \eta}\left\|u-w_{D}\right\|_{M}^{2}\right. \\
& -\frac{1}{2 \eta}\left\|u-w_{D+1}\right\|_{M}^{2}-\frac{\sigma_{f}^{M}}{2}\left\|u-w_{D}\right\|_{M}^{2} \\
& \left.+\frac{c(p)}{2 \eta a}\left\|u-w_{D+1}\right\|_{M}^{2}\right] \\
& =\mathbb{E}\left[\eta\left(L_{f}^{M}\right)^{2}\left\|w_{D}-w_{0}\right\|_{M}^{2}+\frac{\left\|u-w_{0}\right\|_{M}^{2}-\left\|u-w_{D}\right\|_{M}^{2}}{2(m-1) \eta}\right. \\
& \left.-\frac{\sigma_{f}^{M}}{2}\left\|u-w_{D}\right\|_{M}^{2}+\frac{c(p)}{2 a \eta}\left\|u-w_{D+1}\right\|_{M}^{2}\right] \\
& =\mathbb{E}\left[\frac{m-1}{m} \eta\left(L_{f}^{M}\right)^{2}\left\|w_{D+1}-w_{0}\right\|_{M}^{2}\right. \\
& \left.+\frac{\left\|u-w_{0}\right\|_{M}^{2}-\left\|u-w_{D+1}\right\|_{M}^{2}}{2 m \eta}\right] \\
& -\frac{\sigma_{f}^{M}}{2 m}\left\|u-w_{0}\right\|_{M}^{2}-\frac{\sigma_{f}^{M}(m-1)}{2 m}\left\|u-w_{D+1}\right\|_{M}^{2} \\
& \left.+\frac{c(p)}{2 a \eta}\left\|u-w_{D+1}\right\|_{M}^{2}\right] \\
& \leq \mathbb{E}\left[\eta\left(L_{f}^{M}\right)^{2}\left\|w_{D+1}-w_{0}\right\|_{M}^{2}+\frac{\left\|u-w_{0}\right\|_{M}^{2}-\left\|u-w_{D+1}\right\|_{M}^{2}}{2 m \eta}\right. \\
& \left.-\frac{\sigma_{f}^{M}}{4}\left\|u-w_{D+1}\right\|_{M}^{2}+\frac{c(p)}{2 a \eta}\left\|u-w_{D+1}\right\|_{M}^{2}\right] \\
& \leq \mathbb{E}\left[-\frac{1}{4 m \eta}\left\|w_{0}-w_{D+1}\right\|_{M}^{2}\right. \\
& +\frac{\left\|u-w_{0}\right\|_{M}^{2}-\left\|u-w_{D+1}\right\|_{M}^{2}+\left\|w_{0}-w_{D+1}\right\|_{M}^{2}}{2 m \eta} \\
& \left.-\frac{\sigma_{f}^{M}}{4}\left\|w_{D+1}-u\right\|_{M}^{2}+\frac{c(p)}{2 a \eta}\left\|u-w_{D+1}\right\|_{M}^{2}\right] \\
& =\mathbb{E}\left[-\frac{1}{4 m \eta}\left\|w_{D+1}-w_{0}\right\|_{M}^{2}+\frac{\left\langle w_{0}-w_{D+1}, w_{0}-u\right\rangle_{M}}{m \eta}\right. \\
& \left.-\left(\frac{\sigma_{f}^{M}}{4}-\frac{c(p)}{2 a \eta}\right)\left\|w_{D+1}-u\right\|_{M}^{2}\right],
\end{aligned}
$$

where the first equality follows from the item 1 of Lemma 7 with $C_{N}=\left\|u-w_{N}\right\|_{M}^{2}$, the second inequality follows from item 2 with $C_{N}=\left\|w_{d}-w_{0}\right\|_{M}^{2}$, item 2 with $C_{N}=\| u-$ $w_{0}\left\|_{M}^{2}-\right\| u-w_{N} \|_{M}^{2}$, and item 1 with $C_{N}=\left\|u-w_{D}\right\|_{M}^{2}$, then third inequality makes use of $m \geq 2$ and the fourth inequality makes use of $\eta \leq \frac{1}{2 \sqrt{m} L_{f}^{M}}$.

Now, let us proceed to prove Theorem 1. With Lemma 8, it can be proved in a similar way as Theorem 3 of (Hannah et al., 2018b).

Proof of Theorem 1. Without loss of generality, we can as-
sume $x^{\star}=\arg \min _{x \in \mathbb{R}^{\mathrm{d}}} F(x)=\mathbf{0}$ and $F\left(x^{*}\right)=0$.
According to Lemma 8, for any $u \in \mathbb{R}^{d}$, and $\eta \leq$ $\min \left\{\frac{1-2 c(p) a}{2 L_{f}^{M}}, \frac{1}{2 \sqrt{m} L_{f}^{M}}\right\}$ we have

$$
\begin{aligned}
& \mathbb{E}\left[F\left(x^{j+1}\right)-F(u)\right] \\
\leq & \mathbb{E}\left[-\frac{1}{4 m \eta}\left\|x^{j+1}-x^{j}\right\|_{M}^{2}\right. \\
& \left.+\frac{\left\langle x^{j}-x^{j+1}, x^{j}-u\right\rangle_{M}}{m \eta}-\left(\frac{\sigma_{f}^{M}}{4}-\frac{c(p)}{2 a \eta}\right)\left\|x^{j+1}-u\right\|_{M}^{2}\right],
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& \mathbb{E}\left[F\left(x^{j+1}\right)-F(u)\right] \\
\leq & \mathbb{E}\left[\frac{1}{4 m \eta}\left\|x^{j+1}-x^{j}\right\|_{M}^{2}+\frac{1}{2 m \eta}\left\|x^{j}-u\right\|_{M}^{2}\right. \\
& \left.-\frac{1}{2 m \eta}\left\|x^{j+1}-u\right\|_{M}^{2}-\left(\frac{\sigma_{f}^{M}}{4}-\frac{c(p)}{2 a \eta}\right)\left\|x^{j+1}-u\right\|_{M}^{2}\right] .
\end{aligned}
$$

In the following proof, we will omit \mathbb{E}.
Setting $u=x^{*}=0$ and $u=x^{j}$ yields the following two inequalities:

$$
\begin{align*}
F\left(x^{j+1}\right) & \leq \frac{1}{4 m \eta}\left(\left\|x^{j+1}-x^{j}\right\|_{M}^{2}+2\left\|x^{j}\right\|_{M}^{2}\right) \\
& -\frac{1}{2 m \eta}\left(1+\frac{1}{2} m \eta\left(\sigma_{f}^{M}-\frac{2 c(p)}{a \eta}\right)\right)\left\|x^{j+1}\right\|_{M}^{2} \tag{B.3}
\end{align*}
$$

$$
\begin{align*}
& F\left(x^{j+1}\right)-F\left(x^{j}\right) \tag{B.4}\\
\leq & -\frac{1}{4 m \eta}\left(1+m \eta\left(\sigma_{f}^{M}-\frac{2 c(p)}{a \eta}\right)\right)\left\|x^{j+1}-x^{j}\right\|_{M}^{2} \tag{B.5}
\end{align*}
$$

Define $\tau=\frac{1}{2} m \eta\left(\sigma_{f}^{M}-\frac{2 c(p)}{a \eta}\right)$, multiply $(1+2 \tau)$ to (B.3), then add it to (B.5) yields

$$
\begin{aligned}
& 2(1+\tau) F\left(x^{j+1}\right)-F\left(x^{j}\right) \\
\leq & \frac{1}{2 m \eta}(1+2 \tau)\left(\left\|x^{j}\right\|_{M}^{2}-(1+\tau)\left\|x^{j+1}\right\|_{M}^{2}\right)
\end{aligned}
$$

Multiplying both sides by $(1+\tau)^{j}$ gives

$$
\begin{aligned}
& 2(1+\tau)^{j+1} F\left(x^{j+1}\right)-(1+\tau)^{j} F\left(x^{j}\right) \\
\leq & \frac{1}{2 m \eta}(1+2 \tau)\left((1+\tau)^{j}\left\|x^{j}\right\|_{M}^{2}-(1+\tau)^{j+1}\left\|x^{j+1}\right\|_{M}^{2}\right)
\end{aligned}
$$

Summing over $j=0,1, \ldots, k-1$, we have

$$
\begin{aligned}
& (1+\tau)^{k} F\left(x^{k}\right)+\sum_{j=0}^{k-1}(1+\tau)^{j} F\left(x^{j}\right)-F\left(x^{0}\right) \\
\leq & \frac{1}{2 m \eta}(1+2 \tau)\left(\left\|x^{0}\right\|_{M}^{2}-(1+\tau)^{k}\left\|x^{k}\right\|_{M}^{2}\right)
\end{aligned}
$$

Since $F\left(x^{j}\right) \geq 0$, we have

$$
F\left(x^{k}\right)(1+\tau)^{k} \leq F\left(x^{0}\right)+\frac{1}{2 m \eta}(1+2 \tau)\left\|x^{0}\right\|^{2}
$$

By the strong convexity of F, we have $F\left(x^{0}\right) \geq \frac{\sigma_{f}^{M}}{2}\left\|x^{0}\right\|_{M}^{2}$, therefore

$$
\begin{equation*}
F\left(x^{k}\right)(1+\tau)^{k} \leq F\left(x^{0}\right)\left(2+\frac{1}{2 \tau}\right) \tag{B.6}
\end{equation*}
$$

Finally, recall that $a>0$ can be chosen arbitrarily, so we can take

$$
a=\frac{4 c(p)}{\eta \sigma_{f}^{M}}
$$

and

$$
\begin{align*}
\eta & \leq \min \left\{\frac{1-2 c(p) a}{2 L_{f}^{M}}, \frac{1}{2 \sqrt{m} L_{f}^{M}}\right\} \\
& =\min \left\{\frac{1-\frac{8 c^{2}(p)}{\eta \sigma_{f}^{M}}}{2 L_{f}^{M}}, \frac{1}{2 \sqrt{m} L_{f}^{M}}\right\}, \tag{B.7}\\
\tau & =\frac{1}{2} m \eta\left(\sigma_{f}^{M}-\frac{2 c(p)}{a \eta}\right)=\frac{1}{4} m \eta \sigma_{f}^{M} .
\end{align*}
$$

In order for the choice of η in (B.7) to be possible, we need

$$
\begin{equation*}
2 L_{f}^{M} \eta^{2}-\eta+8 \frac{c^{2}(p)}{\sigma_{f}^{M}} \leq 0 \tag{B.8}
\end{equation*}
$$

to have one solution at least, which requires

$$
64 \kappa_{f}^{M} c^{2}(p) \leq 1
$$

under which $\eta=\frac{1}{4 L_{f}^{M}}$ satisfy (B.8). As a result, $m \geq 4$ makes (B.7) into

$$
\eta \leq \frac{1}{2 \sqrt{m} L_{f}^{M}}
$$

and the desired convergence result follows from (B.6).

C. Proof of Lemma 2

Proof. From Lemma 1, we know that

$$
c(p)=14 \kappa(M) \frac{\tau^{p}}{1-\tau^{p}}
$$

where

$$
\tau \leq \exp \left(-\frac{1}{2 e \sqrt{\kappa(M)}+1}\right)
$$

Therefore, in order for $64 \kappa_{f}^{M} c^{2}(p) \leq 1$, we need

$$
\kappa_{f}^{M} \kappa^{2}(M)\left(\frac{\tau^{p}}{1-\tau^{p}}\right)^{2} \leq \frac{1}{64 \times 14^{2}}=c_{1}
$$

which is equivalent to

$$
\tau^{p} \leq \frac{c_{1}}{\sqrt{\kappa_{f}^{M}} \kappa(M)+\sqrt{c_{1}}}
$$

Thus, it suffices to require that

$$
\left[\exp \left(-\frac{1}{2 e \sqrt{\kappa(M)}+1}\right)\right]^{p} \leq \frac{c}{\sqrt{\kappa_{f}^{M}} \kappa(M)+\sqrt{c_{1}}}
$$

which gives

$$
p \geq(2 e \sqrt{\kappa(M)}+1) \ln \frac{\sqrt{\kappa_{f}^{M}} \kappa(M)+\sqrt{c_{1}}}{c_{1}}
$$

D. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 4.3 of (Allen-Zhu, 2018), so we provide a proof sketch here and omit the details.

1. In (Allen-Zhu, 2018), the proof of Theorem 4.3 is based on Lemma 3.3, here the proof of Theorem 2 is based on Lemma 8, which is an analog of Lemma of 3.3 in our settings.
2. Based on Lemma 8, the proof of Theorem 2 follows in nearly the same way as Theorem 4.3 of (Allen-Zhu, 2018), the only difference is that one needs to replace σ by $\sigma_{f}^{M}-\frac{2 c(p)}{a \eta}$.
3. By setting

$$
a=\frac{4 c(p)}{\eta \sigma_{f}^{M}}
$$

and

$$
64 \kappa_{f}^{M} c^{2}(p) \leq 1
$$

as in the proof of Theorem 1, the τ in Theorem 4.3 of (Allen-Zhu, 2018) becomes $\frac{1}{2} m \eta \sigma_{f}^{M}$, and the convergence result of Theorem 2 follows.

E. Proof of Theorems 3 and 4

Proof of Theorem 3. From Remark 5, we know that the gradient complexity of SVRG can be expressed as

$$
C_{1}(m, \varepsilon)=\mathcal{O}\left(\frac{n+m}{\ln \left(1+\frac{1}{4} m \eta \sigma_{f}\right)} \ln \frac{1}{\varepsilon}\right)
$$

Taking the largest possible step size $\eta=\frac{1}{2 \sqrt{m} L_{f}}$ as in Theorem 1, we have

$$
C_{1}(m, \varepsilon)=\mathcal{O}\left(\frac{n+m}{\ln \left(1+\frac{\sqrt{m}}{8 \kappa_{f}}\right)} \ln \frac{1}{\varepsilon}\right)
$$

Let us first find the optimal $m=m^{\star}$ for SVRG, let

$$
g(m)=\frac{n+m}{\ln \left(1+\frac{\sqrt{m}}{8 \kappa_{f}}\right)},
$$

then

$$
g^{\prime}(m)=\frac{\ln \left(1+\frac{\sqrt{m}}{8 \kappa_{f}}\right)-\frac{\frac{\sqrt{m}}{8 \kappa_{f}}}{1+\frac{\sqrt{m}}{8 \kappa_{f}}} \frac{n+m}{2 m}}{\ln ^{2}(1+z)}
$$

Taking derivative to the numerator gives

$$
\begin{aligned}
& {\left[\ln \left(1+\frac{\sqrt{m}}{8 \kappa_{f}}\right)-\frac{\frac{\sqrt{m}}{8 \kappa_{f}}}{1+\frac{\sqrt{m}}{8 \kappa_{f}}} \frac{n+m}{2 m}\right]^{\prime}} \\
& =(n+m) \frac{\frac{1}{32 \kappa_{f}} m^{-\frac{3}{2}}+2 \frac{m^{-1}}{\left(16 \kappa_{f}\right)^{2}}}{\left(1+\frac{\sqrt{m}}{8 \kappa_{f}}\right)^{2}}>0
\end{aligned}
$$

Therefore, m^{\star} is given by $g^{\prime}(m)=0$. Let $z=\frac{\sqrt{m}}{8 \kappa_{f}}>0$, then

$$
g^{\prime}(m)=\frac{\ln (1+z)-\frac{z}{1+z} \frac{n+m}{2 m}}{\ln ^{2}(1+z)}
$$

Since $\ln (1+z)>\frac{z}{1+z}$ for $z>0$, we know that $g^{\prime}(n)>0$, therefore, $m^{\star}<n$.
Let $m=n^{s}$ where $0<s<1$, we would like to have $g^{\prime}\left(n^{s}\right)<0$, i, e.,

$$
\frac{\ln (1+z)}{\frac{z}{1+z}}<\frac{1+n^{1-s}}{2}
$$

so that $m^{\star} \in\left(n^{s}, n\right)$.
Since $\kappa_{f}>n^{\frac{1}{2}}$, we have $z=\frac{\sqrt{m}}{8 \kappa_{f}}<\frac{1}{8}$, on the other hand, we have

$$
\left[\frac{\ln (1+z)}{\frac{z}{1+z}}<\frac{1+n^{1-s}}{2}\right]_{z}^{\prime}>0
$$

Therefore, it suffices to have

$$
n^{1-s}>18 \ln \frac{9}{8}-1:=c_{0}>1
$$

As a result, we have $m^{\star} \in\left(\frac{n}{c_{0}}, n\right)$, and

$$
\begin{aligned}
C_{1}\left(m^{\star}, \varepsilon\right) & \left.=\mathcal{O}\left(\frac{n+m^{\star}}{\ln \left(1+\frac{\sqrt{m^{\star}}}{8 \kappa_{f}}\right.}\right) \ln \frac{1}{\varepsilon}\right) \\
& =\mathcal{O}\left(\frac{n}{\frac{\sqrt{n}}{8 \kappa_{f}}} \ln \frac{1}{\varepsilon}\right)=\mathcal{O}\left(\kappa_{f} \sqrt{n} \ln \frac{1}{\varepsilon}\right),
\end{aligned}
$$

where in the second equality we have used $\kappa_{f}>n^{\frac{1}{2}}$.
For our iPreSVRG in Algorithm 1, we have

$$
C_{1}^{\prime}(m, \varepsilon)=\mathcal{O}\left(\frac{n+(1+p d) m}{\ln \left(1+\frac{1}{4} m \eta \sigma^{M}\right)} \ln \frac{1}{\varepsilon}\right)
$$

thanks to Lemma 2, p can be chosen as

$$
p=\mathcal{O}\left(\sqrt{\kappa(M)} \ln \left(\sqrt{\kappa_{f}^{M}} \kappa(M)\right)\right.
$$

furthermore, we can take $\eta=\frac{1}{2 \sqrt{m} L_{f}}$ due to Theorem 1.
Under these settings, we have

$$
C_{1}^{\prime}(m, \varepsilon)=\mathcal{O}\left(\frac{n+(1+p d) m}{\ln \left(1+\frac{1}{8} \frac{\sqrt{m}}{\kappa_{f}^{M}}\right)} \ln \frac{1}{\varepsilon}\right)
$$

Let us take $m=m^{\prime}=\left\lceil\frac{n}{1+p d}\right\rceil$.
If $n>1+p d$, or equivalently $\kappa_{f}<n^{2} d^{-2}$, then

$$
C_{1}^{\prime}\left(m^{\prime}, \varepsilon\right)=\mathcal{O}\left(\frac{n}{\ln \left(1+\frac{1}{8} \frac{\sqrt{n}}{\sqrt{p d \kappa_{f}^{M}}}\right)} \ln \frac{1}{\varepsilon}\right)
$$

Since $p=\mathcal{O}\left(\sqrt{\kappa(M)} \ln \left(\sqrt{\kappa_{f}^{M}} \kappa(M)\right)\right)$, we know that when $\left(\kappa_{f}^{M}\right)^{2} \sqrt{\kappa(M)} d<n$, or equivalently $\kappa_{f}<n^{2} d^{-2}$, we have

$$
\ln \left(1+\frac{1}{8} \frac{\sqrt{n}}{\sqrt{p d} \kappa_{f}^{M}}\right)=\mathcal{O}(\ln n)
$$

therefore

$$
C_{1}^{\prime}\left(m^{\prime}, \varepsilon\right)=\mathcal{O}\left(n \ln \frac{1}{\varepsilon}\right)
$$

and

$$
\frac{\min _{m \geq 1} C_{1}^{\prime}(m, \varepsilon)}{\min _{m \geq 1} C_{1}(m, \varepsilon)} \leq \frac{C_{1}^{\prime}\left(m^{\prime}, \varepsilon\right)}{C_{1}\left(m^{\star}, \varepsilon\right)}=\mathcal{O}\left(\frac{\sqrt{n}}{\kappa_{f}}\right)
$$

If $n \leq 1+p d$, or equivalently $\kappa_{f}>n^{2} d^{-2}$, then $m=1$ and

$$
C_{1}^{\prime}(m, \varepsilon)=\mathcal{O}\left(\frac{\sqrt{\kappa(M)} d}{\ln \left(1+\frac{1}{8} \frac{1}{\kappa_{f}^{M}}\right)} \ln \frac{1}{\varepsilon}\right)
$$

therefore

$$
\frac{\min _{m \geq 1} C_{1}^{\prime}(m, \varepsilon)}{\min _{m \geq 1} C_{1}(m, \varepsilon)} \leq \frac{C_{1}^{\prime}(1, \varepsilon)}{C_{1}\left(m^{\star}, \varepsilon\right)}=\mathcal{O}\left(\frac{\sqrt{\kappa(M)} d}{\kappa_{f} \sqrt{n} \ln \left(1+\frac{1}{8} \frac{1}{\kappa_{f}^{M}}\right)}\right)
$$

Since $\kappa(M) \approx \kappa_{f} \gg \kappa_{f}^{M}$, this ratio becomes $\mathcal{O}\left(\frac{d}{\sqrt{n \kappa_{f}}}\right)$

Proof of Theorem 4. The proof of Theorem 4 is similar and is omitted.

