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Appendix
A. Proofs

A.1: PROOF OF THEOREM 2

For v ∈ HD, the objective can be expressed as:〈
vGF, v

〉
L2
q

=Eq[(∇ log p−∇ log q) · v]

=Eq[∇ log p · v]−
∫
X
∇q · v dx

(∗)
=Eq[∇ log p · v] +

∫
X
q∇ · v dx

=Eq(x)

[ D∑
α=1

(
∂α log p(x)vα(x) + ∂αvα(x)

)]
(#)
= Eq(x)

[ D∑
α=1

(
∂α log p(x)〈K(x, ·), vα(·)〉H

+ 〈∂αK(x, ·), vα(·)〉H
)]

=Eq(x) [〈K(x, ·)∇ log p(x), v(·)〉HD + 〈∇K(x, ·), v(·)〉HD ]

=Eq(x) [〈K(x, ·)∇ log p(x) +∇K(x, ·), v(·)〉HD ]

=
〈
Eq(x) [K(x, ·)∇ log p(x) +∇K(x, ·)] , v(·)

〉
HD

=
〈
vSVGD, v

〉
HD ,

where the equality (∗) holds due to the definition of weak
derivative of distributions, and equality (#) holds due to the
reproducing property for any function f in the reproducing
kernel Hilbert space H of kernel K: 〈K(x, ·), f(·)〉H =
f(x) (Steinwart & Christmann (2008), Chapter 4), and
〈∂xαK(x, ·), f(·)〉H = ∂xαf(x) (Zhou, 2008).

A.2: PROOF OF THEOREM 3

When q is absolutely continuous with respect to the
Lebesgue measure of X = RD, L2

q has the same topologi-
cal properties as L2, so conclusions we cite below can be
adapted fromL2 toL2

q . Note that the map φ 7→ φ∗K,L2 →

L2 is continuous, so G := {φ ∗K : φ ∈ C∞c }
L2
q

= {φ∗K :

φ ∈ C∞c
L2

} = {φ ∗K : φ ∈ L2} = {φ ∗K : φ ∈ L2}D,
where the second last equality holds due to e.g., Theo-
rem 2.11 of (Kováčik & Rákosnı́k, 1991). On the other hand,
due to Proposition 4.46 and Theorem 4.47 of (Steinwart &
Christmann, 2008), the map φ 7→ φ ∗ K is an isometric
isomorphism between {φ ∗K : φ ∈ L2} andH, the repro-
ducing kernel Hilbert space of K. This indicates that G is
isometrically isomorphic toHD.

A.3: PROOF OF THEOREM 4

We will redefine some notations in this proof. Accord-
ing to the deduction in Appendix A.1, the objective of

the optimization problem Eq. (5) 〈vGF, v〉L2
q

can be cast

as Eq[∇ log p · v+∇· v]. With q = q̂ and v ∈ L2
p, we write

the optimization problem as:

sup
v∈L2

p,‖v‖=1

N∑
i=1

(
∇ log p(x(i)) · v(x(i)) +∇ · v(x(i))

)
,

(7)

We will find a sequence of functions {vn} satisfying condi-
tions in Eq. (7) while the objective goes to infinity.

We assume that there exists r0 > 0 such that p(x) > 0 for
any

∥∥x− x(i)
∥∥
∞ < r0, i = 1, 2, · · · , N , which is reason-

able because it is almost impossible to sample x(i) with p(x)
vanishes in every neighborhood of x(i).

Denoting v(x) = (v1(x), · · · , vD(x))> for any
D-dimensional vector function v and ∇f(x) =
(∂1f(x), · · · , ∂Df(x))> for any real-valued function
f , the objective can be written as:

Lv =

N∑
i=1

(
∇ log p(x(i)) · v(x(i)) +∇ · v(x(i))

)
=

N∑
i=1

( D∑
α=1

∂α[log p(x(i))]vα(x(i)) +

D∑
α=1

∂α[vα(x(i))]
)

=

D∑
α=1

N∑
i=1

(
∂α[log p(x(i))]vα(x(i)) + ∂α[vα(x(i))]

)
.

(8)

For every v ∈ L2
p, ‖v‖ = 1, we can define a function φ =

(φ1, · · · , φD)> ∈ L2 correspondingly, such that φ(x) =

p(x)
1
2 v(x), which means φα(x) = p(x)

1
2 vα(x), and

‖φ‖22 =

∫
RD

φ2 dx =

∫
RD

D∑
α=1

(φα(x))2 dx

=

∫
RD

D∑
α=1

(vα(x))2p(x) dx = ‖v‖2 = 1.

Rewrite Eq. (8) in term of φ, we have:

Lφ =

D∑
α=1

N∑
i=1

(
∂α[log p(x(i))]vα(x(i)) + ∂α[vα(x(i))]

)
(9)

=

D∑
α=1

N∑
i=1

(
∂α[log p(x(i))]φα(x(i))p(x(i))

− 1
2

+ ∂α[φα(x(i))p(x(i))
− 1

2 ]
)
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=

D∑
α=1

N∑
i=1

(1

2
p(x(i))−

3
2 ∂α[p(x(i))]φα(x(i))

+ p(x(i))−
1
2 ∂α[φα(x(i))]

)
=

D∑
α=1

N∑
i=1

(
A(i)
α φα(x(i)) +B(i)∂α[φα(x(i))]

)
,

where A
(i)
α = 1

2p(x
(i))−

3
2 ∂α[p(x(i))] and B(i) =

p(x(i))−
1
2 > 0. We will now construct a sequence {φn} to

show the following problem:

inf
φ∈L2,‖φ‖=1

D∑
α=1

N∑
i=1

(
A(i)
α φα(x(i)) +B(i)∂α[φα(x(i))]

)
(10)

has no solution, then induce a sequence {vn} by {φn} for
problem Eq. (7).

Define a sequence of functions

χn(x) =

{
I−1/2
n (1− x2)n/2, for x ∈ [−1, 1],

0, otherwise.

We have
∫
R χn(x)2 dx = 1 with In =

∫ 1

−1
(1− x2)n dx =

√
π Γ(n+1)

Γ(n+3/2) , where Γ(·) is the Gamma function. Note that
when x = −1/

√
n,

χ′n(x) =−nI−
1
2

n x(1− x2)
n−2
2

=π−
1
4

√
Γ(n+ 3

2 )

Γ(n+ 1)

√
n(1− 1

n
)
n−2
2 (x = − 1√

n
)

>π−
1
4
√
n(1− 1

n
)
n−2
2 , (Γ(n+

3

2
) > Γ(n+ 1))

therefore,

lim
n→∞

χ′n(− 1√
n

)

> lim
n→∞

π−
1
4
√
n(1− 1

n
)
n−2
2 = π−

1
4 e−

1
2 lim
n→∞

√
n = +∞.

Denote x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)

D )> ∈ RD, i = 1, · · · , N
and

r1 =
1

3
min
i6=j

∥∥∥x(i) − x(j)
∥∥∥
∞

=
1

3
min

α∈{1,··· ,D},i6=j

∣∣∣x(i)
α − x(j)

α

∣∣∣.
We extend χn to RD as ξn with support supp(ξn) =
[−r, r]D,

ξn(x1, x2, · · · , xD) = r−D/2
D∏
α=1

χn(
xi
r

),

where r = min{r0, r1}. It is easy to show that∫
RD ξn(x)2 dx = 1, and

lim
n→∞

∂αξn(−εn) = +∞, α = 1, 2, · · · , D,

with εn = r√
n

(1, 1, · · · , 1)>.

We choose φα(x) = 1
ND

∑N
i=1 ψ

(i)
α , where ψ(i)

α is defined
by:

ψ(i)
α (x) =

{
ξn(x− x(i) − εn), if A(i)

α >= 0,

−ξn(x− x(i) + εn), if A(i)
α < 0.

With
∫
RD ψ

(i)
α (x)ψ

(j)
α (x) dx = 0,∀i 6= j, we know

φn satisfies conditions in Eq. (10). Noting that ∀i, j,
A

(i)
α ψ

(j)
α (x(i)) ≥ 0, and

∂αψ
(j)
α (x(i)) =

{
+∞, when n→∞, if i = j,

0, if i 6= j,

we see Lφn → +∞ in Eq. (9) when n→∞ .

Since supp(φn) ⊂ supp(p), we can induce a sequence of
{vn} from {φn} as vn = φn/

√
p(x), which satisfies re-

strictions in Eq. (7) and the objective Lvn will go to infinity
when n→∞. Note that any element in L2

p, as a function,
cannot take infinite value. So the infinite supremum of the
objective in Eq. (7) cannot be obtained by any element in
L2
p, thus no optimal solution for the optimization problem.

A.4: DEDUCTION OF PROPOSITION 5

We first derive the exact inverse exponential map on the
Wasserstein space P2(X ), then develop finite-particle esti-
mation for it. Given q, r ∈ P2(X ), Exp−1

q (r) is defined as
the tangent vector at q of the geodesic curve qt∈[0,1] from q
to r. When q is absolutely continuous, the optimal transport
map T rq from q to r exists (Villani (2008), Thm. 10.38).
This condition fits the case of ParVIs since as our theory
indicates, ParVIs have to do a smoothing treatment in any
way, which is equivalent to assume an absolutely continu-
ous distribution q. Under this case, the geodesic is given
by qt =

(
(1 − t) id +tT rq

)
#
q (Ambrosio et al. (2008),

Thm. 7.2.2), and its tangent vector at q (i.e., t = 0) can
be characterized by Exp−1

q (r) = limt→0
1
t (T

qt
q − id) (Am-

brosio et al. (2008), Prop. 8.4.6). Due to the uniqueness of
optimal transport map, we have T qtq = (1− t) id +tT rq , so
we finally get Exp−1

q (r) = T rq − id.

To estimate it with a finite set of particles, we approximate
the optimal transport map with the discrete one from parti-
cles {x(i)}Ni=1 of q to particles {y(i)}Ni=1 of r. As mentioned
in the main context, it is a costly task, and the Sinkhorn ap-
proximations (for both the original version (Cuturi, 2013)
and an improved version (Xie et al., 2018)) suffers from an



Understanding and Accelerating Particle-Based Variational Inference

Figure 7. Illustration of the Schild’s ladder method. Figure inspired
by (Kheyfets et al., 2000).

unstable behavior in our experiments. We now utilize the
pairwise-close condition and develop a light and stable ap-
proximation. The pairwise-close condition d(x(i), y(i))�
min

{
minj 6=i d(x(i), x(j)),minj 6=i d(y(i), y(j))

}
indicates

that d(x(i),x(j))
d(x(j),y(j))

� 1, for any i 6= j. On
the other hand, due to triangle inequality, we have
d(x(i), y(j)) ≥

∣∣d(x(i), x(j))− d(x(j), y(j))
∣∣, or equiva-

lently d(x(i),y(j))
d(x(j),y(j))

≥
∣∣∣ d(x(i),x(j))
d(x(j),y(j))

− 1
∣∣∣. Due to the above

knowledge d(x(i),x(j))
d(x(j),y(j))

� 1 by the pairwise-close condi-

tion, we have d(x(i),y(j))
d(x(j),y(j))

� 1, or equivalently (by switch-

ing i and j) d(x(i), y(i)) � minj 6=i d(x(i), y(j)). This
means that when transporting {x(i)}i to {y(i)}i, the map
x(i) 7→ y(i) for any i, has presumably the least cost. More
formally, consider any amount of transportation from x(i)

to y(j) other than y(i). It will introduce a change in the
transportation cost that is proportional to d(x(i), y(j)) −
d(x(i), y(i)) + d(x(j), y(i))− d(x(j), y(j)), which is always
positive due to our above recognition. Thus we can rea-
sonably approximate the optimal transport map T rq by the
discrete one T rq (x(i)) ≈ y(i). With this approximation, we
have

(
Exp−1

q (r)
)
(x(i)) = T rq (x(i))− x(i) ≈ y(i) − x(i).

A.5: DEDUCTION OF PROPOSITION 6

We derive the finite-particle estimation of the parallel
transport on the Wasserstein space P2(X ). We follow
the Schild’s ladder method (Ehlers et al., 1972; Kheyfets
et al., 2000) to parallel transport a tangent vector at q,
v ∈ TqP2(X ), to the tangent space at r, TrP2(X ). As
shown in Fig. 7, given q, r and v ∈ TqP2(X ), the procedure
to approximate Γrq(v) is

1. find the point Expq(v);

2. find the midpoint of the geodesic from r to Expq(v):
qM := Expq(

1
2 Exp−1

q (Expq(v)));

3. extrapolate the geodesic from q to qM by doubling the
length to find qE := Expq(2 Exp−1

q (qM ));

4. take the approximator Γ̃rq(v) := Exp−1
r (qE) ≈ Γrq(v).

Note that the Schild’s ladder method only requires the expo-
nential map and its inverse. It provides a tractable first-order
approximation Γ̃rq of the parallel transport Γrq under Levi-
Civita connection, as needed.

Assume q and r are close in the sense of the Wasserstein
distance, so that the Schild’s ladder finds a good first-order
approximation. In the following we consider transporting εv
for small ε > 0 for the sake of the pairwise-close condition,
and the result can be recovered by noting the linearity of
the parallel transport: Γrq(εv) = εΓrq(v). Let {x(i)}Ni=1 and
{y(i)}Ni=1 be the sets of samples of q and r, respectively,
and assume that they are pairwise close.

Now we follow the procedure.

1. The measure Expq(εv) can be identified as
(id +εv)#q due to the knowledge on the expo-
nential map on P2(X ) explained in Section 4, thus
{x(i) + εv(x(i))}Ni=1 is a set of samples of Expq(εv),
and still pairwise close to {y(i)}i.

2. The optimal map T from r to Expq(εv) can be approx-
imated by T (y(i)) = x(i) + εv(x(i)) since the two sets
of samples are pairwise close. According to Theorem
7.2.2 of (Ambrosio et al., 2008), the geodesic from r
to Expq(εv) is t 7→

(
(1− t) id +tT

)
#
r. Thus a set of

samples of qM , i.e., the midpoint of the geodesic, can
be derived as

{
1
2

(
y(i) + x(i) + εv(x(i))

)}
i
.

3. Similarly, a set of samples of qE is found as{
(1− t)x(i) + 1

2 t
(
y(i) + x(i) + εv(x(i))

)}
i

∣∣
t=2

={
y(i) + εv(x(i))

}
i

and is pairwise close to {y(i)}i.

4. The approximated transported tangent vector
Exp−1

r (qE) satisfies
(

Exp−1
r (qE)

)
(y(i)) = εv(x(i)).

Finally, we get the approximation
(
Γrq(v)

)
(y(i)) ≈(

Γ̃rq(v)
)
(y(i)) = v(x(i)).

B. Derivations of GFSF Vector Field ûGFSF

B.1: DERIVATION WITH VECTOR-VALUED FUNCTIONS

The vector field ûGFSF is identified by the optimization prob-
lem (6):

min
u∈L2

max
φ∈HD,
‖φ‖HD=1

( N∑
i=1

(
φ(x(i)) · u(i) −∇ · φ(x(i))

))2

,

where u(i) := u(x(i)). For φ in HD, by using the
reproducing property 〈φα(·),K(x, ·)〉H = φα(x) and〈
φα(·), ∂xβK(x, ·)

〉
H = ∂xβφα(x) (Zhou, 2008), we can
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write the objective function as:(∑
α

∑
j

(
u(j)
α φα(x(j))− ∂

x
(j)
α
φα(x(j))

))2

=

∑
α

〈∑
j

(
u(j)
α K(x(j), ·)− ∂

x
(j)
α
K(x(j), ·)

)
, φα(·)

〉
H

2

=

〈∑
j

(
u(j)K(x(j), ·)−∇x(j)K(x(j), ·)

)
, φ(·)

〉2

HD

.

We denote ζ :=
∑
j

(
u(j)K(x(j), ·) −∇x(j)K(x(j), ·)

)
∈

HD. Then the optimal value of the objective after maxi-
mizing out φ is ‖ζ‖2HD =

∑
i,j

(
u(i)u(j)K(x(i), x(j)) −

2u(i)∇x(j)K(x(j), x(i)) + ∇x(i)∇x(j)K(x(i), x(j))
)

=

tr(ûK̂û>)−2 tr(K̂ ′û>)+const, where û:,i := u(i), and K̂,
K̂ ′ are defined in the main text. To minimize this quadratic
function with respect to û, we further differentiate it with
respect to û and solve for the stationary point. This finally
gives the result ûGFSF = K̂ ′K̂−1.

B.2: DERIVATION WITH SCALAR-VALUED FUNCTIONS

We denote ϕ as scalar-valued functions on X . For the equal-
ity u(x) = −∇ log q(x), or u(x)q(x)+∇q(x) = 0, to hold
in the weak sense with scalar-valued test function, we mean:

Eq(x)[ϕ(x)u(x)−∇ϕ(x)] = 0,∀ϕ ∈ C∞c .

Let {x(j)}j be a set of samples of q(x). Then the above
requirement on u(x) is:∑

j

(
ϕ(x(j))u(j) −∇ϕ(x(j))

)
= 0,∀ϕ ∈ C∞c , (11)

where u(j) = u(x(j)). As analyzed above, for a valid vector
field, we have to smooth the function ϕ.

For the above considerations, we restrict ϕ in Eq. (11) to
be in the Reproducing Kernel Hilbert Space (RKHS)H of
some kernel K(·, ·), and convert the equation as the follow-
ing optimization problem:

min
û∈RD×N

max
ϕ∈H,
‖ϕ‖H=1

J(û, ϕ),

J(û, ϕ) :=
∑
j,α

(
ϕ(x(j))ûαj − ∂x(j)

α
ϕ(x(j))

)2

,

where ûαj := uα(x(j)). By using the reproducing proper-
ties of RKHS, we can write J(û, ϕ) as:

J(û, ϕ) =
∑
α

〈ϕ(·), ζα(·)〉2H,

ζα(·) :=
∑
j

(
ûαjK(x(j), ·)− ∂

x
(j)
α
K(x(j), ·)

)
.

By linear algebra operations, we have:

max
ϕ∈H,‖ϕ‖H=1

J(û, ϕ) = λ1(A(û)),

where λ1(A(û)) is the largest eigenvalue of matrix A, and
A(û)αβ = 〈ζα(·), ζβ(·)〉H, or:

A(û) = ûK̂û> − (K̂ ′û> + ûK̂ ′>) + K̂ ′′,

with K̂ ′′αβ :=
∑
i,j ∂x(i)

α
∂
x
(j)
β

K(x(i), x(j)). For distinct

samples K̂ is positive-definite, so we can conduct Cholesky
decomposition: K̂ = GG> with G non-singular. Note
that A(û) = (ûG− K̂ ′G−1>)(ûG− K̂ ′G−1>)>+ (K̂ ′′−
K̂ ′K̂−1K̂ ′>). So whenever ûG 6= K̂ ′G−1>, the first term
will be positive semidefinite with positive largest eigen-
value, which makes λ1(A(u)) > λ1(K̂ ′′ − K̂ ′K̂−1K̂ ′>),
a constant with respect to û. So to minimize λ1(A(û)), we
require ûG = K̂ ′G−1>, i.e., û = K̂ ′(GG>)−1 = K̂ ′K̂−1.
This result coincides with the one for vector-valued func-
tions φ ∈ HD.

In practice, for numerical stability, we add a small diagonal
matrix to K̂ before conducting inversion. This is a common
practice. Particularly, it is adopted in Li & Turner (2017)
for the same estimate.

C. Details on Accelerated First-Order Methods on the
Wasserstein Space P2(X )

C.1: SIMPLIFICATION OF RIEMANNIAN ACCELERATED
GRADIENT (RAG) WITH APPROXIMATIONS

We consider the general version of RAG (Alg. 2 of Liu et al.
(2017b)). It updates the target variable qk as:

qk = Exprk−1
(εvk−1),

where vk−1 := − grad KL(rk−1). The update rule for the
auxiliary variable rk is given by the solution of the following
non-linear equation (see Alg. 2 and Eq. (5) of Liu et al.
(2017b)):

Γrk−1
rk

(
k

α− 1
Exp−1

rk
(qk) +

Dvk
‖vk‖rk

)

=
k − 1

α− 1
Exp−1

rk−1
(qk−1)− k + α− 2

α− 1
εvk−1 +

Dvk−1

‖vk−1‖rk−1

.

Here we focus on simplifying this complicated update rule
for rk with moderate approximations. We note that the
original work of RAG (Liu et al., 2017b) actually adopted
these approximations in experiments, but the simplification
of the general algorithm is not given in the work.

Applying
(
Γ
rk−1
rk

)−1
to both sides of the equation and notic-

ing that
(
Γ
rk−1
rk

)−1
= Γrkrk−1

, the above equation can be
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reformulated as:

k

α− 1
Exp−1

rk
(qk) +

Dvk
‖vk‖rk

=Γrkrk−1

(
k − 1

α− 1
Exp−1

rk−1
(qk−1)− k + α− 2

α− 1
εvk−1

)
+
DΓrkrk−1

(vk−1)

‖vk−1‖rk−1

.

Approximating vk on the left hand side of the equa-
tion by Γrkrk−1

(vk−1) and noting that
∥∥∥Γrkrk−1

(vk−1)
∥∥∥
rk

=

‖vk−1‖rk−1
, we have:

k

α− 1
Exp−1

rk
(qk)

=Γrkrk−1

(
k − 1

α− 1
Exp−1

rk−1
(qk−1)− k + α− 2

α− 1
εvk−1

)
.

Using the fact that Exp−1
rk

(qk) = −Γrkqk(Exp−1
qk

(rk)) and

applying
(
Γrkqk
)−1

= Γqkrk to both sides of the equation, we
have:

Exp−1
qk

(rk)

=− ΓqkrkΓrkrk−1

(
k − 1

k
Exp−1

rk−1
(qk−1)− k + α− 2

k
εvk−1

)
.

Approximating ΓqkrkΓrkrk−1
by Γqkrk−1

, we finally have rk =

Expqk

[
−Γqkrk−1

(
k − 1

k
Exp−1

rk−1
(qk−1)− k+α−2

k
εvk−1

)]
.

C.2: REFORMULATION OF RIEMANNIAN NESTEROV’S
METHOD (RNES)

We consider the constant step version of RNes (Alg. 2
of (Zhang & Sra, 2018)). It introduces an additional aux-
iliary variable sk ∈ P2(X ), and update the variables in
iteration k as:

rk−1 = Expqk−1

(
c1 Exp−1

qk−1
(sk−1)

)
, (12a)

qk = Exprk−1
(εvk−1) , (12b)

sk = Exprk−1

(
1− α
1 + β

Exp−1
rk−1

(sk−1) +
α

(1 + β)γ
vk−1

)
,

(12c)

where vk−1 := − grad KL(rk−1), and the coefficients
α, γ, c1 are set by a step size ε > 0, a shrinkage param-
eter β > 0, and a parameter µ > 0 upper bounding the
Lipschitz coefficient of the gradient of the objective, in the

following way:

α =

√
β2 + 4(1 + β)µε− β

2
,

γ =

√
β2 + 4(1 + β)µε− β√
β2 + 4(1 + β)µε+ β

µ,

c1 =
αγ

γ + αµ
.

(13)

Now we simplify the update rule by collapsing the variable
s. Referring to Eq. (12a), the variable sk−1 can be expressed
by:

sk−1 = Expqk−1

(
1

c1
Exp−1

qk−1
(rk−1)

)
.

This result indicates that sk−1 lies on the 1/c1 portion of
the geodesic from qk−1 to rk−1, which is the (1 − 1/c1)
portion of the geodesic from rk−1 to qk−1. According to
this knowledge, we have:

Exp−1
rk−1

(sk−1) =

(
1− 1

c1

)
Exp−1

rk−1
(qk−1).

Substitute this result into Eq. (12c), we have:

sk = Exprk−1

(
1− α
1 + β

(
1− 1

c1

)
Exp−1

rk−1
(qk−1)

+
α

(1 + β)γε
Exp−1

rk−1
(qk)

)
,

where we have also substituted vk−1 with 1
ε Exp−1

rk−1
(qk)

according to Eq. (12b). Leveraging Eq. (13) to simplify the
coefficients in the above equation, we get:

sk = Exprk−1

(
(1−c2) Exp−1

rk−1
(qk−1) + c2 Exp−1

rk−1
(qk)
)
,

where the coefficient c2 := 1/α. Replacing k → k + 1 in
Eq. (12a) and substitute with the above result, we have the
update rule for rk:

rk = Expqk

{
c1 Exp−1

qk

[
Exprk−1

(
(1− c2) Exp−1

rk−1
(qk−1)

+c2 Exp−1
rk−1

(qk)
)]}

,

which builds the update rule of RNes together with
Eq. (12a).

In our implementation, the parameters are tackled with
ε, β, µ instead of setting c1, c2 directly. The shrinkage pa-
rameter β is set in the scale of

√
µε. In our Alg. 1, the

coefficient c1(c2 − 1) can be expressed as:

1 + β − 2(1 + β)(2 + β)µε√
β2 + 4(1 + β)µε− β + 2(1 + β)µε

.
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C.3: DEDUCTION OF WASSERSTEIN ACCELERATED
GRADIENT (WAG) AND WASSERSTEIN NESTEROV’S
METHOD (WNES) (ALG. 1)

First consider developing WAG based on
RAG. We denote the vector field ζk−1 :=
k−1
k Exp−1

rk−1
(qk−1) − k+α−2

k εvk−1 for simplicity,

so rk = Expqk

[
−Γqkrk−1

(ζk−1)
]
, due to the update

rule of RAG. We assume that {x(i)
k−1}Ni=1 of qk−1 and

{y(i)
k−1}Ni=1 of rk−1 are pairwise close, so from Section 4

we know that Exp−1
rk−1

(qk−1)(y
(i)
k−1) = x

(i)
k−1 − y

(i)
k−1,

thus ζk−1(y
(i)
k−1) = k−1

k (x
(i)
k−1 − y

(i)
k−1) − k+α−2

k εv
(i)
k−1.

Due to the update rule for qk that we already discov-
ered: x

(i)
k = y

(i)
k−1 + εv

(i)
k−1, we know that {x(i)

k }Ni=1

of qk and {y(i)
k−1}Ni=1 of rk−1 are pairwise close, for

small enough step size ε. Using the parallel transport
estimate developed above with Schild’s ladder method,(
Γqkrk−1

(ζk−1)
)
(x

(i)
k ) ≈ ζk−1(y

(i)
k−1). So finally, we assign

y
(i)
k = x

(i)
k −

(
Γqkrk−1

(ζk−1)
)
(x

(i)
k ) ≈ x(i)

k − ζk−1(y
(i)
k−1) =

x
(i)
k −

k−1
k (x

(i)
k−1 − y

(i)
k−1) + k+α−2

k εv
(i)
k−1 as a sample of

rk.

We note that initially x(i)
0 = y

(i)
0 . Assume {x(i)

k−1}Ni=1 and

{y(i)
k−1}Ni=1 are pairwise close, so for sufficiently small ε,

ζk−1(y
(i)
k−1) is an infinitesimal vector for all i. This, in

turn, indicates that {x(i)
k }Ni=1 of qk and {y(i)

k }Ni=1 of rk are
pairwise close, which provides the assumption for the next
iteration. The derivation of WNes based on RNes can be
developed similarly, and we omit verbosing the procedure.

D. Details on the HE Method for Bandwidth Selection

We first note that the bandwidth selection problem cannot be
solved using theories of heat kernels, which aims to find the
evolving density under the Brownian motion with known
initial distribution, while in our case the density is unknown
and we want to find an update on samples to approximate
the effect of Brownian motion.

According to the derivation in the main context, we write
the dimensionless final objective explicitly:

1

hD+2

∑
k

λ(x(k))2

=
1

hD+2

∑
k

[
∆q̃(x(k); {x(i)}i)

+
∑
j

∇x(j) q̃(x(k); {x(i)}i) · ∇log q̃(x(j); {x(i)}i)
]2
.

For q̃(x; {x(j)}j) = (1/Z)
∑
j c(
∥∥x− x(j)

∥∥2
/(2h)), the

above objective becomes:

∑
k

(∑
j

[
c′′j (x)

∥∥∥x− x(j)
∥∥∥2

+Dhc′j(x)

+

(∑
i c
′
ijx

(i)
)
−
(∑

i c
′
ij

)
x(j)(∑

i cij
) · (x− x(j))c′j(x)

])2

,

where c′j(x) = c′(
∥∥x− x(j)

∥∥2
/(2h)), c′ij = c′j(x

(i)),

cij = c(
∥∥x(i) − x(j)

∥∥2
/(2h)). For Gaussian kernel c(r) =

(2πh)−
D
2 e−r, denoting g2

k(h) as the summand for k of the
l.h.s. of the above equation, we have:

(2π)
D
2 gk(h)

=
(∑

j

ekj‖dkj‖2
)
− hD

(∑
j

ekj
)

−
∑
j

(∑
i

eij
)−1

ejkdjk ·
(∑

i

eijdij
)
,

(2π)
D
2 g′k(h)

=
1

2h2

(∑
j

ejk‖djk‖4
)
− D

h

(∑
j

ejk‖djk‖2
)

+
(D2

2
−D

)(∑
j

ejk
)

− 1

2h2

∑
j

(∑
i

eij
)−1

ejkdjk ·
(∑

i

eij‖dij‖2dij
)

− 1

2h2

∑
j

(∑
i

eij
)−1

ejk‖djk‖2djk ·
(∑

i

eijdij
)

+
1

2h2

∑
j

(∑
i

eij
)−2(∑

i

eij‖dij‖2
)
ejkdjk ·

(∑
i

eijdij
)

+
D

2h

∑
j

(∑
i

eij
)−1

ejkdjk ·
(∑

i

eijdij
)
,

where dij = x(i) − x(j), eij = e−‖dij‖
2/(2h)−(D/2) log h.

Although the evaluation of gk(h) may induce some computa-
tion cost, the optimization is with respect to a scalar. In each
particle update iteration, before estimating the vector field
v, we first update the previous bandwidth by one-step explo-
ration with quadratic interpolation, which only requires one
derivative evaluation and two value evaluations.

E. Detailed Settings and Parameters of Experiments

E.1: DETAILED SETTINGS AND PARAMETERS OF THE
SYNTHETIC EXPERIMENT

The bimodal toy target distribution is inspired by the one of
(Rezende & Mohamed, 2015). The logarithm of the target
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density p(z) for z = (z1, z2) ∈ R2 is given by:

log p(z) =− 2(‖z‖22 − 3)2 + log(e−2(z1−3)2 + e−2(z1+3)2)

+ const.

The region shown in each figure is [−4, 4] × [−4, 4]. The
number of particles is 200, and all particles are initialized
with standard Gaussian N (0, 1).

All methods are run for 400 iterations, and all follows the
plain WGD method. SVGD uses fixed step size 0.3, while
other methods (Blob, GFSD, GFSF) share the fixed step size
0.01. This is because that the updating direction of SVGD is
a kernel smoothed one, so it may have a different scale from
other methods. Note that the AdaGrad with momentum
method in the original SVGD paper (Liu & Wang, 2016) is
not used. For GFSF, a small diagonal matrix 0.01I is added
to K̂ before conducting inversion, as discussed at the end
of Appendix B.2.

E.2: DETAILED SETTINGS AND PARAMETERS OF THE
BLR EXPERIMENT

We adopt the same settings as (Liu & Wang, 2016), which is
also adopted by (Chen et al., 2018a). The Covertype dataset
contains 581,012 items with each 54 features. Each run uses
a random 80%-20% split of the dataset.

For the model, parameters of the Gamma prior on the pre-
cision of the Gaussian prior of the weight are a0 = 1.0,
b0 = 100 (b0 is the scale parameter, not the rate parameter).
All methods use 100 particles, randomly initialized by the
prior. Batch size for all methods is 50.

Detailed parameters of various methods are provided in
Table 2. The WGD column provides the step size. The
format of the PO column is “PO parameters(decaying ex-
ponent, remember rate, injected noise variance), step size”.
Both methods use a fixed step size, while the WAG and
WNes methods use a decaying step size. The format of
WAG column is “WAG parameter α, (step size decaying
exponent, step size)” (see Alg. 1), and the format of WNes
column is “Wnes parameters (µ, β), (step size decaying
exponent, step size)” (see Appendix C.2). One exception
is that SVGD-WGD uses the AdaGrad with momentum
method to reproduce the results of (Liu & Wang, 2016),
which uses remember rate 0.9 and step size 0.03. For GFSF,
the small diagonal matrix is (1e-5)I .

E.3: DETAILED SETTINGS AND PARAMETERS OF THE
BNN EXPERIMENT

We follow the same settings as Liu & Wang (2016). For
each run, a random 90%-10% train-test split is conducted.
The BNN model contains one hidden layer with 50 hidden
nodes, and sigmoid activation is used. The parameters of
the Gamma prior on the precision parameter of the Gaussian

Table 2. Parameters of various methods in the BLR experiment

WGD PO

SVGD 3e-2 (1.0, 0.7, 1e-7), 3e-6
Blob 1e-6 (1.0, 0.7, 1e-7), 3e-7
GFSD 1e-6 (1.0, 0.7, 1e-7), 3e-7
GFSF 1e-6 (1.0, 0.7, 1e-7), 3e-7

WAG WNes

SVGD 3.9, (0.9, 1e-6) ( 300, 0.2), (0.8, 3e-4)
Blob 3.9, (0.9, 1e-6) (1000, 0.2), (0.9, 1e-5)
GFSD 3.9, (0.9, 1e-6) (1000, 0.2), (0.9, 1e-5)
GFSF 3.9, (0.9, 1e-6) (1000, 0.2), (0.9, 1e-5)

Table 3. Parameters of various methods in the BNN experiment

WGD PO

SVGD 1e-3 (1.0, 0.6, 1e-7), 1e-4
Blob (0.5, 3e-5) (1.0, 0.8, 1e-7), (0.5, 3e-5)
GFSD (0.5, 3e-5) (1.0, 0.8, 1e-7), (0.5, 3e-5)
GFSF (0.5, 3e-5) (1.0, 0.8, 1e-7), (0.5, 3e-5)

WAG WNes

SVGD 3.6, 1e-6 (1000, 0.2), 1e-4
Blob 3.5, (0.5, 1e-5) (3000, 0.2), (0.6, 1e-4)
GFSD 3.5, (0.5, 1e-5) (3000, 0.2), (0.6, 1e-4)
GFSF 3.5, (0.5, 1e-5) (3000, 0.2), (0.6, 1e-4)

prior of the weights are a0 = 1.0, b0 = 0.1. Batch size is
set to 100. Number of particles is fixed as 20 for all methods.
Results are collected after 8,000 iterations for every method.

Detailed parameters of various methods are provided in
Table 3. The format of each column is the same as illustrated
in Appendix E.2, except that all SVGD methods uses the
AdaGrad with momentum method with remember rate 0.9,
so we only provide the step size. WGD and PO methods also
adopt the decaying step size, so we provide the decaying
exponent. For GFSF, the small diagonal matrix is (1e-2)I .

E.4: DETAILED SETTINGS AND PARAMETERS OF THE
LDA EXPERIMENT

We follow the same settings as Ding et al. (2014). The
dataset is the ICML dataset5 that contains 765 documents
with vocabulary size 1,918. We also adopt the Expanded-
Natural parameterization (Patterson & Teh, 2013), and col-
lapsed Gibbs sampling for stochastic gradient estimation.
In each document, 90% of words are used for training the
topic proportion of the document, and the left 10% words
are used for evaluation. For each run, a random 80%-20%

5https://cse.buffalo.edu/˜changyou/code/
SGNHT.zip

https://cse.buffalo.edu/~changyou/code/SGNHT.zip
https://cse.buffalo.edu/~changyou/code/SGNHT.zip
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Table 4. Parameters of various methods in the LDA experiment

WGD PO

SVGD 3.0 (0.7, 0.7, 1e-4), 10.0
Blob 0.3 (0.7, 0.7, 1e-4), 0.30
GFSD 0.3 (0.7, 0.7, 1e-4), 0.30
GFSF 0.3 (0.7, 0.7, 1e-4), 0.30

WAG WNes

SVGD 2.5, 3.0 (3.0, 0.2), 10.0
Blob 2.1, 3e-2 (0.3, 0.2), 0.30
GFSD 2.1, 3e-2 (0.3, 0.2), 0.30
GFSF 2.1, 3e-2 (0.3, 0.2), 0.30
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Figure 8. Acceleration effect of WAG and WNes on BLR on the
Covertype dataset, measured in log-likelihood. See Appendix E.2
for detailed experiment settings and parameters.

train-test split of the dataset is done.

For the LDA model, we fix the parameter of the Dirichlet
prior on topics as 0.1, and mean and standard deviation
of the Gaussian prior on the topic proportion as 0.1 and
1.0, respectively. The number of topics is fixed as 30, and
batch size is fixed as 100 for all methods. Collapsed Gibbs
sampling is run for 50 iterations for each stochastic gradient
estimation. Particle size is fixed as 20 for all methods.

Detailed parameters of all methods are provided in Table 4.
The format of each column is the same as illustrated in
Appendix E.2, except that all methods uses a decaying step
size with decaying exponent 0.55 and initial steps 1,000,
so we only provide the step size for all methods. SVGD
methods do not use the AdaGrad with momentum method.
For GFSF, the small diagonal matrix is (1e-5)I .

For SGNHT, both its sequential and parallel simulations
use the fixed step size of 0.03, and its mass and diffusion
parameters are set to 1.0 and 22.4.

F. More Experimental Results

F.1: MORE RESULTS ON THE BLR EXPERIMENT

The results measured in log-likelihood on test dataset corre-
sponding to the results measured in test accuracy in Fig. 4
is provided in Fig. 8. Acceleration effect of our WAG and
WNes methods is again clearly demonstrated, making a
consistent support. Particularly, the WNes method is more
stable than the WAG method.


