A. Details on the offline attacks

A.1. Proof of Theorem 1

Proof. The optimization problem P_1 is a quadratic program with linear constraints in $\{a_0\}_{a \in A}$. Now it remains to show that the constraint set is non-empty.

Given any reward instance $\{y_{a}\}_{a \in A}$, any margin parameter $\xi > 0$ and any \bar{a}, one can check that

$$
\bar{a} = \left[(y_{\bar{a}} + \bar{a} - y_{a})/m_{a} - y_{a}'/m_{a} - \xi\right] \mathbf{1}, \quad \forall a \neq \bar{a},
$$

(27)

satisfies the constraints of problem P_1. That is the constraint set of problem P_1 is non-empty.

Thus, there exists at least one optimal solution of problem P_1 since P_1 is a quadratic program with non-empty and compact constraints. The result follows from Proposition 1.

A.2. Details on attacking Thompson Sampling

Lemma 2. Given some constants $C_i > 0$ for any $i < K$. The function $f(\bar{x}) = \sum_{i=1}^{K-1} \Phi(C_i x_i - C_i x_K)$ is convex on the domain $D = \{\bar{x} \in \mathbb{R}^K | x_i - x_K \leq 0, \forall i < K\}$.

Proof. We prove the result by checking the Hessian matrix H of function $f(\bar{x})$. Note that $\Phi(x)$ is the cumulative distribution function of the standard normal distribution $\mathcal{N}(0, 1)$. For any $i < K$, we have that

$$
\frac{\partial f}{\partial x_i} = \frac{C_i}{\sqrt{2\pi}} e^{-(C_i x_i - C_i x_K)^2/2},
$$

(28)

$$
\frac{\partial^2 f}{\partial x_i^2} = -\frac{C_i^2}{2\sqrt{2\pi}} e^{-(C_i x_i - C_i x_K)^2/2}(C_i x_i - C_i x_K).
$$

(29)

On the other hand, we have that

$$
\frac{\partial f}{\partial x_K} = \sum_{i=1}^{K-1} -\frac{C_i}{\sqrt{2\pi}} e^{-(C_i x_i - C_i x_K)^2/2} = \sum_{i=1}^{K-1} -\frac{\partial f}{\partial x_i},
$$

(30)

$$
\frac{\partial^2 f}{\partial x_K^2} = \sum_{i=1}^{K-1} -\frac{C_i^2}{2\sqrt{2\pi}} e^{-(C_i x_i - C_i x_K)^2/2}(C_i x_i - C_i x_K) = \sum_{i=1}^{K-1} \frac{\partial^2 f}{\partial x_i^2}.
$$

(31)

Now, we derive the other coefficients. For any pair (i, j) such that $i \neq j, i < K$ and $j < K$, we have that

$$
\frac{\partial^2 f}{\partial x_i \partial x_j} = 0.
$$

(32)

For any $i < K$, we have that

$$
\frac{\partial^2 f}{\partial x_K \partial x_i} = \frac{C_i^2}{\sqrt{2\pi}} e^{-(C_i x_i - C_i x_K)^2/2}(C_i x_i - C_i x_K) = \frac{\partial^2 f}{\partial x_i^2},
$$

(33)

$$
\frac{\partial^2 f}{\partial x_K^2} = -\frac{\partial^2 f}{\partial x_i^2}.
$$

(34)

Since the constants C_i are positive, we have that $\frac{\partial^2 f}{\partial x_i^2} \geq 0$ in the domain D. The Hessian matrix of f is the following,

$$
H = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & 0 & \ldots & 0 & -\frac{\partial^2 f}{\partial x_K^2} \\
0 & \frac{\partial^2 f}{\partial x_2^2} & \ldots & 0 & -\frac{\partial^2 f}{\partial x_K^2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \frac{\partial^2 f}{\partial x_{K-1}^2} & -\frac{\partial^2 f}{\partial x_K^2} \\
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2^2} & \ldots & -\frac{\partial^2 f}{\partial x_{K-1}^2} & \sum_{i=1}^{K-1} \frac{\partial^2 f}{\partial x_i^2}
\end{bmatrix}.
$$

(35)
Hence, for any vector $\tilde{y} \in \mathbb{R}^K$, we have that

$$
\tilde{y}^T H \tilde{y} = \tilde{y}^T \left[\begin{array}{c}
\frac{\partial^2 f}{\partial x_1^2}(y_1 - y_K) \\
\frac{\partial^2 f}{\partial x_2^2}(y_2 - y_K) \\
\vdots \\
\frac{\partial^2 f}{\partial x_{K-1}^2}(y_{K-1} - y_K) \\
\sum_{i=1}^{K-1} \frac{\partial^2 f}{\partial x_i^2}(y_i - y_K)
\end{array} \right] = \sum_{i=1}^{K-1} \frac{\partial^2 f}{\partial x_i^2}(y_i - y_K)^2 \geq 0.
$$

(36)

Since H is positive semi-definite, we show that $f(x)$ is convex on the domain D.

A.3. Proof of Proposition 2

Proof. By Lemma 2 and the fact that affine mapping keeps the convexity, we have the result.

A.4. Another relaxation of P for Thompson Sampling

We may find a sufficient constraint to equation (17) as

$$
\Phi \left(\frac{\tilde{\mu}_a(T) - \tilde{\mu}_{a^*}(T)}{\sigma^3 \sqrt{1/m_a + 1/m_{a^*}}} \right) \leq \frac{\delta}{K - 1}, \ \forall a \neq a^*.
$$

(37)

Then, we derive another relaxation of P as

$$
P_4 : \min_{\epsilon_a, a \in A} \sum_{a \in A} ||\epsilon_a||^2_2 \text{ s.t. } \tilde{\mu}_a(T) - \tilde{\mu}_{a^*}(T) \leq \sigma^3 \sqrt{1/m_a + 1/m_{a^*}} \Phi^{-1} \left(\frac{\delta}{K - 1} \right), \ \forall a \neq a^*
$$

(38)

(39)

Note that problem P_4 is a quadratic program with linear constraints.

B. Details on the online attacks

B.1. Proof of Proposition 4

Proof. By equation (5), a logarithmic regret bound implies that the bandit algorithm satisfies $\mathbb{E}[N_a(T)] = O(\log T)$ for any suboptimal arm a. Note that the oracle constant attack shifts the expected rewards of all arms except for the target arm a^*. Since $C_a > [\mu_a - \mu_{a^*}]^+$, $\forall a \neq a^*$, the best arm is now the target arm a^*. Thus, the expected number of pulling the target arm is

$$
\mathbb{E}[N_{a^*}(T)] = T - \sum_{a \neq a^*} \mathbb{E}[N_a(T)] = T - o(T).
$$

(40)

Since the attacker does not attack the target arm, we have that

$$
\mathbb{E}[C(T)] = \mathbb{E} \left[\sum_{t=1}^{T} \epsilon_t \right] = \sum_{a \neq a^*} C_a \mathbb{E}[N_a(T)] = O \left(\sum_{a \neq a^*} C_a \log T \right).
$$

(41)

On the other hand, suppose there exists an arm $i \neq a^*$ such that $C_i \leq [\mu_i - \mu_{a^*}]^+$, then the attack is not successful. In the case that $C_i < [\mu_i - \mu_{a^*}]^+$, the arm i is the best arm rather than the target arm a^* in the shifted bandit problem. That is the expected number of pulling arm a^* is $\mathbb{E}[N_{a^*}(T)] = O(\log T)$. In the case that $C_i = [\mu_i - \mu_{a^*}]^+$, the arm i and a^* are both the best arms. That is the expected attack cost is $\mathbb{E}[C(T)] = T - o(T)$. In neither case is the attack successful. This concludes the proof.
B.2. Proof of Theorem 4

Proof. Given any \(\delta > 0 \), we have that \(\mathbb{P}(E) > 1 - \delta \) by Lemma 1. Under the event \(E \), we have that at any time \(t \) and for any arm \(a \neq a^* \),

\[
\mu_a - \mu_{a^*} < \hat{\mu}_a(t) - \mu_{a^*} + \beta(N_a(t)) \tag{42}
\]

\[
< \hat{\mu}_a(t) - \mu_{a^*}(t) + \beta(N_a(t)) + \beta(N_{a^*}(t)), \tag{43}
\]

which implies that

\[
[\mu_a - \mu_{a^*}]^+ < [\hat{\mu}_a(t) - \mu_{a^*}(t) + \beta(N_a(t)) + \beta(N_{a^*}(t))]^+. \tag{44}
\]

By the same argument in the proof of Proposition 4, we have that under event \(E \), the attacker is taking an effective attack for any bandit algorithm.

Recall that the bandit algorithm has a high-probability bound such that the regret is bounded by \(O(\log T) \) with probability at least \(1 - \delta \). Under event \(E \), we have that \(N_a(T) = O(\log T) \) for any \(a \neq a^* \) with high probability. Thus, with probability at least \(1 - 2\delta \), we have that \(N_{a^*}(T) = T - o(T) \). It remains to bound the cost of the attacker, i.e., \(\sum_t |\epsilon_t| \).

Given any arm \(a \neq a^* \), any time \(t \) and under the event \(E \), we have that

\[
\hat{\mu}_a(t) - \mu_{a^*}(t) < \mu_a - \hat{\mu}_{a^*}(t) + \beta(N_a(t)) \tag{45}
\]

\[
< \mu_a - \mu_{a^*} + \beta(N_a(t)) + \beta(N_{a^*}(t)). \tag{46}
\]

This implies that

\[
[\hat{\mu}_a(t) - \mu_{a^*}(t) + \beta(N_a(t)) + \beta(N_{a^*}(t))]^+
\]

\[
< [\mu_a - \mu_{a^*} + 2\beta(N_a(t)) + 2\beta(N_{a^*}(t))]^+
\]

\[
\leq [\mu_a - \mu_{a^*}]^+ + 2\beta(N_a(t)) + 2\beta(N_{a^*}(t)). \tag{47}
\]

Thus, the first statement follows. By the fact that \(\beta(n) \) is a decreasing function, we have that

\[
\sum_{t=1}^T |\epsilon_t| \leq \sum_{t=1}^T ([\hat{\mu}_a - \mu_{a^*}]^+ + 4\beta(1)) \mathbb{I}\{a_t \neq a^*\} \tag{50}
\]

\[
= \sum_{a \neq a^*} ([\mu_a - \mu_{a^*}]^+ + 4\beta(1)) N_a(T) \tag{51}
\]

\[
\leq O \left(\sum_{a \neq a^*} ([\mu_a - \mu_{a^*}]^+ + 4\beta(1)) \log T \right) \tag{52}
\]

\(\square \)