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Abstract
The key idea behind the unsupervised learning
of disentangled representations is that real-world
data is generated by a few explanatory factors of
variation which can be recovered by unsupervised
learning algorithms. In this paper, we provide
a sober look at recent progress in the field and
challenge some common assumptions. We
first theoretically show that the unsupervised
learning of disentangled representations is
fundamentally impossible without inductive
biases on both the models and the data. Then,
we train more than 12 000 models covering most
prominent methods and evaluation metrics in a
reproducible large-scale experimental study on
seven different data sets. We observe that while
the different methods successfully enforce prop-
erties “encouraged” by the corresponding losses,
well-disentangled models seemingly cannot be
identified without supervision. Furthermore,
increased disentanglement does not seem to lead
to a decreased sample complexity of learning
for downstream tasks. Our results suggest that
future work on disentanglement learning should
be explicit about the role of inductive biases and
(implicit) supervision, investigate concrete ben-
efits of enforcing disentanglement of the learned
representations, and consider a reproducible
experimental setup covering several data sets.

1. Introduction
In representation learning it is often assumed that real-world
observations x (e.g., images or videos) are generated by
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a two-step generative process. First, a multivariate latent
random variable z is sampled from a distribution P (z). In-
tuitively, z corresponds to semantically meaningful factors
of variation of the observations (e.g., content + position of
objects in an image). Then, in a second step, the observation
x is sampled from the conditional distribution P (x|z). The
key idea behind this model is that the high-dimensional data
x can be explained by the substantially lower dimensional
and semantically meaningful latent variable z which is
mapped to the higher-dimensional space of observations
x. Informally, the goal of representation learning is to find
useful transformations r(x) of x that “make it easier to
extract useful information when building classifiers or other
predictors” (Bengio et al., 2013).

A recent line of work has argued that representations that
are disentangled are an important step towards a better
representation learning (Bengio et al., 2013; Peters et al.,
2017; LeCun et al., 2015; Bengio et al., 2007; Schmidhuber,
1992; Lake et al., 2017; Tschannen et al., 2018). They
should contain all the information present in x in a compact
and interpretable structure (Bengio et al., 2013; Kulkarni
et al., 2015; Chen et al., 2016) while being independent
from the task at hand (Goodfellow et al., 2009; Lenc &
Vedaldi, 2015). They should be useful for (semi-)supervised
learning of downstream tasks, transfer and few shot
learning (Bengio et al., 2013; Schölkopf et al., 2012; Peters
et al., 2017). They should enable to integrate out nuisance
factors (Kumar et al., 2017), to perform interventions, and
to answer counterfactual questions (Pearl, 2009; Spirtes
et al., 1993; Peters et al., 2017).

While there is no single formalized notion of disentangle-
ment (yet) which is widely accepted, the key intuition is that
a disentangled representation should separate the distinct,
informative factors of variations in the data (Bengio et al.,
2013). A change in a single underlying factor of variation
zi should lead to a change in a single factor in the learned
representation r(x). This assumption can be extended to
groups of factors as, for instance, in Bouchacourt et al.
(2018) or Suter et al. (2018). Based on this idea, a variety of
disentanglement evaluation protocols have been proposed
leveraging the statistical relations between the learned
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representation and the ground-truth factor of variations.
Disentanglement is then measured as a particular structural
property of these relations (Higgins et al., 2017a; Kim &
Mnih, 2018; Eastwood & Williams, 2018; Kumar et al.,
2017; Chen et al., 2018; Ridgeway & Mozer, 2018).

State-of-the-art approaches for unsupervised disentangle-
ment learning are largely based on Variational Autoencoders
(VAEs) (Kingma & Welling, 2014): One assumes a specific
prior P (z) on the latent space and then uses a deep neural
network to parameterize the conditional probability P (x|z).
Similarly, the distribution P (z|x) is approximated using a
variational distribution Q(z|x), again parametrized using a
deep neural network. The model is then trained by minimiz-
ing a suitable approximation to the negative log-likelihood.
The representation for r(x) is usually taken to be the mean
of the approximate posterior distribution Q(z|x). Several
variations of VAEs were proposed with the motivation that
they lead to better disentanglement (Higgins et al., 2017a;
Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018;
Kumar et al., 2017; Rubenstein et al., 2018). The common
theme behind all these approaches is that they try to enforce
a factorized aggregated posterior

∫
x
Q(z|x)P (x)dx, which

should encourage disentanglement.

Our contributions. In this paper, we challenge commonly
held assumptions in this field in both theory and practice.
Our key contributions can be summarized as follows:

• We theoretically prove that (perhaps unsurprisingly) the
unsupervised learning of disentangled representations is
fundamentally impossible without inductive biases both
on the considered learning approaches and the data sets.

• We investigate current approaches and their inductive
biases in a reproducible large-scale experimental study1

with a sound experimental protocol for unsupervised dis-
entanglement learning. We implement six recent unsu-
pervised disentanglement learning methods as well as six
disentanglement measures from scratch and train more
than 12 000 models on seven data sets.

• We release disentanglement_lib2, a new library
to train and evaluate disentangled representations. As re-
producing our results requires substantial computational
effort, we also release more than 10 000 trained models
which can be used as baselines for future research.

• We analyze our experimental results and challenge com-
mon beliefs in unsupervised disentanglement learning: (i)
While all considered methods prove effective at ensuring
that the individual dimensions of the aggregated posterior
(which is sampled) are not correlated, we observe that the

1Reproducing these experiments requires approximately 2.52
GPU years (NVIDIA P100).

2https://github.com/google-research/
disentanglement_lib

dimensions of the representation (which is taken to be the
mean) are correlated. (ii) We do not find any evidence
that the considered models can be used to reliably learn
disentangled representations in an unsupervised manner
as random seeds and hyperparameters seem to matter
more than the model choice. Furthermore, good trained
models seemingly cannot be identified without access
to ground-truth labels even if we are allowed to transfer
good hyperparameter values across data sets. (iii) For
the considered models and data sets, we cannot validate
the assumption that disentanglement is useful for down-
stream tasks, for example through a decreased sample
complexity of learning.

• Based on these empirical evidence, we suggest three crit-
ical areas of further research: (i) The role of inductive bi-
ases and implicit and explicit supervision should be made
explicit: unsupervised model selection persists as a key
question. (ii) The concrete practical benefits of enforcing
a specific notion of disentanglement of the learned rep-
resentations should be demonstrated. (iii) Experiments
should be conducted in a reproducible experimental setup
on data sets of varying degrees of difficulty.

2. Other related work
In a similar spirit to disentanglement, (non-)linear indepen-
dent component analysis (Comon, 1994; Bach & Jordan,
2002; Jutten & Karhunen, 2003; Hyvarinen & Morioka,
2016) studies the problem of recovering independent com-
ponents of a signal. The underlying assumption is that there
is a generative model for the signal composed of the com-
bination of statistically independent non-Gaussian compo-
nents. While the identifiability result for linear ICA (Comon,
1994) proved to be a milestone for the classical theory of
factor analysis, similar results are in general not obtainable
for the nonlinear case and the underlying sources gener-
ating the data cannot be identified (Hyvarinen & Pajunen,
1999). The lack of almost any identifiability result in non-
linear ICA has been a main bottleneck for the utility of the
approach (Hyvarinen et al., 2018) and partially motivated
alternative machine learning approaches (Desjardins et al.,
2012; Schmidhuber, 1992; Cohen & Welling, 2015). Given
that unsupervised algorithms did not initially perform well
on realistic settings most of the other works have consid-
ered some more or less explicit form of supervision (Reed
et al., 2014; Zhu et al., 2014; Yang et al., 2015; Kulka-
rni et al., 2015; Cheung et al., 2015; Mathieu et al., 2016;
Narayanaswamy et al., 2017; Suter et al., 2018). (Hinton
et al., 2011; Cohen & Welling, 2014) assume some knowl-
edge of the effect of the factors of variations even though
they are not observed. One can also exploit known relations
between factors in different samples (Karaletsos et al., 2015;
Goroshin et al., 2015; Whitney et al., 2016; Fraccaro et al.,

https://github.com/google-research/disentanglement_lib
https://github.com/google-research/disentanglement_lib
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2017; Denton & Birodkar, 2017; Hsu et al., 2017; Yingzhen
& Mandt, 2018) or explicit inductive biases (Locatello et al.,
2018). This is not a limiting assumption especially in se-
quential data, i.e., for videos. We focus our study on the
setting where factors of variations are not observable at all,
i.e. we only observe samples from P (x).

3. Impossibility result
The first question that we investigate is whether unsuper-
vised disentanglement learning is even possible for arbitrary
generative models. Theorem 1 essentially shows that with-
out inductive biases both on models and data sets the task
is fundamentally impossible. The proof is provided in Ap-
pendix A.

Theorem 1. For d > 1, let z ∼ P denote any distribution
which admits a density p(z) =

∏d
i=1 p(zi). Then, there

exists an infinite family of bijective functions f : supp(z)→
supp(z) such that ∂fi(u)

∂uj
6= 0 almost everywhere for all

i and j (i.e., z and f(z) are completely entangled) and
P (z ≤ u) = P (f(z) ≤ u) for all u ∈ supp(z) (i.e., they
have the same marginal distribution).

Consider the commonly used “intuitive” notion of disentan-
glement which advocates that a change in a single ground-
truth factor should lead to a single change in the repre-
sentation. In that setting, Theorem 1 implies that unsu-
pervised disentanglement learning is impossible for arbi-
trary generative models with a factorized prior3 in the fol-
lowing sense: Assume we have p(z) and some P (x|z)
defining a generative model. Consider any unsupervised
disentanglement method and assume that it finds a repre-
sentation r(x) that is perfectly disentangled with respect
to z in the generative model. Then, Theorem 1 implies
that there is an equivalent generative model with the la-
tent variable ẑ = f(z) where ẑ is completely entangled
with respect to z and thus also r(x): as all the entries
in the Jacobian of f are non-zero, a change in a single
dimension of z implies that all dimensions of ẑ change.
Furthermore, since f is deterministic and p(z) = p(ẑ) al-
most everywhere, both generative models have the same
marginal distribution of the observations x by construction,
i.e., P (x) =

∫
p(x|z)p(z)dz =

∫
p(x|ẑ)p(ẑ)dẑ. Since the

(unsupervised) disentanglement method only has access to
observations x, it hence cannot distinguish between the two
equivalent generative models and thus has to be entangled
to at least one of them.

This may not be surprising to readers familiar with the
causality and ICA literature as it is consistent with the
following argument: After observing x, we can construct

3Theorem 1 only applies to factorized priors; however, we
expect that a similar result can be extended to non-factorizing
priors.

infinitely many generative models which have the same
marginal distribution of x. Any one of these models could
be the true causal generative model for the data, and the
right model cannot be identified given only the distribution
of x (Peters et al., 2017). Similar results have been obtained
in the context of non-linear ICA (Hyvarinen & Pajunen,
1999). The main novelty of Theorem 1 is that it allows the
explicit construction of latent spaces z and ẑ that are com-
pletely entangled with each other in the sense of (Bengio
et al., 2013). We note that while this result is very intuitive
for multivariate Gaussians it also holds for distributions
which are not invariant to rotation, for example multivariate
uniform distributions.

While Theorem 1 shows that unsupervised disentanglement
learning is fundamentally impossible for arbitrary genera-
tive models, this does not necessarily mean it is an impossi-
ble endeavour in practice. After all, real world generative
models may have a certain structure that could be exploited
through suitably chosen inductive biases. However, Theo-
rem 1 clearly shows that inductive biases are required both
for the models (so that we find a specific set of solutions)
and for the data sets (such that these solutions match the true
generative model). We hence argue that the role of inductive
biases should be made explicit and investigated further as
done in the following experimental study.

4. Experimental design
Considered methods. All the considered methods augment
the VAE loss with a regularizer: The β-VAE (Higgins et al.,
2017a), introduces a hyperparameter in front of the KL reg-
ularizer of vanilla VAEs to constrain the capacity of the
VAE bottleneck. The AnnealedVAE (Burgess et al., 2017)
progressively increase the bottleneck capacity so that the
encoder can focus on learning one factor of variation at the
time (the one that most contribute to a small reconstruc-
tion error). The FactorVAE (Kim & Mnih, 2018) and the
β-TCVAE (Chen et al., 2018) penalize the total correla-
tion (Watanabe, 1960) with adversarial training (Nguyen
et al., 2010; Sugiyama et al., 2012) or with a tractable but
biased Monte-Carlo estimator respectively. The DIP-VAE-I
and the DIP-VAE-II (Kumar et al., 2017) both penalize the
mismatch between the aggregated posterior and a factorized
prior. Implementation details and further discussion on the
methods can be found in Appendix B and G.

Considered metrics. The BetaVAE metric (Higgins et al.,
2017a) measures disentanglement as the accuracy of a linear
classifier that predicts the index of a fixed factor of variation.
Kim & Mnih (2018) address several issues with this metric
in their FactorVAE metric by using a majority vote classifier
on a different feature vector which accounts for a corner
case in the BetaVAE metric. The Mutual Information Gap
(MIG) (Chen et al., 2018) measures for each factor of vari-
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ation the normalized gap in mutual information between the
highest and second highest coordinate in r(x). Instead, the
Modularity (Ridgeway & Mozer, 2018) measures if each
dimension of r(x) depends on at most a factor of variation
using their mutual information. The Disentanglement metric
of Eastwood & Williams (2018) (which we call DCI Disen-
tanglement for clarity) computes the entropy of the distribu-
tion obtained by normalizing the importance of each dimen-
sion of the learned representation for predicting the value of
a factor of variation. The SAP score (Kumar et al., 2017) is
the average difference of the prediction error of the two most
predictive latent dimensions for each factor. Implementation
details and further descriptions can be found in Appendix C.

Data sets. We consider four data sets in which x is ob-
tained as a deterministic function of z: dSprites (Higgins
et al., 2017a), Cars3D (Reed et al., 2015), SmallNORB (Le-
Cun et al., 2004), Shapes3D (Kim & Mnih, 2018). We
also introduce three data sets where the observations x are
stochastic given the factor of variations z: Color-dSprites,
Noisy-dSprites and Scream-dSprites. In Color-dSprites, the
shapes are colored with a random color. In Noisy-dSprites,
we consider white-colored shapes on a noisy background.
Finally, in Scream-dSprites the background is replaced with
a random patch in a random color shade extracted from the
famous The Scream painting (Munch, 1893). The dSprites
shape is embedded into the image by inverting the color of
its pixels. Further details on the preprocessing of the data
can be found in Appendix H.

Inductive biases. To fairly evaluate the different ap-
proaches, we separate the effect of regularization (in the
form of model choice and regularization strength) from the
other inductive biases (e.g., the choice of the neural architec-
ture). Each method uses the same convolutional architecture,
optimizer, hyperparameters of the optimizer and batch size.
All methods use a Gaussian encoder where the mean and the
log variance of each latent factor is parametrized by the deep
neural network, a Bernoulli decoder and latent dimension
fixed to 10. We note that these are all standard choices in
prior work (Higgins et al., 2017a; Kim & Mnih, 2018).

We choose six different regularization strengths, i.e., hy-
perparameter values, for each of the considered methods.
The key idea was to take a wide enough set to ensure that
there are useful hyperparameters for different settings for
each method and not to focus on specific values known to
work for specific data sets. However, the values are par-
tially based on the ranges that are prescribed in the literature
(including the hyperparameters suggested by the authors).

We fix our experimental setup in advance and we run all the
considered methods on each data set for 50 different random
seeds and evaluate them on the considered metrics. The
full details on the experimental setup are provided in the
Appendix G. Our experimental setup, the limitations of this

study, and the differences with previous implementations
are extensively discussed in Appendices D-F.

5. Key experimental results
In this section, we highlight our key findings with plots
specifically picked to be representative of our main results.
In Appendix I, we provide the full experimental results with
a complete set of plots for different methods, data sets and
disentanglement metrics.

5.1. Can current methods enforce a uncorrelated
aggregated posterior and representation?

While many of the considered methods aim to enforce a
factorizing and thus uncorrelated aggregated posterior (e.g.,
regularizing the total correlation of the sampled representa-
tion), they use the mean vector of the Gaussian encoder as
the representation and not a sample from the Gaussian en-
coder. This may seem like a minor, irrelevant modification;
however, it is not clear whether a factorizing aggregated
posterior also ensures that the dimensions of the mean rep-
resentation are uncorrelated. To test the impact of this, we
compute the total correlation of both the mean and the sam-
pled representation based on fitting Gaussian distributions
for each data set, model and hyperparameter value (see
Appendix C and I.2 for details).

Figure 1 (left) shows the total correlation based on a fitted
Gaussian of the sampled representation plotted against the
regularization strength for each method except Annealed-
VAE on Color-dSprites. We observe that the total correlation
of the sampled representation generally decreases with the
regularization strength. One the other hand, Figure 1 (right)
shows the total correlation of the mean representation plot-
ted against the regularization strength. It is evident that the
total correlation of the mean representation generally in-
creases with the regularization strength. The only exception
is DIP-VAE-I for which we observe that the total correlation

0.0 0.2 0.4 0.6 0.8 1.0
Regularization strength

0.00

0.02

0.04

0.06

0.08

0.10

0.12

V
a
lu

e

Metric = TC (sampled)

VAE β-VAE FactorVAE β-TCVAE DIP-VAE-I DIP-VAE-II

0.0 0.2 0.4 0.6 0.8 1.0
Regularization strength

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Metric = TC (mean)

Figure 1. Total correlation based on a fitted Gaussian of the sam-
pled (left) and the mean representation (right) plotted against reg-
ularization strength for Color-dSprites and approaches (except
AnnealedVAE). The total correlation of the sampled representation
decreases while the total correlation of the mean representation
increases as the regularization strength is increased.
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of the mean representation is consistently low. This is not
surprising as the DIP-VAE-I objective directly optimizes the
covariance matrix of the mean representation to be diagonal
which implies that the corresponding total correlation (as
we measure it) is low. These findings are confirmed by our
detailed experimental results in Appendix I.2 (in particular
Figures 8-9) which considers all different data sets. Further-
more, we observe largely the same pattern if we consider the
average mutual information between different dimension
of the representation instead of the total correlation (see
Figures 27-28 in Appendix J).

Implications. Overall, these results lead us to conclude
with minor exceptions that the considered methods are effec-
tive at enforcing an aggregated posterior whose individual
dimensions are not correlated but that this does not seem
to imply that the dimensions of the mean representation
(usually used for representation) are uncorrelated.

(A) (B) (C) (D) (E) (F)

BetaVAE Score (A)

FactorVAE Score (B)

MIG (C)

DCI Disentanglement (D)

Modularity (E)

SAP (F)

100 80 44 41 46 37

80 100 49 52 25 38

44 49 100 76 6 42

41 52 76 100 -8 38

46 25 6 -8 100 13

37 38 42 38 13 100

Dataset = Noisy-dSprites

Figure 2. Rank correlation of different metrics on Noisy-dSprites.
Overall, we observe that all metrics except Modularity seem mildly
correlated with the pairs BetaVAE and FactorVAE, and MIG and
DCI Disentanglement strongly correlated with each other.

5.2. How much do the disentanglement metrics agree?

As there exists no single, common definition of disentangle-
ment, an interesting question is to see how much different
proposed metrics agree. Figure 2 shows the Spearman rank
correlation between different disentanglement metrics on
Noisy-dSprites whereas Figure 12 in Appendix I.3 shows the
correlation for all the different data sets. We observe that all
metrics except Modularity seem to be correlated strongly on
the data sets dSprites, Color-dSprites and Scream-dSprites
and mildly on the other data sets. There appear to be two
pairs among these metrics that capture particularly similar
notions: the BetaVAE and the FactorVAE score as well as
the MIG and DCI Disentanglement.

Implication. All disentanglement metrics except Modular-
ity appear to be correlated. However, the level of correlation
changes between different data sets.

5.3. How important are different models and
hyperparameters for disentanglement?

The primary motivation behind the considered methods is
that they should lead to improved disentanglement. This
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Figure 3. (left) FactorVAE score for each method on Cars3D.
Models are abbreviated (0=β-VAE, 1=FactorVAE, 2=β-TCVAE,
3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE). The variance is
due to different hyperparameters and random seeds. The scores are
heavily overlapping. (right) Distribution of FactorVAE scores for
FactorVAE model for different regularization strengths on Cars3D.
In this case, the variance is only due to the different random seeds.
We observe that randomness (in the form of different random
seeds) has a substantial impact on the attained result and that a
good run with a bad hyperparameter can beat a bad run with a
good hyperparameter.

raises the question how disentanglement is affected by the
model choice, the hyperparameter selection and randomness
(in the form of different random seeds). To investigate this,
we compute all the considered disentanglement metrics for
each of our trained models.

In Figure 3 (left), we show the range of attainable Factor-
VAE scores for each method on Cars3D. We observe that
these ranges are heavily overlapping for different models
leading us to (qualitatively) conclude that the choice of hy-
perparameters and the random seed seems to be substantially
more important than the choice of objective function. These
results are confirmed by the full experimental results on all
the data sets presented in Figure 13 of Appendix I.4: While
certain models seem to attain better maximum scores on
specific data sets and disentanglement metrics, we do not
observe any consistent pattern that one model is consistently
better than the other. At this point, we note that in our study
we have fixed the range of hyperparameters a priori to six
different values for each model and did not explore addi-
tional hyperparameters based on the results (as that would
bias our study). However, this also means that specific mod-
els may have performed better than in Figure 13 (left) if we
had chosen a different set of hyperparameters.

In Figure 3 (right), we further show the impact of random-
ness in the form of random seeds on the disentanglement
scores. Each violin plot shows the distribution of the Fac-
torVAE metric across all 50 trained FactorVAE models for
each hyperparameter setting on Cars3D. We clearly see that
randomness (in the form of different random seeds) has a
substantial impact on the attained result and that a good
run with a bad hyperparameter can beat a bad run with a
good hyperparameter in many cases. Again, these findings
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Figure 4. (left) FactorVAE score vs hyperparameters for each score on Cars3d. There seems to be no model dominating all the others
and for each model there does not seem to be a consistent strategy in choosing the regularization strength. (center) Unsupervised scores
vs disentanglement metrics on Shapes3D. Metrics are abbreviated ((A)=BetaVAE Score, (B)=FactorVAE Score, (C)=MIG , (D)=DCI
Disentanglement, (E)=Modularity, (F)=SAP). The unsupervised scores we consider do not seem to be useful for model selection. (right)
Rank-correlation of DCI disentanglement metric across different data sets. Good hyperparameters only seem to transfer between dSprites
and Color-dSprites but not in between the other data sets.

are consistent with the complete set of plots provided in
Figure 14 of Appendix I.4.

Finally, we perform a variance analysis by trying to predict
the different disentanglement scores using ordinary least
squares for each data set: If we allow the score to depend
only on the objective function (treated as a categorical vari-
able), we are only able to explain 37% of the variance of the
scores on average (see Table 5 in Appendix I.4 for further
details). Similarly, if the score depends on the Cartesian
product of objective function and regularization strength
(again categorical), we are able to explain 59% of the vari-
ance while the rest is due to the random seed.

Implication. The disentanglement scores of unsupervised
models are heavily influenced by randomness (in the form
of the random seed) and the choice of the hyperparameter
(in the form of the regularization strength). The objective
function appears to have less impact.

5.4. Are there reliable recipes for model selection?

In this section, we investigate how good hyperparameters
can be chosen and how we can distinguish between good
and bad training runs. In this paper, we advocate that that
model selection should not depend on the considered dis-
entanglement score for the following reasons: The point of
unsupervised learning of disentangled representation is that
there is no access to the labels as otherwise we could incor-
porate them and would have to compare to semi-supervised
and fully supervised methods. All the disentanglement met-
rics considered in this paper require a substantial amount
of ground-truth labels or the full generative model (for ex-
ample for the BetaVAE and the FactorVAE metric). Hence,
one may substantially bias the results of a study by tun-
ing hyperparameters based on (supervised) disentanglement
metrics. Furthermore, we argue that it is not sufficient to fix
a set of hyperparameters a priori and then show that one of
those hyperparameters and a specific random seed achieves
a good disentanglement score as it amounts to showing the

existence of a good model, but does not guide the practi-
tioner in finding it. Finally, in many practical settings, we
might not even have access to adequate labels as it may
be hard to identify the true underlying factor of variations,
in particular, if we consider data modalities that are less
suitable to human interpretation than images.

In the remainder of this section, we hence investigate and
assess different ways how hyperparameters and good model
runs could be chosen. In this study, we focus on choosing
the learning model and the regularization strength corre-
sponding to that loss function. However, we note that in
practice this problem is likely even harder as a practitioner
might also want to tune other modeling choices such archi-
tecture or optimizer.

General recipes for hyperparameter selection. We first
investigate whether we may find generally applicable “rules
of thumb” for choosing the hyperparameters. For this, we
plot in Figure 4 (left) the FactorVAE score against different
regularization strengths for each model on the Cars3D data
set whereas Figure 16 in Appendix I.5 shows the same plot
for all data sets and disentanglement metrics. The values
correspond to the median obtained values across 50 random
seeds for each model, hyperparameter and data set. Overall,
there seems to be no model consistently dominating all
the others and for each model there does not seem to be a
consistent strategy in choosing the regularization strength to
maximize disentanglement scores. Furthermore, even if we
could identify a good objective function and corresponding
hyperparameter value, we still could not distinguish between
a good and a bad training run.

Model selection based on unsupervised scores. Another
approach could be to select hyperparameters based on un-
supervised scores such as the reconstruction error, the KL
divergence between the prior and the approximate posterior,
the Evidence Lower BOund or the estimated total corre-
lation of the sampled representation (mean representation
gives similar results). This would have the advantage that
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Table 1. Probability of outperforming random model selection on a
different random seed. A random disentanglement metric and data
set is sampled and used for model selection. That model is then
compared to a randomly selected model: (i) on the same metric
and data set, (ii) on the same metric and a random different data
set, (iii) on a random different metric and the same data set, and
(iv) on a random different metric and a random different data set.
The results are averaged across 10 000 random draws.

Random data set Same data set

Random metric 54.9% 62.6%
Same metric 59.3% 80.7%

we could select specific trained models and not just good
hyperparameter settings whose median trained model would
perform well. To test whether such an approach is fruitful,
we compute the rank correlation between these unsuper-
vised metrics and the disentanglement metrics and present
it in Figure 4 (center) for Shapes3D and in Figure 16 of
Appendix I.5 for all the different data sets. While we do
observe some correlations, no clear pattern emerges which
leads us to conclude that this approach is unlikely to be
successful in practice.

Hyperparameter selection based on transfer. The final
strategy for hyperparameter selection that we consider is
based on transferring good settings across data sets. The
key idea is that good hyperparameter settings may be in-
ferred on data sets where we have labels available (such as
dSprites) and then applied to novel data sets. Figure 4 (right)
shows the rank correlations obtained between different data
sets for the DCI disentanglement (whereas Figure 17 in Ap-
pendix I.5 shows it for all data sets). We find a strong and
consistent correlation between dSprites and Color-dSprites.
While these results suggest that some transfer of hyper-
parameters is possible, it does not allow us to distinguish
between good and bad random seeds on the target data set.

To illustrate this, we compare such a transfer based approach
to hyperparameter selection to random model selection as
follows: First, we sample one of our 50 random seeds, a
random disentanglement metric and a data set and use them
to select the hyperparameter setting with the highest attained
score. Then, we compare that selected hyperparameter set-
ting to a randomly selected model on either the same or
a random different data set, based on either the same or a
random different metric and for a randomly sampled seed.
Finally, we report the percentage of trials in which this
transfer strategy outperforms or performs equally well as
random model selection across 10 000 trials in Table 1. If
we choose the same metric and the same data set (but a dif-
ferent random seed), we obtain a score of 80.7%. If we aim
to transfer for the same metric across data sets, we achieve
around 59.3%. Finally, if we transfer both across metrics
and data sets, our performance drops to 54.9%.
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Figure 5. Rank correlations between disentanglement metrics and
downstream performance (accuracy and efficiency) on dSprites.

Implications. Unsupervised model selection remains an un-
solved problem. Transfer of good hyperparameters between
metrics and data sets does not seem to work as there appears
to be no unsupervised way to distinguish between good and
bad random seeds on the target task.

5.5. Are these disentangled representations useful for
downstream tasks in terms of the sample
complexity of learning?

One of the key motivations behind disentangled rep-
resentations is that they are assumed to be useful for
later downstream tasks. In particular, it is argued that
disentanglement should lead to a better sample complexity
of learning (Bengio et al., 2013; Schölkopf et al., 2012;
Peters et al., 2017). In this section, we consider the simplest
downstream classification task where the goal is to recover
the true factors of variations from the learned representation
using either multi-class logistic regression (LR) or gradient
boosted trees (GBT).

Figure 5 shows the rank correlations between the disen-
tanglement metrics and the downstream performance on
dSprites. We observe that all metrics except Modularity
seem to be correlated with increased downstream perfor-
mance on the different variations of dSprites and to some
degree on Shapes3D but not on the other data sets. However,
it is not clear whether this is due to the fact that disentangled
representations perform better or whether some of these
scores actually also (partially) capture the informativeness
of the evaluated representation. Furthermore, the full results
in Figure 19 of Appendix I.6 indicate that the correlation is
weaker or inexistent on other data sets (e.g. Cars3D).

To assess the sample complexity argument we compute
for each trained model a statistical efficiency score which
we define as the average accuracy based on 100 samples
divided by the average accuracy based on 10 000 samples.
Figure 6 show the sample efficiency of learning (based on
GBT) versus the FactorVAE Score on dSprites. We do not
observe that higher disentanglement scores reliably lead to
a higher sample efficiency. This finding which appears to be
consistent with the results in Figures 20-23 of Appendix I.6.
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Figure 6. Statistical efficiency of the FactorVAE Score for learning
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Implications. While the empirical results in this section
are negative, they should also be interpreted with care.
After all, we have seen in previous sections that the
models considered in this study fail to reliably produce
disentangled representations. Hence, the results in this
section might change if one were to consider a different set
of models, for example semi-supervised or fully supervised
one. Furthermore, there are many more potential notions
of usefulness such as interpretability and fairness that
we have not considered in our experimental evaluation.
Nevertheless, we argue that the lack of concrete examples of
useful disentangled representations necessitates that future
work on disentanglement methods should make this point
more explicit. While prior work (Steenbrugge et al., 2018;
Laversanne-Finot et al., 2018; Nair et al., 2018; Higgins
et al., 2017b; 2018) successfully applied disentanglement
methods such as β-VAE on a variety of downstream tasks,
it is not clear to us that these approaches and trained models
performed well because of disentanglement.

6. Conclusions
In this work we first theoretically show that the unsupervised
learning of disentangled representations is fundamentally
impossible without inductive biases. We then performed
a large-scale empirical study with six state-of-the-art
disentanglement methods, six disentanglement metrics on
seven data sets and conclude the following: (i) A factorizing
aggregated posterior (which is sampled) does not seem to
necessarily imply that the dimensions in the representation
(which is taken to be the mean) are uncorrelated. (ii)
Random seeds and hyperparameters seem to matter more
than the model but tuning seem to require supervision. (iii)
We did not observe that increased disentanglement implies
a decreased sample complexity of learning downstream
tasks. Based on these findings, we suggest three main
directions for future research:

Inductive biases and implicit and explicit supervision.
Our theoretical impossibility result in Section 3 highlights
the need of inductive biases while our experimental
results indicate that the role of supervision is crucial. As
currently there does not seem to exist a reliable strategy
to choose hyperparameters in the unsupervised learning
of disentangled representations, we argue that future work
should make the role of inductive biases and implicit and
explicit supervision more explicit. We would encourage
and motivate future work on disentangled representation
learning that deviates from the static, purely unsupervised
setting considered in this work. Promising settings (that
have been explored to some degree) seem to be for example
(i) disentanglement learning with interactions (Thomas
et al., 2017), (ii) when weak forms of supervision e.g.
through grouping information are available (Bouchacourt
et al., 2018), or (iii) when temporal structure is available
for the learning problem. The last setting seems to be
particularly interesting given recent identifiability results
in non-linear ICA (Hyvarinen & Morioka, 2016).

Concrete practical benefits of disentangled representa-
tions. In our experiments we investigated whether higher
disentanglement scores lead to increased sample efficiency
for downstream tasks and did not find evidence that this
is the case. While these results only apply to the setting
and downstream task used in our study, we are also not
aware of other prior work that compellingly shows the
usefulness of disentangled representations. Hence, we
argue that future work should aim to show concrete benefits
of disentangled representations. Interpretability and fairness
as well as interactive settings seem to be particularly
promising candidates to evaluate usefulness. One potential
approach to include inductive biases, offer interpretability,
and generalization is the concept of independent causal
mechanisms and the framework of causal inference (Pearl,
2009; Peters et al., 2017).

Experimental setup and diversity of data sets. Our
study also highlights the need for a sound, robust, and
reproducible experimental setup on a diverse set of data sets
in order to draw valid conclusions. We have observed that
it is easy to draw spurious conclusions from experimental
results if one only considers a subset of methods, metrics
and data sets. Hence, we argue that it is crucial for future
work to perform experiments on a wide variety of data
sets to see whether conclusions and insights are generally
applicable. This is particularly important in the setting
of disentanglement learning as experiments are largely
performed on toy-like data sets. For this reason, we released
disentanglement_lib, the library we created to train
and evaluate the different disentanglement methods on
multiple data sets. We also released more than 10 000
trained models to provide a solid baseline for future
methods and metrics.



Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Acknowledgements
The authors thank Ilya Tolstikhin, Paul Rubenstein and Josip
Djolonga for helpful discussions and comments. This re-
search was partially supported by the Max Planck ETH
Center for Learning Systems and by an ETH core grant
(to Gunnar Rätsch). This work was partially done while
Francesco Locatello was at Google Research Zurich.

References
Arcones, M. A. and Gine, E. On the bootstrap of u and v

statistics. The Annals of Statistics, pp. 655–674, 1992.

Bach, F. R. and Jordan, M. I. Kernel independent component
analysis. Journal of machine learning research, 3(Jul):
1–48, 2002.

Bengio, Y., LeCun, Y., et al. Scaling learning algorithms
towards ai. Large-scale kernel machines, 34(5):1–41,
2007.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Bouchacourt, D., Tomioka, R., and Nowozin, S. Multi-level
variational autoencoder: Learning disentangled represen-
tations from grouped observations. In AAAI, 2018.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N.,
Desjardins, G., and Lerchner, A. Understanding disentan-
gling in beta-vae. In Workshop on Learning Disentangled
Representations at the 31st Conference on Neural Infor-
mation Processing Systems, 2017.

Chen, T. Q., Li, X., Grosse, R. B., and Duvenaud, D. K.
Isolating sources of disentanglement in variational autoen-
coders. In Advances in Neural Information Processing
Systems, pp. 2615–2625, 2018.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversar-
ial nets. In Advances in Neural Information Processing
Systems, pp. 2172–2180, 2016.

Cheung, B., Livezey, J. A., Bansal, A. K., and Olshausen,
B. A. Discovering hidden factors of variation in deep
networks. In Workshop at International Conference on
Learning Representations, 2015.

Cohen, T. and Welling, M. Learning the irreducible repre-
sentations of commutative lie groups. In International
Conference on Machine Learning, pp. 1755–1763, 2014.

Cohen, T. S. and Welling, M. Transformation properties of
learned visual representations. In International Confer-
ence on Learning Representations, 2015.

Comon, P. Independent component analysis, a new concept?
Signal processing, 36(3):287–314, 1994.

Denton, E. L. and Birodkar, v. Unsupervised learning of
disentangled representations from video. In Advances in
Neural Information Processing Systems, pp. 4414–4423,
2017.

Desjardins, G., Courville, A., and Bengio, Y. Disentan-
gling factors of variation via generative entangling. arXiv
preprint arXiv:1210.5474, 2012.

Eastwood, C. and Williams, C. K. I. A framework for the
quantitative evaluation of disentangled representations.
In International Conference on Learning Representations,
2018.

Fraccaro, M., Kamronn, S., Paquet, U., and Winther, O. A
disentangled recognition and nonlinear dynamics model
for unsupervised learning. In Advances in Neural Infor-
mation Processing Systems, pp. 3601–3610, 2017.

Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., and Ng, A. Y.
Measuring invariances in deep networks. In Advances
in neural information processing systems, pp. 646–654,
2009.

Goroshin, R., Mathieu, M. F., and LeCun, Y. Learning
to linearize under uncertainty. In Advances in Neural
Information Processing Systems, pp. 1234–1242, 2015.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. In International Conference on
Learning Representations, 2017a.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C.,
Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,
A. Darla: Improving zero-shot transfer in reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 1480–1490, 2017b.

Higgins, I., Sonnerat, N., Matthey, L., Pal, A., Burgess, C. P.,
Bošnjak, M., Shanahan, M., Botvinick, M., Hassabis, D.,
and Lerchner, A. Scan: Learning hierarchical composi-
tional visual concepts. In International Conference on
Learning Representations, 2018.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. Trans-
forming auto-encoders. In International Conference on
Artificial Neural Networks, pp. 44–51. Springer, 2011.



Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Hsu, W.-N., Zhang, Y., and Glass, J. Unsupervised learning
of disentangled and interpretable representations from
sequential data. In Advances in Neural Information Pro-
cessing Systems, pp. 1878–1889, 2017.

Hyvarinen, A. and Morioka, H. Unsupervised feature ex-
traction by time-contrastive learning and nonlinear ica.
In Advances in Neural Information Processing Systems,
pp. 3765–3773, 2016.

Hyvarinen, A. and Pajunen, P. Nonlinear independent com-
ponent analysis: Existence and uniqueness results. Neural
Networks, 12(3):429–439, 1999.

Hyvarinen, A., Sasaki, H., and Turner, R. E. Nonlinear
ica using auxiliary variables and generalized contrastive
learning. arXiv preprint arXiv:1805.08651, 2018.

Jutten, C. and Karhunen, J. Advances in nonlinear blind
source separation. In Proc. of the 4th Int. Symp. on Inde-
pendent Component Analysis and Blind Signal Separation
(ICA2003), pp. 245–256, 2003.

Karaletsos, T., Belongie, S., and Rätsch, G. Bayesian repre-
sentation learning with oracle constraints. arXiv preprint
arXiv:1506.05011, 2015.

Kim, H. and Mnih, A. Disentangling by factorising. In
Proceedings of the 35th International Conference on Ma-
chine Learning, pp. 2649–2658, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum,
J. Deep convolutional inverse graphics network. In
Advances in neural information processing systems, pp.
2539–2547, 2015.

Kumar, A., Sattigeri, P., and Balakrishnan, A. Variational
inference of disentangled latent concepts from unlabeled
observations. In International Conference on Learning
Representations, 2017.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and Brain Sciences, 40, 2017.

Laversanne-Finot, A., Pere, A., and Oudeyer, P.-Y. Curiosity
driven exploration of learned disentangled goal spaces.
In Conference on Robot Learning, pp. 487–504, 2018.

LeCun, Y., Huang, F. J., and Bottou, L. Learning methods
for generic object recognition with invariance to pose and
lighting. In Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Com-
puter Society Conference on, volume 2, pp. II–104. IEEE,
2004.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436, 2015.

Lenc, K. and Vedaldi, A. Understanding image representa-
tions by measuring their equivariance and equivalence. In
IEEE conference on computer vision and pattern recogni-
tion, pp. 991–999, 2015.

Locatello, F., Vincent, D., Tolstikhin, I., Rätsch, G., Gelly,
S., and Schölkopf, B. Competitive training of mixtures
of independent deep generative models. arXiv preprint
arXiv:1804.11130, 2018.

Mathieu, M. F., Zhao, J. J., Zhao, J., Ramesh, A., Sprech-
mann, P., and LeCun, Y. Disentangling factors of varia-
tion in deep representation using adversarial training. In
Advances in Neural Information Processing Systems, pp.
5040–5048, 2016.

Munch, E. The scream, 1893.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and
Levine, S. Visual reinforcement learning with imagined
goals. In Advances in Neural Information Processing
Systems, pp. 9209–9220, 2018.

Narayanaswamy, S., Paige, T. B., Van de Meent, J.-W.,
Desmaison, A., Goodman, N., Kohli, P., Wood, F., and
Torr, P. Learning disentangled representations with semi-
supervised deep generative models. In Advances in
Neural Information Processing Systems, pp. 5925–5935,
2017.

Nguyen, X., Wainwright, M. J., and Jordan, M. I. Estimating
divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information
Theory, 56(11):5847–5861, 2010.

Pearl, J. Causality. Cambridge university press, 2009.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. MIT
press, 2017.

Reed, S., Sohn, K., Zhang, Y., and Lee, H. Learning to
disentangle factors of variation with manifold interaction.
In International Conference on Machine Learning, pp.
1431–1439, 2014.

Reed, S. E., Zhang, Y., Zhang, Y., and Lee, H. Deep visual
analogy-making. In Advances in Neural Information
Processing Systems, pp. 1252–1260, 2015.



Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Ridgeway, K. and Mozer, M. C. Learning deep disentan-
gled embeddings with the f-statistic loss. In Advances
in Neural Information Processing Systems, pp. 185–194,
2018.

Rubenstein, P. K., Schoelkopf, B., and Tolstikhin, I. Learn-
ing disentangled representations with wasserstein auto-
encoders. In Workshop at International Conference on
Learning Representations, 2018.

Schmidhuber, J. Learning factorial codes by predictability
minimization. Neural Computation, 4(6):863–879, 1992.

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang,
K., and Mooij, J. On causal and anticausal learning.
In International Conference on Machine Learning, pp.
1255–1262, 2012.

Spirtes, P., Glymour, C., and Scheines, R. Causation, pre-
diction, and search. Springer-Verlag. (2nd edition MIT
Press 2000), 1993.

Steenbrugge, X., Leroux, S., Verbelen, T., and Dhoedt, B.
Improving generalization for abstract reasoning tasks us-
ing disentangled feature representations. In Workshop
on Relational Representation Learning at Conference on
Neural Information Processing Systems, 2018.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density-ratio
matching under the bregman divergence: a unified frame-
work of density-ratio estimation. Annals of the Institute
of Statistical Mathematics, 64(5):1009–1044, 2012.
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A. Proof of Theorem 1
Proof. To show the claim, we explicitly construct a family of functions f using a sequence of bijective functions. Let d > 1
be the dimensionality of the latent variable z and consider the function g : supp(z)→ [0, 1]d defined by

gi(v) = P (zi ≤ vi) ∀i = 1, 2, . . . , d.

Since P admits a density p(z) =
∏
i p(zi), the function g is bijective and, for almost every v ∈ supp(z), it holds that

∂gi(v)
∂vi

6= 0 for all i and ∂gi(v)
∂vj

= 0 for all i 6= j. Furthermore, it is easy to see that, by construction, g(z) is a independent
d-dimensional uniform distribution. Similarly, consider the function h : (0, 1]d → Rd defined by

hi(v) = ψ−1(vi) ∀i = 1, 2, . . . , d,

where ψ(·) denotes the cumulative density function of a standard normal distribution. Again, by definition, h is bijective
with ∂hi(v)

∂vi
6= 0 for all i and ∂hi(v)

∂vj
= 0 for all i 6= j. Furthermore, the random variable h(g(z)) is a d-dimensional standard

normal distribution.

Let A ∈ Rd×d be an arbitrary orthogonal matrix with Aij 6= 0 for all i = 1, 2, . . . , d and j = 1, 2, . . . , d. An infinite family
of such matrices can be constructed using a Householder transformation: Choose an arbitrary α ∈ (0, 0.5) and consider

the vector v with v1 =
√
α and vi =

√
1−α
d−1 for i = 2, 3, . . . , d. By construction, we have vTv = 1 and both vi 6= 0 and

vi 6=
√

1
2 for all i = 1, 2, . . . , d. Define the matrix A = Id − 2vvT and note that Aii = 1− 2v2i 6= 0 for all 1, 2, . . . , d as

well as Aij = −vivj 6= 0 for all i 6= j. Furthermore, A is orthogonal since

ATA =
(
Id − 2vvT

)T (
Id − 2vvT

)
= Id − 4vvT + 4v(vTv)vT = Id.

Since A is orthogonal, it is invertible and thus defines a bijective linear operator. The random variable Ah(g(z)) ∈ Rd is
hence an independent, multivariate standard normal distribution since the covariance matrix ATA is equal to Id.

Since h is bijective, it follows that h−1(Ah(g(z))) is an independent d-dimensional uniform distribution. Define the
function f : supp(z)→ supp(z)

f(u) = g−1(h−1(Ah(g(u))))

and note that by definition f(z) has the same marginal distribution as z under P , i.e., P (z ≤ u) = P (f(z) ≤ u) for all u.
Finally, for almost every u ∈ supp(z), it holds that

∂fi(u)

∂uj
=

Aij · ∂hj(g(u))
∂vj

· ∂gj(u)
∂uj

∂hi(h
−1
i (Ah(g(u)))

∂vi
· ∂gi(g

−1(h−1(Ah(g(u)))))
∂vi

6= 0,

as claimed. Since the choice of A was arbitrary, there exists an infinite family of such functions f .

B. Unsupervised learning of disentangled representations with VAEs
Variants of variational autoencoders (Kingma & Welling, 2014) are considered the state-of-the-art for unsupervised

disentanglement learning. One assumes a specific prior P (z) on the latent space and then parameterizes the conditional
probability P (x|z) with a deep neural network. Similarly, the distribution P (z|x) is approximated using a variational
distribution Q(z|x), again parametrized using a deep neural network. One can then derive the following approximation to
the maximum likelihood objective,

max
φ,θ

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))] (1)

which is also know as the evidence lower bound (ELBO). By carefully considering the KL term, one can encourage various
properties of the resulting presentation. We will briefly review the main approaches.
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Bottleneck capacity. Higgins et al. (2017a) propose the β-VAE, introducing a hyperparameter in front of the KL
regularizer of vanilla VAEs. They maximize the following expression:

Ep(x)[Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)‖p(z))]

By setting β > 1, the encoder distribution will be forced to better match the factorized unit Gaussian prior. This procedure
introduces additional constraints on the capacity of the latent bottleneck, encouraging the encoder to learn a disentangled
representation for the data. Burgess et al. (2017) argue that when the bottleneck has limited capacity, the network will be
forced to specialize on the factor of variation that most contributes to a small reconstruction error. Therefore, they propose to
progressively increase the bottleneck capacity, so that the encoder can focus on learning one factor of variation at the time:

Ep(x)[Eqφ(z|x)[log pθ(x|z)]− γ|DKL(qφ(z|x)‖p(z))− C|]

where C is annealed from zero to some value which is large enough to produce good reconstruction. In the following, we
refer to this model as AnnealedVAE.

Penalizing the total correlation. Let I(x; z) denote the mutual information between x and z and note that the second
term in equation 1 can be rewritten as

Ep(x)[DKL(qφ(z|x)‖p(z))] = I(x; z) +DKL(q(z)‖p(z)).

Therefore, when β > 1, β-VAE penalizes the mutual information between the latent representation and the data, thus
constraining the capacity of the latent space. Furthermore, it pushes q(z), the so called aggregated posterior, to match
the prior and therefore to factorize, given a factorized prior. Kim & Mnih (2018) argues that penalizing I(x; z) is neither
necessary nor desirable for disentanglement. The FactorVAE (Kim & Mnih, 2018) and the β-TCVAE (Chen et al., 2018)
augment the VAE objective with an additional regularizer that specifically penalizes dependencies between the dimensions
of the representation:

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− γDKL(q(z)‖
d∏
j=1

q(zj)).

This last term is also known as total correlation (Watanabe, 1960). The total correlation is intractable and vanilla Monte Carlo
approximations require marginalization over the training set. (Kim & Mnih, 2018) propose an estimate using the density
ratio trick (Nguyen et al., 2010; Sugiyama et al., 2012) (FactorVAE). Samples from

∏d
j=1 q(zj) can be obtained shuffling

samples from q(z) (Arcones & Gine, 1992). Concurrently, Chen et al. (2018) propose a tractable biased Monte-Carlo
estimate for the total correlation (β-TCVAE).

Disentangled priors. Kumar et al. (2017) argue that a disentangled generative model requires a disentangled prior. This
approach is related to the total correlation penalty, but now the aggregated posterior is pushed to match a factorized prior.
Therefore

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− λD(q(z)‖p(z)),

where D is some (arbitrary) divergence. Since this term is intractable when D is the KL divergence, they propose to match
the moments of these distribution. In particular, they regularize the deviation of either Covp(x)[µφ(x)] or Covqφ [z] from the
identity matrix in the two variants of the DIP-VAE. This results in maximizing either the DIP-VAE-I objective

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− λod
∑
i 6=j

[
Covp(x)[µφ(x)]

]2
ij
− λd

∑
i

([
Covp(x)[µφ(x)]

]
ii
− 1
)2

or the DIP-VAE-II objective

Ep(x)[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))]− λod
∑
i6=j

[
Covqφ [z]

]2
ij
− λd

∑
i

([
Covqφ [z]

]
ii
− 1
)2
.
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C. Implementation of metrics
All our metrics consider the expected representation of training samples (except total correlation for which we also consider
the sampled representation as described in Section 5).

BetaVAE metric. Higgins et al. (2017a) suggest to fix a random factor of variation in the underlying generative model and
to sample two mini batches of observations x. Disentanglement is then measured as the accuracy of a linear classifier that
predicts the index of the fixed factor based on the coordinate-wise sum of absolute differences between the representation
vectors in the two mini batches. We sample two batches of 64 points with a random factor fixed to a randomly sampled value
across the two batches and the others varying randomly. We compute the mean representations for these points and take the
absolute difference between pairs from the two batches. We then average these 64 values to form the features of a training (or
testing) point. We train a Scikit-learn logistic regression with default parameters on 10 000 points. We test on 5000 points.

FactorVAE metric Kim & Mnih (2018) address several issues with this metric by using a majority vote classifier that
predicts the index of the fixed ground-truth factor based on the index of the representation vector with the least variance.
First, we estimate the variance of each latent dimension by embedding 10 000 random samples from the data set and we
exclude collapsed dimensions with variance smaller than 0.05. Second, we generate the votes for the majority vote classifier
by sampling a batch of 64 points, all with a factor fixed to the same random value. Third, we compute the variance of each
dimension of their latent representation and divide by the variance of that dimension we computed on the data without
interventions. The training point for the majority vote classifier consists of the index of the dimension with the smallest
normalized variance. We train on 10 000 points and evaluate on 5000 points.

Mutual Information Gap. Chen et al. (2018) argue that the BetaVAE metric and the FactorVAE metric are neither general
nor unbiased as they depend on some hyperparameters. They compute the mutual information between each ground truth
factor and each dimension in the computed representation r(x). For each ground-truth factor zk, they then consider the two
dimensions in r(x) that have the highest and second highest mutual information with zk. The Mutual Information Gap (MIG)
is then defined as the average, normalized difference between the highest and second highest mutual information of each
factor with the dimensions of the representation. The original metric was proposed evaluating the sampled representation.
Instead, we consider the mean representation, in order to be consistent with the other metrics. We estimate the discrete
mutual information by binning each dimension of the representations obtained from 10 000 points into 20 bins. Then, the
score is computed as follows:

1

K

K∑
k=1

1

Hzk

(
I(vjk , zk)−max

j 6=jk
I(vj , zk)

)
Where zk is a factor of variation, vj is a dimension of the latent representation and jk = arg maxj I(vj , zk).

Modularity. Ridgeway & Mozer (2018) argue that two different properties of representations should be considered, i.e.,
Modularity and Explicitness. In a modular representation each dimension of r(x) depends on at most a single factor of
variation. In an explicit representation, the value of a factor of variation is easily predictable (i.e. with a linear model) from
r(x). They propose to measure the Modularity as the average normalized squared difference of the mutual information of
the factor of variations with the highest and second-highest mutual information with a dimension of r(x). They measure
Explicitness as the ROC-AUC of a one-versus-rest logistic regression classifier trained to predict the factors of variation. In
this study, we focus on Modularity as it is the property that corresponds to disentanglement. For the modularity score, we
sample 10 000 points for which we obtain the latent representations. We discretize these points into 20 bins and compute the
mutual information between representations and the values of the factors of variation. These values are stored in a matrix m.
For each dimension of the representation i, we compute a vector ti as:

ti,f =

{
θi if f = arg maxgmi,g

0 otherwise

where θi = maxgmig . The modularity score is the average over the dimensions of the representation of 1− δi where:

δi =

∑
f (mif − tif )2

θ2i (N − 1)

and N is the number of factors.
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DCI Disentanglement. Eastwood & Williams (2018) consider three properties of representations, i.e., Disentanglement,
Completeness and Informativeness. First, Eastwood & Williams (2018) compute the importance of each dimension of
the learned representation for predicting a factor of variation. The predictive importance of the dimensions of r(x) can
be computed with a Lasso or a Random Forest classifier. Disentanglement is the average of the difference from one of
the entropy of the probability that a dimension of the learned representation is useful for predicting a factor weighted by
the relative importance of each dimension. Completeness, is the average of the difference from one of the entropy of the
probability that a factor of variation is captured by a dimension of the learned representation. Finally, the Informativeness
can be computed as the prediction error of predicting the factors of variations. We sample 10 000 and 5000 training and
test points respectively. For each factor, we fit gradient boosted trees from Scikit-learn with the default setting. From
this model, we extract the importance weights for the feature dimensions. We take the absolute value of these weights
and use them to form the importance matrix R, whose rows correspond to factors and columns to the representation.
To compute the disentanglement score, we first subtract from 1 the entropy of each column of this matrix (we treat the
columns as a distribution by normalizing them). This gives a vector of length equal to the dimensionality of the latent space.
Then, we compute the relative importance of each dimension by ρi =

∑
j Rij/

∑
ij Rij and the disentanglement score as∑

i ρi(1−H(Ri)).

SAP score. Kumar et al. (2017) propose to compute the R2 score of the linear regression predicting the factor values from
each dimension of the learned representation. For discrete factors, they propose to train a classifier. The Separated Attribute
Predictability (SAP) score is the average difference of the prediction error of the two most predictive latent dimensions
for each factor. We sample 10 000 points for training and 5000 for testing. We then compute a score matrix containing
the prediction error on the test set for a linear SVM with C = 0.01 predicting the value of a factor from a single latent
dimension. The SAP score is computed as the average across factors of the difference between the top two most predictive
latent dimensions.

Downstream task. We sample training sets of different sizes: 10, 100, 1000 and 10 000 points. We always evaluate on
5000 samples. We consider as a downstream task the prediction of the values of each factor from r(x). For each factor
we fit a different model and report then report the average test accuracy across factors. We consider two different models.
First, we train a cross validated logistic regression from Scikit-learn with 10 different values for the regularization strength
(Cs = 10) and 5 folds. Finally, we train a gradient boosting classifier from Scikit-learn with default parameters.

Total correlation based on fitted Gaussian. We sample 10 000 points and obtain their latent representation r(x) by
either sampling from the encoder distribution of by taking its mean. We then compute the mean µr(x) and covariance matrix
Σr(x) of these points and compute the total correlation of a Gaussian with mean µr(x) and covariance matrix Σr(x), i.e.,

DKL

N (µr(x),Σr(x))
∥∥∥∏

j

N (µr(x)j ,Σr(x)jj )


where j indexes the dimensions in the latent space. We choose this approach for the following reasons: In this study, we
compute statistics of r(x) which can be either sampled from the probabilistic encoder or taken to be its mean. We argue that
estimating the total correlation as in (Kim & Mnih, 2018) is not suitable for this comparison as it consistently underestimate
the true value (see Figure 7 in (Kim & Mnih, 2018)) and depends on a non-convex optimization procedure (for fitting
the discriminator). The estimate of (Chen et al., 2018) is also not suitable as the mean representation is a deterministic
function for the data, therefore we cannot use the encoder distribution for the estimate. Furthermore, we argue that the total
correlation based on the fitted Gaussian provides a simple and robust way to detect if a representation is not factorizing
based on the first two moments. In particular, if it is high, it is a strong signal that the representation is not factorizing (while
a low score may not imply the opposite). We note that this procedure is similar to the penalty of DIP-VAE-I. Therefore, it is
not surprising that DIP-VAE-I achieves a low score for the mean representation.
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D. Experimental conditions and guiding principles.
In our study, we seek controlled, fair and reproducible experimental conditions. We consider the case in which we can

sample from a well defined and known ground-truth generative model by first sampling the factors of variations from a
distribution P (z) and then sampling an observation from P (x|z). Our experimental protocol works as follows: During
training, we only observe the samples of x obtained by marginalizing P (x|z) over P (z). After training, we obtain a
representation r(x) by either taking a sample from the probabilistic encoder Q(z|x) or by taking its mean. Typically,
disentanglement metrics consider the latter as the representation r(x). During the evaluation, we assume to have access to
the whole generative model, i.e. we can draw samples from both P (z) and P (x|z). In this way, we can perform interventions
on the latent factors as required by certain evaluation metrics. We explicitly note that we effectively consider the statistical
learning problem where we optimize the loss and the metrics on the known data generating distribution. As a result, we do
not use separate train and test sets but always take i.i.d. samples from the known ground-truth distribution. This is justified
as the statistical problem is well defined and it allows us to remove the additional complexity of dealing with overfitting and
empirical risk minimization.

E. Limitations of our study.
While we aim to provide a useful and fair experimental study, there are clear limitations to the conclusions that can be drawn
from it due to design choices that we have taken. In all these choices, we have aimed to capture what is considered the
state-of-the-art inductive bias in the community.

On the data set side, we only consider images with a heavy focus on synthetic images. We do not explore other modalities
and we only consider the toy scenario in which we have access to a data generative process with uniformly distributed
factors of variations. Furthermore, all our data sets have a small number of independent discrete factors of variations without
any confounding variables.

For the methods, we only consider the inductive bias of convolutional architectures. We do not test fully connected
architectures or additional techniques such as skip connections. Furthermore, we do not explore different activation
functions, reconstruction losses or different number of layers. We also do not vary any other hyperparameters other than the
regularization weight. In particular, we do not evaluate the role of different latent space sizes, optimizers and batch sizes.
We do not test the sample efficiency of the metrics but simply set the size of the train and test set to large values.

Implementing the different disentanglement methods and metrics has proven to be a difficult endeavour. Few “official” open
source implementations are available and there are many small details to consider. We take a best-effort approach to these
implementations and implemented all the methods and metrics from scratch as any sound machine learning practitioner
might do based on the original papers. When taking different implementation choices than the original papers, we explicitly
state and motivate them.

F. Differences with previous implementations.
As described above, we use a single choice of architecture, batch size and optimizer for all the methods which might deviate
from the settings considered in the original papers. However, we argue that unification of these choices is the only way to
guarantee a fair comparison among the different methods such that valid conclusions may be drawn in between methods.
The largest change is that for DIP-VAE and for β-TCVAE we used a batch size of 64 instead of 400 and 2048 respectively.
However, Chen et al. (2018) shows in Section H.2 of the Appendix that the bias in the mini-batch estimation of the total
correlation does not significantly affect the performances of their model even with small batch sizes. For DIP-VAE-II, we
did not implement the additional regularizer on the third order central moments since no implementation details are provided
and since this regularizer is only used on specific data sets.

Our implementations of the disentanglement metrics deviate from the implementations in the original papers as follows:
First, we strictly enforce that all factors of variations are treated as discrete variables as this corresponds to the assumed
ground-truth model in all our data sets. Hence, we used classification instead of regression for the SAP score and the
disentanglement score of (Eastwood & Williams, 2018). This is important as it does not make sense to use regression on
true factors of variations that are discrete (e.g., shape on dSprites). Second, wherever possible, we resorted to using the
default, well-tested Scikit-learn (Pedregosa et al., 2011) implementations instead of using custom implementations with
potentially hard to set hyperparameters. Third, for the Mutual Information Gap (Chen et al., 2018), we estimate the discrete
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Table 2. Encoder and Decoder architecture for the main experiment.

Encoder Decoder

Input: 64× 64× number of channels Input: R10

4× 4 conv, 32 ReLU, stride 2 FC, 256 ReLU
4× 4 conv, 32 ReLU, stride 2 FC, 4× 4× 64 ReLU
4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 64 ReLU, stride 2
4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 32 ReLU, stride 2
FC 256, F2 2× 10 4× 4 upconv, 32 ReLU, stride 2

4× 4 upconv, number of channels, stride 2

Table 3. Model’s hyperparameters. We allow a sweep over a single hyperparameter for each model.

Model Parameter Values

β-VAE β [1, 2, 4, 6, 8, 16]
AnnealedVAE cmax [5, 10, 25, 50, 75, 100]

iteration threshold 100000
γ 1000

FactorVAE γ [10, 20, 30, 40, 50, 100]
DIP-VAE-I λod [1, 2, 5, 10, 20, 50]

λd 10λod
DIP-VAE-II λod [1, 2, 5, 10, 20, 50]

λd λod
β-TCVAE β [1, 2, 4, 6, 8, 10]

mutual information (as opposed to continuous) on the mean representation (as opposed to sampled) on a subset of the
samples (as opposed to the whole data set). We argue that this is the correct choice as the mean is usually taken to be the
representation. Hence, it would be wrong to consider the full Gaussian encoder or samples thereof as that would correspond
to a different representation. Finally, we fix the number of sampled train and test points across all metrics to a large value to
ensure robustness.

G. Main experiment hyperparameters
In our study, we fix all hyperparameters except one per each model. Model specific hyperparameters can be found in Table 3.
The common architecture is depicted in Table 2 along with the other fixed hyperparameters in Table 4a. For the discriminator
in FactorVAE we use the architecture in Table 4b with hyperparameters in Table 4c. All the hyperparameters for which we
report single values were not varied and are selected based on the literature.

H. Data sets and preprocessing
All the data sets contains images with pixels between 0 and 1. Color-dSprites: Every time we sample a point, we also
sample a random scaling for each channel uniformly between 0.5 and 1. Noisy-dSprites: Every time we sample a point, we
fill the background with uniform noise. Scream-dSprites: Every time we sample a point, we sample a random 64 × 64
patch of The Scream painting. We then change the color distribution by adding a random uniform number to each channel
and divide the result by two. Then, we embed the dSprites shape by inverting the colors of each of its pixels.
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Table 4. Other fixed hyperparameters.

(a) Hyperparameters common to each of
the considered methods.

Parameter Values

Batch size 64
Latent space dimension 10
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0001
Decoder type Bernoulli
Training steps 300000

(b) Architecture for the discriminator in
FactorVAE.

Discriminator

FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 2

(c) Parameters for the discriminator in
FactorVAE.

Parameter Values

Batch size 64
Optimizer Adam
Adam: beta1 0.5
Adam: beta2 0.9
Adam: epsilon 1e-8
Adam: learning rate 0.0001

I. Detailed experimental results
Given the breadth of the experimental study, we summarized our key findings in Section 5 and presented figures that we
picked to be representative of our results. This section contains a self-contained presentation of all our experimental results.
In particular, we present a complete set of plots for the different methods, data sets and disentanglement metrics.

I.1. Can one achieve a good reconstruction error across data sets and models?

First, we check for each data set that we manage to train models that achieve reasonable reconstructions. Therefore, for each
data set we sample a random model and show real samples next to their reconstructions. The results are depicted in Figure 7.
As expected, the additional variants of dSprites with continuous noise variables are harder than the original data set. On
Noisy-dSprites and Color-dSprites the models produce reasonable reconstructions with the noise on Noisy-dSprites being
ignored. Scream-dSprites is even harder and we observe that the shape information is lost. On the other data sets, we observe
that reconstructions are blurry but objects are distinguishable. SmallNORB seems to be the most challenging data set.

I.2. Can current methods enforce a uncorrelated aggregated posterior and representation?

We investigate whether the considered unsupervised disentanglement approaches are effective at enforcing a factorizing
and thus uncorrelated aggregated posterior. For each trained model, we sample 10 000 images and compute a sample from
the corresponding approximate posterior. We then fit a multivariate Gaussian distribution over these 10 000 samples by
computing the empirical mean and covariance matrix. Finally, we compute the total correlation of the fitted Gaussian and
report the median value for each data set, method and hyperparameter value.

Figure 8 shows the total correlation of the sampled representation plotted against the regularization strength for each
data set and method except AnnealedVAE. On all data sets except SmallNORB, we observe that plain vanilla variational
autoencoders (i.e. the β-VAE model with β = 1) exhibit the highest total correlation. For β-VAE and β-TCVAE, it can be
clearly seen that the total correlation of the sampled representation decreases on all data sets as the regularization strength (in
the form of β) is increased. The two variants of DIP-VAE exhibit low total correlation across the data sets except DIP-VAE-I
which incurs a slightly higher total correlation on SmallNORB compared to a vanilla VAE. Increased regularization in the
DIP-VAE objective also seems to lead a reduced total correlation, even if the effect is not as pronounced as for β-VAE and
β-TCVAE. While FactorVAE achieves a low total correlation on all data sets except on SmallNORB, we observe that the
total correlation does not seem to decrease with increasing regularization strength. We further observe that AnnealedVAE
(shown in Figure 25) is much more sensitive to the regularization strength. However, on all data sets except Scream-dSprites
(on which AnnealedVAE performs poorly), the total correlation seems to decrease with increased regularization strength.

While many of the considered methods aim to enforce a factorizing aggregated posterior, they use the mean vector of the
Gaussian encoder as the representation and not a sample from the Gaussian encoder. This may seem like a minor, irrelevant
modification; however, it is not clear whether a factorizing aggregated posterior also ensures that the dimensions of the
mean representation are uncorrelated. To test whether this is true, we compute the mean of the Gaussian encoder for the
same 10 000 samples, fit a multivariate Gaussian and compute the total correlation of that fitted Gaussian. Figure 9 shows
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(a) DIP-VAE-I trained on dSprites. (b) β-VAE trained on Noisy-dSprites.

(c) FactorVAE trained on Color-dSprites. (d) FactorVAE trained on Scream-dSprites.

(e) AnneaeledVAE trained on Shapes3D. (f) β-TCVAE trained on SmallNORB.

(g) Reconstructions for a DIP-VAE-II trained on Cars3D.

Figure 7. Reconstructions for different data sets and methods. Odd columns show real samples and even columns their reconstruction. As
expected, the additional variants of dSprites with continuous noise variables are harder than the original data set. On Noisy-dSprites and
Color-dSprites the models produce reasonable reconstructions with the noise on Noisy-dSprites being ignored. Scream-dSprites is even
harder and we observe that the shape information is lost. On the other data sets, we observe that reconstructions are blurry but objects are
distinguishable.
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Figure 8. Total correlation of sampled representation plotted against regularization strength for different data sets and approaches (except
AnnealedVAE). The total correlation of the sampled representation decreases as the regularization strength is increased.
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Figure 9. Total correlation of mean representation plotted against regularization strength for different data sets and approaches (except
AnnealedVAE). The total correlation of the mean representation does not necessarily decrease as the regularization strength is increased.
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Figure 10. Log total correlation of mean vs sampled representations. For a large number of models, the total correlation of the mean
representation is higher than that of the sampled representation.

the total correlation of the mean representation plotted against the regularization strength for each data set and method
except AnnealedVAE. We observe that, for β-VAE and β-TCVAE, increased regularization leads to a substantially increased
total correlation of the mean representations. This effect can also be observed for for FactorVAE, albeit in a less extreme
fashion. For DIP-VAE-I, we observe that the total correlation of the mean representation is consistently low. This is not
surprising as the DIP-VAE-I objective directly optimizes the covariance matrix of the mean representation to be diagonal
which implies that the corresponding total correlation (as we compute it) is low. The DIP-VAE-II objective which enforces
the covariance matrix of the sampled representation to be diagonal seems to lead to a factorized mean representation on
some data sets (for example Shapes3D and Cars3d), but also seems to fail on others (dSprites). For AnnealedVAE (shown
in Figure 26), we overall observe mean representations with a very high total correlation. In Figure 10, we further plot
the log total correlations of the sampled representations versus the mean representations for each of the trained models.
It can be clearly seen that for a large number of models, the total correlation of the mean representations is much higher
than that of the sampled representations. The same trend can be seen computing the average discrete mutual information
of the representation. In this case, the DIP-VAE-I exhibit increasing mutual information in both the mean and sampled
representation. This is to be expected as DIP-VAE-I enforces a variance of one for the mean representation. We remark that
as the regularization terms and hyperparameter values are different for different losses, one should not draw conclusions
from comparing different models at nominally the same regularization strength. From these plots one can only compare the
effect of increasing the regularization in the different models.

Implications. Overall, these results lead us to conclude with minor exceptions that the considered methods are effective at
enforcing an aggregated posterior whose individual dimensions are not correlated but that this does not seem to imply that
the dimensions of the mean representation (usually used for representation) are uncorrelated.

I.3. How much do existing disentanglement metrics agree?

As there exists no single, common definition of disentanglement, an interesting question is to see how much different
proposed metrics agree. Figure 11 shows pairwise scatter plots of the different considered metrics on dSprites where
each point corresponds to a trained model, while Figure 12 shows the Spearman rank correlation between different
disentanglement metrics on different data sets. Overall, we observe that all metrics except Modularity seem to be correlated
strongly on the data sets dSprites, Color-dSprites and Scream-dSprites and mildly on the other data sets. There appear to be
two pairs among these metrics that capture particularly similar notions: the BetaVAE and the FactorVAE score as well as the
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Figure 11. Pairwise scatter plots of different disentanglement metrics on dSprites. All the metrics except Modularity appear to be
correlated. The strongest correlation seems to be between MIG and DCI Disentanglement.
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Figure 12. Rank correlation of different metrics on different data sets. Overall, we observe that all metrics except Modularity seem to be
strongly correlated on the data sets dSprites, Color-dSprites and Scream-dSprites and mildly on the other data sets. There appear to be
two pairs among these metrics that capture particularly similar notions: the BetaVAE and the FactorVAE score as well as the Mutual
Information Gap and DCI Disentanglement.

Mutual Information Gap and DCI Disentanglement.

Implication. All disentanglement metrics except Modularity appear to be correlated. However, the level of correlation
changes between different data sets.

I.4. How important are different models and hyperparameters for disentanglement?

The primary motivation behind the considered methods is that they should lead to improved disentanglement scores. This
raises the question how disentanglement is affected by the model choice, the hyperparameter selection and randomness (in
the form of different random seeds). To investigate this, we compute all the considered disentanglement metrics for each of
our trained models. In Figure 13, we show the range of attainable disentanglement scores for each method on each data
set. We observe that these ranges are heavily overlapping for different models leading us to (qualitatively) conclude that
the choice of hyperparameters and the random seed seems to be substantially more important than the choice of objective
function. While certain models seem to attain better maximum scores on specific data sets and disentanglement metrics,
we do not observe any consistent pattern that one model is consistently better than the other. Furthermore, we note that in
our study we have fixed the range of hyperparameters a priori to six different values for each model and did not explore
additional hyperparameters based on the results (as that would bias our study). However, this also means that specific
models may have performed better than in Figure 13 if we had chosen a different set of hyperparameters. In Figure 14, we
further show the impact of randomness in the form of random seeds on the disentanglement scores. Each violin plot shows
the distribution of the disentanglement metric across all 50 trained models for each model and hyperparameter setting on
Cars3D. We clearly see that randomness (in the form of different random seeds) has a substantial impact on the attained
result and that a good run with a bad hyperparameter can beat a bad run with a good hyperparameter in many cases.

Finally, we perform a variance analysis by trying to predict the different disentanglement scores using ordinary least squares
for each data set: If we allow the score to depend only on the objective function (categorical variable), we are only able to
explain 37% of the variance of the scores on average. Similarly, if the score depends on the Cartesian product of objective
function and regularization strength (again categorical), we are able to explain 59% of the variance while the rest is due
to the random seed. In Table 5, we report the percentage of variance explained for the different metrics in each data set
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Figure 13. Score for each method for each score (column) and data set (row). Models are abbreviated (0=β-VAE, 1=FactorVAE, 2=β-
TCVAE, 3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE). The scores are heavily overlapping and we do not observe a consistent pattern.
We conclude that hyperparameters matter more than the model choice.
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Figure 14. Distribution of scores for different models, hyperparameters and regularization strengths on Cars3D. We clearly see that
randomness (in the form of different random seeds) has a substantial impact on the attained result and that a good run with a bad
hyperparameter can beat a bad run with a good hyperparameter in many cases.
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Table 5. Variance of the disentanglement scores explained by the objective function or its cartesian product with the hyperparameters. The
variance explained is computed regressing using ordinary least squares.

(a) Percentage of variance explained regressing the disentanglement scores on the different data sets from the objective function only.

BetaVAE Score DCI Disentanglement FactorVAE Score MIG Modularity SAP

Cars3D 1% 36% 26% 34% 37% 13%
Color-dSprites 30% 39% 52% 26% 23% 29%
Noisy-dSprites 17% 21% 17% 11% 41% 6%
Scream-dSprites 89% 50% 76% 45% 60% 56%
Shapes3D 31% 21% 14% 20% 26% 10%
SmallNORB 68% 71% 58% 71% 62% 62%
dSprites 29% 41% 47% 26% 29% 31%

(b) Percentage of variance explained regressing the disentanglement scores on the different data sets from the Cartesian product of
objective function and regularization strength.

BetaVAE Score DCI Disentanglement FactorVAE Score MIG Modularity SAP

Cars3D 4% 69% 42% 59% 51% 17%
Color-dSprites 69% 80% 61% 76% 40% 56%
Noisy-dSprites 26% 42% 25% 29% 50% 20%
Scream-dSprites 93% 74% 83% 66% 68% 75%
Shapes3D 61% 78% 53% 59% 49% 35%
SmallNORB 87% 89% 81% 88% 72% 82%
dSprites 59% 77% 54% 72% 39% 56%

considering the regularization strength or not.

Implication. The disentanglement scores of unsupervised models are heavily influenced by randomness (in the form of
the random seed) and the choice of the hyperparameter (in the form of the regularization strength). The objective function
appears to have less impact.

I.5. Are there reliable recipes for model selection?

In this section, we investigate how good hyperparameters can be chosen and how we can distinguish between good and
bad training runs. In this paper, we advocate that model selection should not depend on the considered disentanglement
score for the following reasons: The point of unsupervised learning of disentangled representation is that there is no access
to the labels as otherwise we could incorporate them and would have to compare to semi-supervised and fully supervised
methods. All the disentanglement metrics considered in this paper require a substantial amount of ground-truth labels or the
full generative model (for example for the BetaVAE and the FactorVAE metric). Hence, one may substantially bias the
results of a study by tuning hyperparameters based on (supervised) disentanglement metrics. Furthermore, we argue that
it is not sufficient to fix a set of hyperparameters a priori and then show that one of those hyperparameters and a specific
random seed achieves a good disentanglement score as it amounts to showing the existence of a good model, but does not
guide the practitioner in finding it. Finally, in many practical settings, we might not even have access to adequate labels as it
may be hard to identify the true underlying factor of variations, in particular, if we consider data modalities that are less
suitable to human interpretation than images.

In the remainder of this section, we hence investigate and assess different ways how hyperparameters and good model runs
could be chosen. In this study, we focus on choosing the learning model and the regularization strength corresponding to
that loss function. However, we note that in practice this problem is likely even harder as a practitioner might also want to
tune other modeling choices such architecture or optimizer.

General recipes for hyperparameter selection. We first investigate whether we may find generally applicable “rules of
thumb” for choosing the hyperparameters. For this, we plot in Figure 15 different disentanglement metrics against different
regularization strengths for each model and each data set. The values correspond to the median obtained values across
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Table 6. Probability of outperforming random model selection on a different random seed. A random disentanglement metric and data set
is sampled and used for model selection. That model is then compared to a randomly selected model: (i) on the same metric and data set,
(ii) on the same metric and a random different data set, (iii) on a random different metric and the same data set, and (iv) on a random
different metric and a random different data set. The results are averaged across 10 000 random draws.

Random different data set Same data set

Random different metric 54.9% 62.6%
Same metric 59.3% 80.7%

50 random seeds for each model, hyperparameter and data set. There seems to be no model dominating all the others
and for each model there does not seem to be a consistent strategy in choosing the regularization strength to maximize
disentanglement scores. Furthermore, even if we could identify a good objective function and corresponding hyperparameter
value, we still could not distinguish between a good and a bad training run.

Model selection based on unsupervised scores. Another approach could be to select hyperparameters based on unsu-
pervised scores such as the reconstruction error, the KL divergence between the prior and the approximate posterior, the
Evidence Lower Bound or the estimated total correlation of the sampled representation. This would have the advantage
that we could select specific trained models and not just good hyperparameter settings whose median trained model would
perform well. To test whether such an approach is fruitful, we compute the rank correlation between these unsupervised
metrics and the disentanglement metrics and present it in Figure 16. While we do observe some correlations, no clear pattern
emerges which leads us to conclude that this approach is unlikely to be successful in practice.

Hyperparameter selection based on transfer. The final strategy for hyperparameter selection that we consider is based
on transferring good settings across data sets. The key idea is that good hyperparameter settings may be inferred on data sets
where we have labels available (such as dSprites) and then applied to novel data sets. To test this idea, we plot in Figure 18
the different disentanglement scores obtained on dSprites against the scores obtained on other data sets. To ensure robustness
of the results, we again consider the median across all 50 runs for each model, regularization strength, and data set. We
observe that the scores on Color-dSprites seem to be strongly correlated with the scores obtained on the regular version of
dSprites. Figure 17 further shows the rank correlations obtained between different data sets for each disentanglement scores.
This confirms the strong and consistent correlation between dSprites and Color-dSprites. While these result suggest that
some transfer of hyperparameters is possible, it does not allow us to distinguish between good and bad random seeds on the
target data set.

To illustrate this, we compare such a transfer based approach to hyperparameter selection to random model selection as
follows: We first randomly sample one of our 50 random seeds and consider the set of trained models with that random seed.
First, we sample one of our 50 random seeds, a random disentanglement metric and a data set and use them to select the
hyperparameter setting with the highest attained score. Then, we compare that selected hyperparameter setting to a randomly
selected model on either the same or a random different data set, based on either the same or a random different metric
and for a randomly sampled seed. Finally, we report the percentage of trials in which this transfer strategy outperforms or
performs equally well as random model selection across 10 000 trials in Table 6. If we choose the same metric and the same
data set (but a different random seed), we obtain a score of 80.7%. If we aim to transfer for the same metric across data sets,
we achieve around 59.3%. Finally, if we transfer both across metrics and data sets, our performance drops to 54.9%.

Implications. Unsupervised model selection remains an unsolved problem. Transfer of good hyperparameters between
metrics and data sets does not seem to work as there appears to be no unsupervised way to distinguish between good and
bad random seeds on the target task.

I.6. Are these disentangled representations useful for downstream tasks in terms of the sample complexity of
learning?

One of the key motivations behind disentangled representations is that they are assumed to be useful for later downstream
tasks. In particular, it is argued that disentanglement should lead to a better sample complexity of learning (Bengio et al.,
2013; Schölkopf et al., 2012; Peters et al., 2017). In this section, we consider the simplest downstream classification task
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Figure 15. Score vs hyperparameters for each score (column) and data set (row). There seems to be no model dominating all the others
and for each model there does not seem to be a consistent strategy in choosing the regularization strength.
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Figure 16. Rank correlation between unsupervised scores and supervised disentanglement metrics. The unsupervised scores we consider
do not seem to be useful for model selection.
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Figure 17. Rank-correlation of different disentanglement metrics across different data sets. Good hyperparameters only seem to transfer
between dSprites and Color-dSprites but not in between the other data sets.
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Figure 18. Disentanglement scores on dSprites vs other data sets. Good hyperparameters only seem to transfer consistently from dSprites
to Color-dSprites.
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Figure 19. Rank-correlation between the metrics and the performance on downstream task on different data sets. We observe some
correlation between most disentanglement metrics and downstream performance. However, the correlation varies across data sets.

where the goal is to recover the true factors of variations from the learned representation using either multi-class logistic
regression (LR) or gradient boosted trees (GBT). Our goal is to investigate the relationship between disentanglement and the
average classification accuracy on these downstream tasks as well as whether better disentanglement leads to a decreased
sample complexity of learning.

To compute the classification accuracy for each trained model, we sample true factors of variations and observations from
our ground truth generative models. We then feed the observations into our trained model and take the mean of the Gaussian
encoder as the representations. Finally, we predict each of the ground-truth factors based on the representations with a
separate learning algorithm. We consider both a 5-fold cross-validated multi-class logistic regression as well as gradient
boosted trees of the Scikit-learn package. For each of these methods, we train on 10, 100, 1000 and 10 000 samples. We
compute the average accuracy across all factors of variation using an additional set 10 000 randomly drawn samples.

Figure 19 shows the rank correlations between the disentanglement metrics and the downstream performance for all
considered data sets. We observe that all metrics except Modularity seem to be correlated with increased downstream
performance on the different variations of dSprites and to some degree on Shapes3D. However, it is not clear whether this is
due to the fact that disentangled representations perform better or whether some of these scores actually also (partially)
capture the informativeness of the evaluated representation. Furthermore, the correlation is weaker or inexistent on other data
sets (e.g., Cars3D). Finally, we report in Figure 24 the rank correlation between unsupervised scores computed after training
on the mean and sampled representation and downstream performance. Depending on the data set, the rank correlation
ranges from from mildly negative, to mildly positive. In particular, we do not observe enough evidence supporting the claim
that decreased total correlation of the aggregate posterior proves beneficial for downstream task performance.

To assess the sample complexity argument we compute for each trained model a statistical efficiency score which we define
as the average accuracy based on 100 samples divided by the average accuracy based on 10 000 samples for either the logistic
regression or the gradient boosted trees. The key idea is that if disentangled representations lead to sample efficiency, then
they should also exhibit a higher statistical efficiency score. We remark that this score differs from the definition of sample
complexity commonly used in statistical learning theory. The corresponding results are shown in Figures 20 and 21 where
we plot the statistical efficiency versus different disentanglement metrics for different data sets and models and in Figure 19
where we show rank correlations. Overall, we do not observe conclusive evidence that models with higher disentanglement
scores also lead to higher statistical efficiency. We note that some AnnealedVAE models seem to exhibit a high statistical
efficiency on Scream-dSprites and to some degree on Noisy-dSprites. This can be explained by the fact that these models
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Figure 20. Statistical efficiency (accuracy with 100 samples ÷ accuracy with 10 000 samples) based on a logistic regression versus
disentanglement metrics for different models and data sets. We do not observe that higher disentanglement scores lead to higher statistical
efficiency.
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Figure 21. Statistical efficiency (accuracy with 100 samples ÷ accuracy with 10 000 samples) based on gradient boosted trees versus
disentanglement metrics for different models and data sets. We do not observe that higher disentanglement scores lead to higher statistical
efficiency (except for DCI Disentanglement and Mutual Information Gap on Shapes3D and to some extend in Cars3D).
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Figure 22. Downstream performance for three groups with increasing DCI Disentanglement scores.

have low downstream performance and that hence the accuracy with 100 samples is similar to the accuracy with 10 000
samples. We further observe that DCI Disentanglement and MIG seem to be lead to a better statistical efficiency on the
the data set Shapes3D for gradient boosted trees. Figures 22 and 23 show the downstream performance for three groups
with increasing levels of disentanglement (measured in DCI Disentanglement and MIG respectively). We observe that
indeed models with higher disentanglement scores seem to exhibit better performance for gradient boosted trees with 100
samples. However, considering all data sets, it appears that overall increased disentanglement is rather correlated with better
downstream performance (on some data sets) and not statistical efficiency. We do not observe that higher disentanglement
scores reliably lead to a higher sample efficiency.

Implications. While the empirical results in this section are negative, they should also be interpreted with care. After all,
we have seen in previous sections that the models considered in this study fail to reliably produce disentangled representations.
Hence, the results in this section might change if one were to consider a different set of models, for example semi-supervised
or fully supervised one. Furthermore, there are many more potential notions of usefulness such as interpretability and
fairness that we have not considered in our experimental evaluation. Nevertheless, we argue that the lack of concrete
examples of useful disentangled representations necessitates that future work on disentanglement methods should make this
point more explicit. While prior work (Steenbrugge et al., 2018; Laversanne-Finot et al., 2018; Nair et al., 2018; Higgins
et al., 2017b; 2018) successfully applied disentanglement methods such as β-VAE on a variety of downstream tasks, it is not
clear to us that these approaches and trained models performed well because of disentanglement.
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Figure 23. Downstream performance for three groups with increasing MIG scores.
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Figure 24. Rank correlation between unsupervised scores and downstream performance.
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J. Additional Figures
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Figure 25. Total correlation of sampled representation plotted against regularization strength for different data sets and approaches
(including AnnealedVAE).
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Figure 26. Total correlation of mean representation plotted against regularization strength for different data sets and approaches (including
AnnealedVAE).
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Figure 27. The average mutual information of the dimensions of the sampled representation generally decrease except for DIP-VAE-I.
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Figure 28. The average mutual information of the dimensions of the mean representation generally increase.


