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Abstract
We present a Bayesian view of counterfactual
risk minimization (CRM) for offline learning
from logged bandit feedback. Using PAC-
Bayesian analysis, we derive a new generaliza-
tion bound for the truncated inverse propensity
score estimator. We apply the bound to a class
of Bayesian policies, which motivates a novel,
potentially data-dependent, regularization tech-
nique for CRM. Experimental results indicate
that this technique outperforms standard L2 reg-
ularization, and that it is competitive with vari-
ance regularization while being both simpler to
implement and more computationally efficient.

1. Introduction
In industrial applications of machine learning, model de-
velopment is typically an iterative process, involving mul-
tiple trials of offline training and online experimentation.
For example, a content streaming service might explore
various recommendation strategies in a series of A/B tests.
The data that is generated by this process—e.g., impres-
sion and interaction logs—can be used to augment training
data and further refine a model. However, learning from
logged interactions poses two fundamental challenges: (1)
the feedback obtained from interaction is always incom-
plete, since one only observes responses (usually referred
to as rewards) for actions that were taken; (2) the distribu-
tion of observations is inherently biased by the policy that
determined which action to take in each context.

This problem of learning from logged data has been stud-
ied under various names by various authors (Strehl et al.,
2010; Dudı́k et al., 2011; Bottou et al., 2013; Swaminathan
and Joachims, 2015a). We adopt the moniker counterfac-
tual risk minimization (CRM), introduced by Swaminathan
and Joachims (2015a), though it is also known as offline
policy optimization in the reinforcement learning literature.
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The goal of CRM is to learn a policy from data that was
logged by a previous policy so as to maximize expected
reward (alternatively, minimize risk) over draws of future
contexts. Using an analysis based on Bennett’s inequality,
Swaminathan and Joachims derived an upper bound on the
risk of a stochastic policy,1 which motivated learning with
variance-based regularization.

In this work, we study CRM from a Bayesian perspective,
in which one’s uncertainty over actions becomes uncer-
tainty over hypotheses. We view a stochastic policy as a
distribution over hypotheses, each of which is a mapping
from contexts to actions. Our work bridges the gap be-
tween CRM, which has until now been approached from
the frequentist perspective, and Bayesian methods, which
are often used to balance exploration and exploitation in
contextual bandit problems (Chapelle and Li, 2011).

Using a PAC-Bayesian analysis, we prove an upper bound
on the risk of a Bayesian policy trained on logged data. We
then apply this bound to a class of Bayesian policies based
on the mixed logit model. This analysis suggests an in-
tuitive regularization strategy for Bayesian CRM based on
the L2 distance from the logging policy’s parameters. Our
logging policy regularization (LPR) is effectively similar
to variance regularization, but simpler to implement and
more computationally efficient. We derive two Bayesian
CRM objectives based on LPR, one of which is convex.
We also consider the scenario in which the logging policy
is unknown. In this case, we propose a two-step procedure
to learn the logging policy, and then use the learned param-
eters to regularize training a new policy. We prove a cor-
responding risk bound for this setting using a distribution-
dependent prior.

We end with an empirical study of our theoretical results.
First, we show that LPR outperforms standard L2 regular-
ization whenever the logging policy is better than a uniform
distribution. Second, we show that LPR is competitive with
variance regularization, and even outperforms it on certain
problems. Finally, we demonstrate that it is indeed possible
to learn the logging policy for LPR with negligible impact
on performance. These findings establish LPR as a simple,
effective method for Bayesian CRM.

1In a similar vein, Strehl et al. (2010) proved a lower bound
on the expected reward of a deterministic policy.
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Note: All proofs are deferred to the supplemental material.

2. Preliminaries
Let X denote a set of contexts, and A denote a finite set of
k discrete actions. We are interested in finding a stochas-
tic policy, π : X → ∆k, which maps X to the probabil-
ity simplex on k vertices, denoted ∆k; in other words, π
defines a conditional probability distribution over actions
given contexts, from which we can sample actions. For a
given context, x ∈ X , we denote the conditional distribu-
tion on A by π(x), and the probability mass of a particular
action, a ∈ A, by π(a |x).

Each action is associated with a stochastic, contextual re-
ward, given by an unknown function, ρ : X × A → [0, 1],
which we assume is bounded. When an action is played
in response to a context, we only observe the reward for
said action. This type of incomplete feedback is commonly
referred to as bandit feedback. We assume a stationary dis-
tribution, D, over contexts and reward functions. Our goal
will be to find a policy that maximizes the expected reward
over draws of (x, ρ) ∼ D and a ∼ π(x); or, put differently,
one that minimizes the risk,

R(π) , 1− E
(x,ρ)∼D

E
a∼π(x)

[ρ(x, a)] .

We assume that we have access to a dataset of logged ob-
servations (i.e., examples), S , (xi, ai, pi, ri)

n
i=1, where

(xi, ρ) were sampled from D; action ai was sampled with
probability pi , π0(ai |xi) from a fixed logging policy,
π0; and reward ri , ρ(xi, ai) was observed. The distri-
bution of S, which we denote by (D × π0)n, is biased by
the logging policy, since we only observe rewards for ac-
tions that were sampled from its distribution. Nonetheless,
if π0 has full support, we can obtain an unbiased estimate of
R(π) by scaling each reward by its inverse propensity score
(IPS) (Rosenbaum and Rubin, 1983), p−1

i , which yields the
IPS estimator,

R̂(π, S) , 1− 1

n

n∑
i=1

ri
π(ai |xi)

pi
.

Unfortunately, IPS can have very high variance. This is-
sue can be mitigated by truncating (or clipping) pi to the
interval [τ, 1] (as proposed in (Strehl et al., 2010)), yielding

R̂τ (π, S) , 1− 1

n

n∑
i=1

ri
π(ai |xi)

max{pi, τ}
,

which we will sometimes refer to as the empirical risk.
This estimator reduces variance, at the cost of adding bias.
However, since max{pi, τ} ≥ pi, we have that R̂τ (π, S) ≥
R̂(π, S), which implies

E
S∼(D×π0)n

[
R̂τ (π, S)

]
≥ E
S∼(D×π0)n

[
R̂(π, S)

]
= R(π).

Thus, if R̂τ (π, S) concentrates, then by minimizing it, we
minimize a probabilistic upper bound on the risk.
Remark 1. There are other estimators we can consider. For
instance, we could truncate the ratio of the policy and the
logging policy, min{π(ai |xi)/pi, τ−1} (Ionides, 2008;
Swaminathan and Joachims, 2015a). However, this form
of truncation is incompatible with our subsequent analy-
sis because the policy is inside the min operator. Avoid-
ing truncation altogether, we could use the self-normalizing
estimator (Swaminathan and Joachims, 2015b), but this is
also incompatible, since the estimator does not decompose
as a sum of i.i.d. random variables. Finally, we note that our
theory does apply, with small modifications, to the doubly-
robust estimator (Dudı́k et al., 2011).

2.1. Counterfactual Risk Minimization

Our work is heavily influenced by Swaminathan and
Joachims (2015a), who coined the term counterfactual risk
minimization (CRM) to refer to the problem of learning a
policy from logged bandit feedback by minimizing an up-
per bound on the risk. Their bound is a function of the
truncated2 IPS estimator, the sample variance of the trun-
cated IPS-weighted rewards under the policy, V̂τ (π, S), and
a measure of the complexity, C : Π → R+, of the class of
policies being considered, Π ⊆ {π : X → ∆k}.

R(π) ≤ R̂τ (π, S) + O

(√
V̂τ (π,S) C(Π)

n + C(Π)
n

)
. (1)

When V̂τ (π, S) is sufficiently small, the bound’s dominat-
ing term is O(n−1), which is the so-called “fast” learning
rate. This motivates a variance-regularized learning objec-
tive,

arg minπ∈Π R̂τ (π, S) + λ

√
V̂τ (π,S)

n , (2)

for a regularization parameter, λ > 0. Swami-
nathan and Joachims propose a majorization-minimization
algorithm—named policy optimization for exponential
models (POEM)—to solve this optimization.

3. PAC-Bayesian Analysis
In this work, we view CRM from a Bayesian perspec-
tive. We consider stochastic policies whose action distri-
butions are induced by distributions over hypotheses. In-
stead of sampling directly from a distribution on the action
set, we sample from a distribution on a hypothesis space,
H ⊆ {h : X → A}, in which each element is a deter-
ministic mapping from contexts to actions.3 As such, for a
distribution, Q, on H, the probability of an action, a ∈ A,

2Though Swaminathan and Joachims used a different form of
truncation, their results nonetheless hold for our truncation.

3This view of stochastic policies was also used by Seldin et al.
(2011) to analyze contextual bandits with PAC-Bayes.
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given a context, x ∈ X , is the probability that a random
hypothesis, h ∼ Q, maps x to a; that is,

πQ(a |x) , Pr
h∼Q
{h(x) = a} = E

h∼Q
[1{h(x) = a}] . (3)

Usually, the hypothesis space consists of functions of a cer-
tain parametric form, so the distribution is actually over the
parameter values. We analyze one such class in Section 4.

To analyze Bayesian policies, we use the PAC-Bayesian
framework (also known as simply PAC-Bayes) . The PAC-
Bayesian learning paradigm proceeds as follows: first, we
fix a hypothesis space,H, and a prior distribution, P, onH;
then, we receive some data, S, drawn from a fixed distribu-
tion; given S, we learn a posterior, Q, on H, from which
we can sample hypotheses to classify new instances. In our
PAC-Bayesian formulation of CRM, the learned posterior
becomes our stochastic policy (Equation 3). Given a con-
text, x ∈ X , we sample an action by sampling h ∼ Q
(independent of x) and returning h(x). (In PAC-Bayesian
terminology, this procedure is called the Gibbs classifier.)
Remark 2. Instead of sampling actions via a posterior over
hypotheses, we could equivalently sample policies from
a posterior over policies, {π : X → ∆k}, then sample
actions from said policies. The Bayesian policy would
then be the expected policy, π̄Q(a |x) , Eπ∼Q[π(a |x)].
That said, it is more traditional in PAC-Bayes—and per-
haps more flexible—to think in terms of the Gibbs classi-
fier, which directly maps contexts to actions.

It is important to note that the choice of prior can-
not depend on the training data; however, the prior
can generate the data. Indeed, we can generate S
by sampling (xi, ρ) ∼ D, h ∼ P and logging
(xi, h(xi), π0(h(xi) |xi), ρ(xi, h(xi))), for i = 1, . . . , n.
Thus, in the PAC-Bayesian formulation of CRM, the prior
can be the logging policy. We elaborate on this in Section 4.

3.1. Risk Bounds

The heart of our analysis is an application of the PAC-
Bayesian theorem—a generalization bound for Bayesian
learning—to upper-bound the risk. The particular PAC-
Bayesian bound we use is by McAllester (2003). Omitting
details (in the interest of space), the bound states that, for
any fixed prior, P onH, with probability at least 1− δ over
draws of the data, S, all posteriors, Q, onH, satisfy

R(Q) ≤ R̂(Q, S)+Õ

(√
R̂(Q, S)DKL(Q‖P)

n
+
DKL(Q‖P)

n

)
.

where R(Q) and R̂(Q, S) are the risk and empirical risk,
respectively. The hallmark of a PAC-Bayesian bound is the
KL divergence from the prior to the posterior. This can
be interpreted as a complexity measure, similar to the VC

dimension, covering number or Rademacher complexity
(Mohri et al., 2012). The divergence penalizes posteriors
that stray from the prior, effectively penalizing overfitting.

One attractive property of McAllester’s bound is that, if the
empirical risk is sufficiently small, then the generalization
error, R(Q) − R̂(Q, S), is O(n−1). Thus, the bound cap-
tures both realizable and non-realizable learning problems.

To apply the PAC-Bayesian theorem to CRM, we design
a loss function that allows us to state the risk of a policy
in terms of the risk of the Gibbs classifier. This yields the
following risk bound.
Theorem 1. Let H ⊆ {h : X → A} denote a hypothesis
space mapping contexts to actions. For any n ≥ 1, δ ∈
(0, 1), τ ∈ (0, 1) and fixed prior, P, on H, with probability
at least 1− δ over draws of S ∼ (D× π0)n, the following
holds simultaneously for all posteriors, Q, onH:

R(πQ) ≤ R̂τ (πQ, S)

+

√
2
(
R̂τ (πQ, S)− 1 + 1

τ

) (
DKL(Q‖P) + ln n

δ

)
τ (n− 1)

+
2
(
DKL(Q‖P) + ln n

δ

)
τ (n− 1)

. (4)

It is important to note that the truncated IPS estimator, R̂τ ,
can be negative, achieving its minimum at 1 − τ−1. This
means that when R̂τ is minimized, the middle O(n−1/2)
term disappears and the O(n−1) term dominates the bound,
yielding the “fast” learning rate. That said, our bound may
not be as tight as Swaminathan and Joachims’ (Equation 1),
since the variance is sometimes smaller than the mean. To
achieve a similar rate, we could perhaps use Seldin et al.’s
(2012) PAC-Bayesian Bernstein bound.

Though Theorem 1 assumes that the truncation param-
eter, τ , is fixed a priori, we can derive a risk bound
(given in the supplemental material) that holds for all τ
simultaneously—meaning, τ can be data-dependent, such
as the 10th percentile of the logged propensities.

Theorem 1 has an intriguing interpretation when the prior
is defined as the logging policy. In this case, one can min-
imize an upper bound on the risk by minimizing the em-
pirical risk while keeping the learned policy close to the
logging policy. We explore this idea, and its relationship to
variance regularization, in the next section.

4. Mixed Logit Models
We will apply our PAC-Bayesian analysis to the following
class of stochastic policies. We first define a hypothesis
space, H , {hw,γ : w ∈ Rd, γ ∈ Rk}, of functions of the
form

hw,γ(x) , arg max
a∈A

w · φ(x, a) + γa, (5)
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where φ(x, a) ∈ Rd outputs features of the context and ac-
tion, subject to supx∈X ,a∈A ‖φ(x, a)‖ ≤ B. If each γa is
sampled from a standard Gumbel distribution, Gum(0, 1)
(location 0, scale 1), then hw,γ(x) produces a sample from
a softmax model,

ςw(a |x) ,
exp(w · φ(x, a))∑

a′∈A exp(w · φ(x, a′))
. (6)

Further, if w is normally distributed, then hw,γ(x) has a
logistic-normal distribution (Aitchison and Shen, 1980).

We define the posterior, Q, as a Gaussian over softmax
parameters, w ∼ N (µ, σ2I), for some learned µ ∈ Rd
and σ2 ∈ (0,∞), with standard Gumbel perturbations,
γ ∼ Gum(0, 1)k. As such, we have that

πQ(a |x) = E
w,γ

[1{hw,γ(x) = a}] = E
w∼N (µ,σ2I)

[ςw(a |x)] .

(7)
This model is alternately referred to as a mixed logit or ran-
dom parameter logit.

We can define the prior in any way that seems reasonable—
without access to training data, of course. In the absence of
any prior knowledge, a logical choice of prior is the stan-
dard (zero mean, unit variance) multivariate normal dis-
tribution, with standard Gumbel perturbations. This prior
corresponds to a Bayesian policy that takes uniformly ran-
dom actions, and motivates standardL2 regularization of µ.
However, we know that the data was generated by the log-
ging policy, and this knowledge motivates a different kind
of prior (hence, regularizer). If the logging policy performs
better than a uniform action distribution—which we can
verify empirically, using IPS with the logs—then it makes
sense to define the prior in terms of the logging policy.

Let us assume that the logging policy is known (we re-
lax this assumption in Section 5) and has a softmax form
(Equation 6), with parameters µ0 ∈ Rd. We define the
prior, P, as an isotropic Gaussian centered at the logging
policy’s parameters, w ∼ N (µ0, σ

2
0I), for some predeter-

mined σ2
0 ∈ (0,∞), with standard Gumbel perturbations,

γ ∼ Gum(0, 1)k. This prior encodes a belief that the log-
ging policy, while not perfect, is a good starting point. Us-
ing the logging policy to define the prior does not violate
the PAC-Bayes paradigm, since the logging policy is fixed
before generating the training data. The Bayesian policy
induced by this prior may not correspond to the actual log-
ging policy, but we can define the prior any way we want.
Remark 3. We used isotropic covariances for the prior and
posterior in order to simplify our analysis and presentation.
That said, it is possible to use more complex covariances.

4.1. Bounding the KL Divergence

The KL divergence between the above prior and posterior
constructions motivates an interesting regularizer for CRM.

To derive it, we upper-bound the KL divergence by a func-
tion of the model parameters.

Lemma 1. For distributions P , N (µ0, σ
2
0I) ×

Gum(0, 1)k and Q , N (µ, σ2I) × Gum(0, 1)k, with
µ0, µ ∈ Rd and 0 < σ2 ≤ σ2

0 <∞,

DKL(Q‖P) ≤
‖µ− µ0‖2

2σ2
0

+
d

2
ln
σ2

0

σ2
. (8)

One implication of Lemma 1, captured by the term
‖µ− µ0‖2, is that, to generalize, the learned policy’s pa-
rameters should stay close to the logging policy’s pa-
rameters. This intuition concurs with Swaminathan and
Joachims’s (2015a) variance regularization, since one way
to reduce the variance is to not stray too far from the log-
ging policy. It is also reminiscent of trust region policy op-
timization (Schulman et al., 2015), a reinforcement learn-
ing algorithm in which each update to the policy’s action
distribution is constrained to not diverge too much from
the current one.4 Implementing Lemma 1’s guideline in
practice requires a simple modification to the usual L2 reg-
ularization: instead of λ ‖µ‖2 (where λ > 0 controls the
amount of regularization), use λ ‖µ− µ0‖2. Of course,
this assumes that the logging policy’s parameters, µ0, are
known; we address the scenario in which the logging policy
is unknown in Section 5.

4.2. Approximating the Action Probabilities

In practice, computing the posterior action probabilities
(Equation 7) of a mixed logit model is difficult, since there
is no analytical expression for the mean of the logistic-
normal distribution (Aitchison and Shen, 1980). It is there-
fore difficult to log propensities, or to compute the IPS es-
timator, which is a function of the learned and logged prob-
abilities. Since it is easy to sample from a mixed logit, we
can use Monte Carlo methods to estimate the probabilities.
Alternatively, we can bound the probabilities by a function
of the mean parameters, µ.

Lemma 2. If supx∈X ,a∈A ‖φ(x, a)‖ ≤ B, then

ςµ(a |x) e−
σ2B2

2 ≤ πQ(a |x) ≤ ςµ(a |x) e2σ2B2

.

By Lemma 2, the softmax probabilities induced by the
mean parameters provide lower and upper bounds on the
probabilities of the mixed logit model. The bounds tighten
as the variance, σ2, becomes smaller. For instance, if
σ2 = O(n−1), then πQ(a |x)→ ςµ(a |x) as n→∞.

During learning, we can use the lower bound of the learned
probabilities to upper-bound the IPS estimator. We over-

4Interestingly, via Fenchel duality and Cauchy-Schwarz, a
bound like Equation 8 holds for the KL divergence between soft-
max action distributions: DKL(ςµ(x)‖ςµ0(x)) ≤ O(‖µ− µ0‖).
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load our previous notation to define a new estimator,

R̂τ (µ, σ2, S) , 1−
exp(−σ

2B2

2 )

n

n∑
i=1

ri
ςµ(ai |xi)

max{pi, τ}
.

This estimator is biased, but the bias decreases with σ2.
Importantly, R̂τ (µ, σ2, S) is easy to compute (assuming
the action set is not too large), since it avoids the logistic-
normal integral.

When the learned posterior is deployed, we can log the up-
per bound of the propensities, so that future training with
the logged data has an upper bound on the IPS estimator.

4.3. Bayesian CRM for Mixed Logit Models

We now present a risk bound for the Bayesian policy, πQ,
using the softmax policy, ςµ, on the mean parameters, µ.

Theorem 2. Let H denote the hypothesis space defined in
Equation 5, and let πQ denote the mixed logit policy de-
fined in Equation 7. For any n ≥ 1, δ ∈ (0, 1), τ ∈ (0, 1),
µ0 ∈ Rd and σ2

0 ∈ (0,∞), with probability at least 1 − δ
over draws of S ∼ (D×π0)n, the following holds simulta-
neously for all µ ∈ Rd and σ2 ∈ (0, σ2

0 ]:

R(πQ) ≤ R̂τ (µ, σ2, S)

+

√(
R̂τ (µ, σ2, S)− 1 + 1

τ

)(
Γ(µ0, σ2

0 , µ, σ
2) + 2 ln n

δ

)
τ (n− 1)

+
Γ(µ0, σ

2
0 , µ, σ

2) + 2 ln n
δ

τ (n− 1)
, (9)

where Γ(µ0, σ
2
0 , µ, σ

2) , ‖µ−µ0‖2

σ2
0

+ d ln
σ2
0

σ2 . (10)

Theorem 2 provides an upper bound on the risk that can be
computed with training data. Moreover, the bound is dif-
ferentiable and smooth, meaning it can be optimized using
gradient-based methods. This motivates a new regularized
learning objective for Bayesian CRM.

Proposition 1. The following optimization minimizes an
upper bound on Equation 9:

arg min
µ∈Rd, σ2∈(0,σ2

0 ]

R̂τ (µ, σ2, S)+
‖µ− µ0‖2

σ2
0 τ (n− 1)

− d lnσ2

τ (n− 1)
. (11)

Equation 11 is unfortunately non-convex. However, we can
upper-bound R̂τ (µ, σ2, S) to obtain an objective that is dif-
ferentiable, smooth and convex.

Proposition 2. The following convex optimization mini-
mizes an upper bound on Equation 9:

arg min
µ∈Rd

1

n

n∑
i=1

−ri ln ςµ(ai |xi)
max{pi, τ}

+
‖µ− µ0‖2

σ2
0 τ (n− 1)

, (12)

with σ2 , min
{

2d
B2τ(n−1)

(
1
n

∑n
i=1

ri
max{pi,τ}

)−1

, σ2
0

}
.

Conveniently, Equation 12 is equivalent to a weighted soft-
max regression with a modified L2 regularizer. This opti-
mization can be solved using standard methods, with guar-
anteed convergence to a global optimum. Moreover, by de-
coupling the optimizations of µ and σ2 in the upper bound
(refer to the proof for details), we can solve for the optimal
σ2 in closed form.

Equation 12 also has a connection to policy gradient meth-
ods (Sutton et al., 2000). We discuss this connection in the
supplemental material.

In practice, one usually tunes the amount of regulariza-
tion to optimize the empirical risk on a held-out validation
dataset. By Propositions 1 and 2, this is equivalent to tun-
ing the variance of the prior, σ2

0 . Though µ0 could in the-
ory be any fixed vector, the case when it is the parameters
of the logging policy corresponds to an interesting regu-
larizer. This regularizer instructs the learning algorithm to
keep the learned policy close to the logging policy, which
effectively reduces the variance of the estimator.

Using Theorem 2, we can examine how the parameters
σ2

0 and σ2 affect the bias-variance trade-off. Recall from
Lemma 2 that higher values of σ2 increase the bias of
the estimator, R̂τ (µ, σ2, S). To reduce this bias, we want
σ2 to be small; e.g., σ2 = Θ(n−1) results in negligi-
ble bias. However, if we also have σ2

0 = Θ(1), then
Γ(µ0, σ

2
0 , µ, σ

2)—which can be interpreted as the variance
of the estimator—has a term, d ln

σ2
0

σ2 = O(d lnn), that
depends linearly on the number of features, d. When d
is large, this term can dominate the risk bound. The de-
pendence on d is eliminated when σ2

0 = σ2; but if σ2
0 =

Θ(n−1), then Γ(µ0, σ
2
0 , µ, σ

2) = O(‖µ− µ0‖2 n), which
makes the risk bound vacuous.

5. When the Logging Policy Is Unknown
In Section 4, we assumed that the logging policy was
known and used it to construct a prior. However, there may
be settings in which the logging policy is unknown. We can
nonetheless construct a prior that approximates the logging
policy by learning from its logged actions.

At first, this idea may sound counterintuitive. After all, the
prior is supposed to be fixed before drawing the training
data. However, the expected value of a function of the data
is constant with respect to any realization of the data. Thus,
the expected estimator of the logging policy is independent
of the data, and can serve as a valid prior. We then just need
to show that the estimator concentrates around its mean.
This type of analysis was introduced by Catoni (2007) and
later developed by Lever et al. (2010), among others.

Overloading our previous notation, let L : Rd ×X ×A →
R+ denote a loss function that measures the fit of param-
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eters w ∈ Rd, given context x ∈ X and action a ∈ A.
We will assume that L is both convex and β-Lipschitz with
respect to w. This assumption is satisfied by, e.g., the neg-
ative log-likelihood. For a dataset, S ∼ (D × π0)n, con-
taining logged contexts and actions, let

F (w, S) , 1
n

∑n
i=1 L(w, xi, ai) + λ ‖w‖2 (13)

denote a regularized objective; let

µ̂0(S) , arg minw∈Rd F (w, S) (14)

denote its minimizer; and let µ̄0 , ES∼(D×π0)n [µ̂0(S)]
denote the expected minimizer. Since µ̄0 is a constant, it
is independent of any realization of S. We can therefore
construct a Gaussian prior around µ̄0, which makes the KL
divergence proportional to ‖µ− µ̄0‖2.

Since F is strongly convex, its minimizer exhibits uniform
algorithmic stability; meaning, it is robust to perturbations
of the training data. Due to this property, the random vari-
able µ̂0(S) concentrates around its mean, µ̄0 (Liu et al.,
2017). Thus, with high probability, ‖µ̂0(S)− µ̄0‖ is small,
and ‖µ− µ̄0‖ is approximately ‖µ− µ̂0(S)‖.
Theorem 3. Let H denote the hypothesis space defined in
Equation 5, and let πQ denote the mixed logit policy defined
in Equation 7. Let µ̂0(S) denote the minimizer defined in
Equation 14, for a convex, β-Lipschitz loss function. For
any n ≥ 1, δ ∈ (0, 1), τ ∈ (0, 1) and σ2

0 ∈ (0,∞), with
probability at least 1− δ over draws of S ∼ (D×π0)n, the
following holds for all µ ∈ Rd and σ2 ∈ (0, σ2

0 ]:

R(πQ) ≤ R̂τ (µ, σ2, S)

+

√(
R̂τ (µ, σ2, S)− 1 + 1

τ

)(
Γ̂(µ̂0(S), σ2

0 , µ, σ
2) + 2 ln 2n

δ

)
τ (n− 1)

+
Γ̂(µ̂0(S), σ2

0 , µ, σ
2) + 2 ln 2n

δ

τ (n− 1)
, (15)

where

Γ̂(µ̂0(S), σ2
0 , µ, σ

2) ,

(
‖µ− µ̂0(S)‖ + β

λ

√
2 ln 4

δ
n

)2
σ2
0

+d ln
σ2
0

σ2
.

It is straightforward to show that Propositions 1 and 2
hold for Theorem 3 with µ0 , µ̂0(S), which motivates a
two-step learning procedure for Bayesian CRM: (1) using
logged data, S, but ignoring rewards, solve Equation 14 to
estimate softmax parameters, µ̂0(S), that approximate the
logging policy; (2) using S again, including the rewards,
solve Equation 11 or 12, with µ0 , µ̂0(S), to train a new
mixed logit policy.
Remark 4. Throughout, we have assumed that the logged
data includes the propensities, which enable IPS weighting.
Given that we can learn to approximate the logging policy,
it seems natural to use the learned propensities in the ab-
sence of the true propensities. In practice, this may work,
though we do not provide any formal guarantees for it.

6. Experiments
Our Bayesian analysis of CRM suggests a new regulariza-
tion technique, which we will henceforth refer to as log-
ging policy regularization (LPR). Using the logging policy
to construct a prior, we regularize by the squared distance
between the (learned) logging policy’s softmax parameters,
µ0, and the posterior mean, µ, over softmax parameters. In
this section, we empirically verify the following claims: (1)
LPR outperforms standard L2 regularization whenever the
logging policy outperforms a uniform action distribution;
(2) LPR is competitive with variance regularization (i.e.,
POEM), and is also faster to optimize; (3) when the log-
ging policy is unknown, we can estimate it from logged
data, then use the estimator in LPR with little deterioration
in performance.

We will use the class of mixed logit models from Section 4.
For simplicity, we choose to only optimize the posterior
mean, µ, assuming that the posterior variance, σ2, is fixed
to some small value, e.g., n−1. This is inconsequential,
since we will approximate the posterior action probabil-
ities, πQ(a |x), with a softmax of the mean parameters,
ςµ(a |x). By Lemma 2, with small σ2, this is a reasonable
approximation. In a small departure from our analysis, we
add an unregularized bias term for each action.

We evaluate two methods based on LPR. The first method,
inspired by Proposition 1, combines LPR with the trun-
cated IPS estimator:

arg min
µ∈Rd

R̂τ (ςµ, S) + λ ‖µ− µ0‖2 , (16)

where τ ∈ (0, 1) and λ ≥ 0 are free parameters. We
call this method IPS-LPR. The second method, inspired by
Proposition 1, is a convex upper bound:

arg min
µ∈Rd

1

n

n∑
i=1

−ri ln ςµ(ai |xi)
max{pi, τ}

+ λ ‖µ− µ0‖2 . (17)

Since the first term is essentially a weighted negative log-
likelihood, we call this method WNLL-LPR.

We compare the above methods to several baselines. The
first baseline is IPS with standard L2 regularization, which
essentially replaces ‖µ− µ0‖2 with ‖µ‖2 in Equation 16.
We call this baseline IPS-L2. The second baseline is
POEM (Swaminathan and Joachims, 2015a), which solves
the variance regularized objective in Equation 2 (with Π
as the class of softmax policies with parameters µ ∈ Rd)
using a majorization-minimization algorithm. We also test
a variant of POEM that adds L2 regularization, which we
refer to as POEM-L2.

All methods require some form of IPS truncation. For IPS-
L2, IPS-LPR and WNLL-LPR, we use max{pi, τ}−1; for
POEM and POEM-L2, we use min{π(ai |xi)/pi, τ−1},
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per Swaminathan and Joachims’s original formulation. In
all experiments, we set τ , 0.01.

Since all methods support stochastic first-order optimiza-
tion, we use AdaGrad (Duchi et al., 2011) with mini-
batches of 100 examples. We set the learning rate to 0.1
and the smoothing parameter to one, which we find nec-
essary for numerical stability. Unless otherwise stated, we
run training for 500 epochs, with random shuffling of the
training data at each epoch. All model parameters are ini-
tialized to zero, and all runs of training are seeded such that
every method receives the same sequence of examples.

We report results on two benchmark image classification
datasets: Fashion-MNIST (Xiao et al., 2017) and CIFAR-
100 (Krizhevsky and Hinton, 2009). Fashion-MNIST con-
sists of 70,000 (60,000 training; 10,000 testing) grayscale
images from 10 categories of apparel and accessories. We
extract features from each image by normalizing pixel in-
tensities to [0, 1] and flattening the (28 × 28)-pixel grid to
a 784-dimensional vector. CIFAR-100 consists of 60,000
(50,000 training; 10,000 testing) color images from 100
general object categories. As this data is typically modeled
with deep convolutional neural networks, we use transfer
learning to extract features expressive enough to yield de-
cent performance with the class of log-linear models de-
scribed in Section 4. Specifically, we use the last hidden
layer of a pre-trained ResNet-50 network (He et al., 2016),
which was trained on ImageNet (Deng et al., 2009), to out-
put 2048-dimensional features for CIFAR-100.

Following prior work, we use a standard supervised-
to-bandit conversion to simulate logged bandit feedback
(Beygelzimer and Langford, 2009). We start by randomly
sampling 1,000 training examples (without replacement) to
train a softmax logging policy using supervised learning.
We then use the logging policy to sample a label (i.e., ac-
tion) for each remaining training example. The reward is
one if the sampled label matches the true label, and zero
otherwise. We repeat this procedure 10 times, using 10
random splits of the training data, to generate 10 datasets
of logged contexts, actions, propensities and rewards.

We compare methods along two metrics. Our primary
metric is the expected reward under the stochastic pol-
icy, Ea∼π(x)[ρ(x, a)], averaged over the testing data. Our
secondary metric—which is not directly supported by our
analysis, but is nonetheless of interest—is the reward of the
deterministic argmax policy, ρ(x, arg maxa∈A π(a |x)).

6.1. Logging Policy as Prior

We first investigate our claim that the logging policy is
a better prior than a standard normal distribution, thus
motivating LPR over L2 regularization. For each sim-
ulated log dataset, we train new policies using IPS-L2

(a) Varying the amount of regularization.

(b) Varying the quality of the logging policy.

Figure 1: L2 regularization vs. LPR. Each line is the average of
10 trials, with shading to indicate the 95% confidence interval.
Figure 1a plots the expected test reward as a function of λ. Fig-
ure 1b analyzes a spectrum of logging policies from the uniform
action distribution (ε = 0) to the trained distribution (ε = 1).

and IPS-LPR, with regularization parameter values λ =
10−6, 10−5, . . . , 1. Figure 1a plots the expected test re-
ward as a function of λ. The dotted black line indicates the
performance of the logging policy. We find that IPS-LPR
outperforms IPS-L2 for each value of λ; meaning, for any
amount of regularization, IPS-LPR is always better. Fur-
ther, while the performance of IPS-L2 degrades to that of a
uniform action distribution as we over-regularize, the per-
formance of IPS-LPR converges to that of the logging pol-
icy. This illustrates the natural intuition that a policy that
acts better than random guessing is an informative prior.

An implication of this statement is that, as the logging pol-
icy’s action distribution becomes more uniform, its efficacy
as a prior should diminish. To verify this, we construct a
sequence of logging policies that interpolate between the
above logging policy and the uniform distribution, by mul-
tiplying the weights by an inverse-temperature parameter,
ε = 0, 0.2, . . . , 1. We then generate log datasets for each
logging policy, and train new policies using IPS-L2 and
IPS-LPR, with λ , 0.001. As expected (see Figure 1b),
the performance of IPS-LPR gradually converges to that of
IPS-L2 as the logging policy converges to uniform.

One could also ask what happens when when the logging
policy is worse than a uniform distribution. Indeed, though
not shown here, we find that IPS-LPR performs worse than
IPS-L2 in that scenario. However, one could reasonably
argue that such a scenario is unlikely to occur in practice,
since there is no point to deploying a logging policy that
performs worse than a uniform distribution.
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6.2. Comparison to POEM

As discussed earlier, LPR relates to variance regulariza-
tion in that one way to minimize variance is to keep the
new policy close to the logging policy. We are therefore
prompted to investigate how LPR compares to variance
regularization (i.e., POEM) in practice. In this experiment,
our goal is to achieve the highest expected reward for each
method on each log dataset, without looking at the testing
data. Accordingly, we tune the regularization parameter,
λ, using 5-fold cross-validation on each log dataset, with
truncated IPS estimation of expected reward on the holdout
set. For simplicity, we use grid search over powers of ten;
λ = 10−8, . . . , 10−3 for LPR and λ = 10−3, . . . , 102 for
variance regularization. For POEM-L2, we tune theL2 reg-
ularization parameter (in the same range as LPR) by fixing
the variance regularization parameter to its optimal value.
During parameter tuning, we limit training to 100 epochs.
Once the parameter values have been selected, we train
a new policy on the entire log dataset for 500 (Fashion-
MNIST) or 1000 (CIFAR-100) epochs and evaluate it on
the testing data.

Table 1 reports the results of this experiment. For com-
pleteness, we include results for all proposed methods
and baselines, including the logging policy. On Fashion-
MNIST, the variance regularization baselines (POEM and
POEM-L2) achieve the highest expected reward, but the
LPR methods (IPS-LPR and WNLL-LPR) are competitive.
Indeed, the differences between these methods are not sta-
tistically significant according to a paired t-test with sig-
nificance threshold 0.05. Meanwhile, all four significantly
outperform IPS-L2 and the logging policy. Interestingly,
WNLL-LPR performs best in terms of the argmax policy,
perhaps owing to the fact that it is optimizing what is essen-
tially a classification loss. Indeed, in classification prob-
lems with bandit feedback and binary rewards, the first
term in Equation 17 is an unbiased estimator of the ex-
pected negative log-likelihood, which is a surrogate for the
expected misclassification rate of the argmax policy.

The CIFAR-100 data presents a more challenging learning
problem than Fashion-MNIST, since it has a much larger
action set, and several times as many features. It is per-
haps due to these difficulties that the baselines are unable
to match the performance of the logging policy—which,
despite being trained on far less data, is given full supervi-
sion. Meanwhile, both LPR methods outperform the log-
ging policy by wide margins. We believe this is due to the
fact that LPR is designed with incremental training in mind.
The new policy is encouraged to stay close to the logging
policy not just to hedge against overfitting, but also because
the logging policy is assumed to be a good starting point.

It is worth comparing the running times of POEM and
LPR. Recall that POEM is a majorization-minimization

Table 1: Test set rewards for Fashion-MNIST and CIFAR-100,
averaged over 10 trials, with 5-fold cross-validation of regulariza-
tion parameters at each trial.

Fashion-MNIST CIFAR-100
Method stoch. argmax stoch. argmax

Logging Policy 0.5123 0.7099 0.3770 0.4797

IPS-L2 0.7778 0.7890 0.3475 0.3624
POEM 0.8060 0.8124 0.3338 0.3392
POEM-L2 0.8050 0.8126 0.3486 0.3641

IPS-LPR 0.7955 0.8154 0.5553 0.6134
WNLL-LPR 0.7978 0.8305 0.6143 0.6272

IPS-LLPR 0.7950 0.8153 0.5455 0.6077
WNLL-LLPR 0.7978 0.8305 0.6143 0.6272

algorithm designed to enable stochastic optimization of a
variance-regularized objective. At each epoch of training,
POEM constructs an upper bound to the objective by pro-
cessing all examples in the training data. This additional
computation effectively doubles POEM’s time complexity
relative to the LPR methods, which only require one pass
over the data per epoch. On Fashion-MNIST, we find that
POEM is on average 25% slower than IPS-LPR.

6.3. Learning the Logging Policy

Per Section 5, when the logging policy is unknown, we can
estimate its softmax parameters, µ0, then use the estimate,
µ̂0(S), in LPR. We now verify this claim empirically on
Fashion-MNIST. Using the log datasets from the previous
sections, we learn the logging policy with the regularized
negative log-likelihood, L(w, x, a) , − ln ςw(a |x). We
optimize this objective using 100 epochs of AdaGrad, with
the same settings as the other experiments. We set the regu-
larization parameter aggressively high, λ , 0.01, to ensure
that the learned distribution does not become too peaked.
Given µ̂0(S) for each log dataset, we then train new poli-
cies using IPS-LPR and WNLL-LPR, with the same λ val-
ues tuned in Section 6.2. The results of this experiment
are given in the bottom section of Table 1, as methods IPS-
LLPR and WNLL-LLPR (for learned LPR). The rewards
are nearly identical to those when the logging policy is
known, thus demonstrating that LPR does not require the
actual logging policy in order to be effective.

7. Conclusion
We have presented a PAC-Bayesian analysis of counter-
factual risk minimization, for learning Bayesian policies
from logged bandit feedback. We applied our risk bound
to a class of mixed logit policies, from which we derived
two Bayesian CRM objectives based on logging policy reg-
ularization. Our empirical study indicated that LPR can
achieve significant improvements over existing methods.
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