
Data Poisoning Attacks on Stochastic Bandits

A. Details on the offline attacks
A.1. Proof of Theorem 1

Proof. The optimization problem P1 is a quadratic program with linear constraints in {~εa}a∈A. Now it remains to show
that the constraint set is non-empty.

Given any reward instance {~ya}a∈A, any margin parameter ξ > 0 and any ~εa∗ , one can check that

~εa =
[
(~ya∗ + ~εa∗)T1/ma∗ − ~yTa 1/ma − ξ

]
1, ∀a 6= a∗, (27)

satisfies the constraints of problem P1. That is the constraint set of problem P1 is non-empty.

Thus, there exists at least one optimal solution of problem P1 since P1 is a quadratic program with non-empty and compact
constraints. The result follows from Proposition 1.

A.2. Details on attacking Thompson Sampling

Lemma 2. Given some constants Ci > 0 for any i < K. The function f(~x) =
∑K−1
i=1 Φ(Cixi − CixK) is convex on the

domain D = {~x ∈ RK |xi − xK ≤ 0,∀i < K}.

Proof. We prove the result by checking the Hessian matrixH of function f(~x). Note that Φ(x) is the cumulative distribution
function of the standard normal distribution N (0, 1). For any i < K, we have that

∂f

∂xi
=

Ci√
2π
e−(Cixi−CixK)2/2, (28)

∂2f

∂x2i
= − C2

i√
2π
e−(Cixi−CixK)2/2(Cixi − CixK). (29)

On the other hand, we have that

∂f

∂xK
=

K−1∑
i=1

− Ci√
2π
e−(Cixi−CixK)2/2 =

K−1∑
i=1

− ∂f
∂xi

, (30)

∂2f

∂x2K
=

K−1∑
i=1

− C2
i√
2π
e−(Cixi−CixK)2/2(Cixi − CixK) =

K−1∑
i=1

∂2f

∂x2i
. (31)

Now, we derive the other coefficients. For any pair (i, j) such that i 6= j, i < K and j < K, we have that

∂2f

∂xi∂xj
= 0. (32)

For any i < K, we have that

∂2f

∂xi∂xK
=

C2
i√
2π
e−(Cixi−CixK)2/2(Cixi − CixK) = −∂

2f

∂x2i
, (33)

∂2f

∂xK∂xi
= −∂

2f

∂x2i
(34)

Since the constants Ci are positive, we have that ∂
2f
∂x2

i
≥ 0 in the domain D. The Hessian matrix of f is the following,

H =



∂2f
∂x2

1
0 . . . 0 −∂2f

∂x2
1

0 ∂2f
∂x2

2
. . . 0 −∂2f

∂x2
2

...
...

. . .
...

...
0 0 . . . ∂2f

∂x2
K−1

− ∂2f
∂x2

K−1

−∂2f
∂x2

1
−∂2f
∂x2

2
. . . − ∂2f

∂x2
K−1

∑K−1
i=1

∂2f
∂x2

i


. (35)
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Hence, for any vector ~y ∈ RK , we have that

~yTH~y = ~yT



∂2f
∂x2

1
(y1 − yK)

∂2f
∂x2

2
(y2 − yK)

...
∂2f

∂x2
K−1

(yK−1 − yK)∑K−1
i=1 −∂

2f
∂x2

i
(yi − yK)


=

K−1∑
i=1

∂2f

∂x2i
(yi − yK)2 ≥ 0. (36)

Since H is positive semi-definite, we show that f(~x) is convex on the domain D.

A.3. Proof of Proposition 2

Proof. By Lemma 2 and the fact that affine mapping keeps the convexity, we have the result.

A.4. Another relaxation of P for Thompson Sampling

We may find a sufficient constraint to equation (17) as

Φ

(
µ̃a(T )− µ̃a∗(T )

σ3
√

1/ma + 1/ma∗

)
≤ δ

K − 1
, ∀a 6= a∗. (37)

Then, we derive another relaxation of P as

P4 : min
~εa:a∈A

∑
a∈A
||~εa||22 (38)

s.t. µ̃a(T )− µ̃a∗(T ) ≤ σ3
√

1/ma + 1/ma∗Φ−1
(

δ

K − 1

)
, ∀a 6= a∗ (39)

Note that problem P4 is a quadratic program with linear constraints.

B. Details on the online attacks
B.1. Proof of Proposition 4

Proof. By equation (5), a logarithmic regret bound implies that the bandit algorithm satisfies E[Na(T )] = O(log T ) for
any suboptimal arm a. Note that the oracle constant attack shifts the expected rewards of all arms except for the target
arm a∗. Since Ca > [µa − µa∗ ]+, ∀a 6= a∗, the best arm is now the target arm a∗. Then, the bandit algorithm satisfies
E[Na(T )] = O(log T ), ∀a 6= a∗. Thus, the expected number of pulling the target arm is

E[Na∗(T )] = T −
∑
a 6=a∗

E[Na(T )] = T − o(T ). (40)

Since the attacker does not attack the target arm, we have that

E[C(T )] = E

[
T∑
t=1

|εt|
]

=
∑
a 6=a∗

CaE[Na(T )] = O

∑
a 6=a∗

Ca log T

 . (41)

On the other hand, suppose there exists an arm i 6= a∗ such that Ci ≤ [µi − µa∗ ]+, then the attack is not successful. In the
case that Ci < [µi − µa∗ ]+, the arm i is the best arm rather than the target arm a∗ in the shifted bandit problem. That is
the expected number of pulling arm a∗ is E[Na∗(T )] = O(log T ). In the case that Ci = [µi − µa∗ ]+, the arm i and a∗ are
both the best arms. That is the expected attack cost is E[C(T )] = T − o(T ). In neither case is the attack successful. This
concludes the proof.
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B.2. Proof of Theorem 4

Proof. Given any δ > 0, we have that P(E) > 1− δ by Lemma 1. Under the event E, we have that at any time t and for
any arm a 6= a∗,

µa − µa∗ < µ̂a(t)− µa∗ + β(Na(t)) (42)
< µ̂a(t)− µ̂a∗(t) + β(Na(t)) + β(Na∗(t)), (43)

which implies that
[µa − µa∗ ]+ < [µ̂a(t)− µ̂a∗(t) + β(Na(t)) + β(Na∗(t))]+. (44)

By the same argument in the proof of Proposition 4, we have that under event E, the attacker is taking an effective attack for
any bandit algorithm.

Recall that the bandit algorithm has a high-probability bound such that the regret is bounded by O(log T ) with probability
at least 1− δ. Under event E, we have that Na(T ) = O(log T ) for any a 6= a∗ with high probability. Thus, with probability
at least 1− 2δ, we have that Na∗(T ) = T − o(T ). It remains to bound the cost of the attacker, i.e.,

∑
t |εt|.

Given any arm a 6= a∗, any time t and under the event E, we have that

µ̂a(t)− µ̂a∗(t) < µa − µ̂a∗(t) + β(Na(t)) (45)
< µa − µa∗ + β(Na(t)) + β(Na∗(t)). (46)

This implies that

[µ̂a(t)− µ̂a∗(t)+β(Na(t)) + β(Na∗(t))]+ (47)

< [µa − µa∗ + 2β(Na(t)) + 2β(Na∗(t))]+ (48)

≤ [µa − µa∗ ]+ + 2β(Na(t)) + 2β(Na∗(t)). (49)

Thus, the first statement follows. By the fact that β(n) is a decreasing function, we have that

T∑
t=1

|εt| ≤
T∑
t=1

(
[µat − µa∗ ]+ + 4β(1)

)
1{at 6= a∗} (50)

=
∑
a6=a∗

(
[µa − µa∗ ]+ + 4β(1)

)
Na(T ) (51)

≤ O

∑
a 6=a∗

(
[µa − µa∗ ]+ + 4β(1)

)
log T

 . (52)


