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Abstract

Most structure inference methods either rely on
exhaustive search or are purely data-driven. Ex-
haustive search robustly infers the structure of
arbitrarily complex data, but it is slow. Data-
driven methods allow efficient inference, but do
not generalize when test data have more complex
structures than training data. In this paper, we pro-
pose a hybrid inference algorithm, the Neurally-
Guided Structure Inference (NG-SI), keeping the
advantages of both search-based and data-driven
methods. The key idea of NG-SI is to use a neu-
ral network to guide the hierarchical, layer-wise
search over the compositional space of structures.
We evaluate our algorithm on two representative
structure inference tasks: probabilistic matrix de-
composition and symbolic program parsing. It
outperforms data-driven and search-based alterna-
tives on both tasks.

1. Introduction
At the heart of human intelligence is the ability to infer the
structural representation of data. Looking at hand-written
digits from the MNIST dataset (LeCun et al., 1998), we
humans effortlessly group them by digits and extract key
features such as angles and thickness of strokes. Throughout
the years, researchers have developed many practically use-
ful compositional structures. A non-exhaustive list includes
low-rank factorization (Mnih & Salakhutdinov, 2008), clus-
tering, co-clustering (Kemp et al., 2006), binary latent fac-
tors (Ghahramani & Griffiths, 2006), sparse coding (Ol-
shausen & Field, 1996; Berkes et al., 2008), and dependent
GSM (Karklin & Lewicki, 2009).
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An emerging research topic is to discover appropriate struc-
tures from data automatically (Kemp & Tenenbaum, 2008;
Grosse et al., 2012). These methods are motivated by a
key observation: structures can be expressed as hierarchical
compositions of primitive components. Given the set of
primitives and the production rules for composition (a.k.a. a
domain-specific language), they use various inference algo-
rithms to find the appropriate structure.

These inference algorithms can be roughly divided into two
categories: search-based and data-driven. Search-based al-
gorithms (Figure 1a) look for the best structure by an exhaus-
tive search over the compositional space of possible struc-
tures. Candidate structures are ranked by expert-designed
metrics. Such search routines are robust in inferring struc-
tures of arbitrary complexity, but they can be prohibitively
slow for complex structures.

By contrast, data-driven algorithms (Figure 1b) learn to in-
fer structures based on annotated data. Among them, deep
neural networks enable efficient amortized inference: by
learning from past inferences, future inferences run faster.
Nevertheless, data-driven methods tend to overfit to train-
ing examples and fail to generalize to test data with more
complex structures.

In this paper, we propose the Neurally-Guided Structure
Inference (NG-SI, see Figure 1c), a hybrid inference algo-
rithm that integrates the advantages of both search-based
and data-driven approaches. In particular, it uses a neural
network learning to guide a hierarchical, layer-wise search
process. For each layer, the neural guider outputs a proba-
bility distribution over all possible production rules that can
be applied. Based on this ranking, only a small number of
rules are evaluated. This remarkably reduces the number of
nodes in the search tree.

We evaluate NG-SI on two representative structure inference
tasks: probabilistic matrix decomposition and symbolic pro-
gram parsing. It outperforms data-driven and search-based
alternatives in both inference robustness and efficiency.

2. Structure Inference
In this section, we formally introduce the task of inferring
hierarchical structures from data.

http://ngsi.csail.mit.edu
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Figure 1. The illustrative flowcharts for (a) search-based algorithms, (b) data-driven algorithms, and (c) the proposed NG-SI. NG-SI uses
a neural network (a data-driven module) to guide a hierarchical, layer-wise search process. It outperforms search-based and data-driven
alternatives in both inference robustness and efficiency.

2.1. Problem Formulation

We want to jointly infer the structure S and its associated
parameters T that best explain the observed data D. As a
motivating example, the collection of hand-written digits D
from the MNIST dataset can be clustered by their digits or
the thickness of their strokes; they form the parameter space
of T . The structure S here is “clustering”: MG+G, where
the M is a multinomial variable modeling the cluster labels,
and the G’s are Gaussian variables modeling the cluster
centers and the data noise. Here S and T form the structural
representation of D.

Simple structures can be hierarchically composed into a
more complex one. Figure 2 shows an illustrative inference
of the structure S = (MG + G)G + G from the data matrix
D (Grosse et al., 2012). The matrix has a low-rank struc-
ture in columns, while the first factorized component has a
finer structure of row clustering. We use a domain-specific
language (DSL) to represent the compositional space of pos-
sible structures {S}. Throughout this paper, we assume the
existence of a context-free grammar for the DSL. Beginning
from the start symbol, we can apply arbitrary production
rules over non-terminal symbols in any order to generate
syntactically correct structures. The terminal symbols in the
context-free grammar represent the primitive concepts in
the domain, such as cluster labels or centers.

2.2. Prior Work

The history of structure inference dates back to Vitanyi &
Li (1997), where researchers discussed representing data as
(program, input) pairs. Below, we discuss recent progress
on structure inference. Existing methods mostly fall into
two categories: search-based and data-driven.

Search-based structure inference. Search-based algo-
rithms (Figure 1a) infer the structure of data with an ex-
haustive search over the compositional space of possible
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Figure 2. An example of the hierarchical matrix decomposition.

structures. The compositional space for structures is defined
by domain experts. Kemp & Tenenbaum (2008) composed a
graph where the edges represent the dependencies between
data entries. Grosse et al. (2012) proposed a context-free
grammar for probabilistic matrix decomposition. The gram-
mar is powerful enough to encompass a large collection of
Bayesian models for matrices: binary latent factors, depen-
dent GSM, etc. Off-the-shelf matrix decomposition algo-
rithms are used for data decomposition, while a posterior
marginal likelihood is used to rank candidate structures. It
also enables a hierarchical search process for structure infer-
ence, which significantly reduces the size of the searching
space. Duvenaud et al. (2013) defined a grammar for gen-
erating kernels for Gaussian process models, while Lloyd
et al. (2014) generated natural language descriptions of time
series data. These frameworks require an enumeration of
structures or production rules, followed by an evaluation
based on the input to rank candidate structures. Thus, they
are too slow in inferring complex structures on large-scale
data. In this paper, we tackle this issue by introducing a
data-driven module that learns to guide the hierarchical,
layer-wise search process.

The search-based inference is usually performed in a recur-
sive way (Grosse et al., 2012; Kemp & Tenenbaum, 2008).
An illustrative example is shown in Figure 2. First, the
algorithm expands the start symbol of the grammar with
all available production rules; it then decomposes the in-
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put data into multiple components, where each component
corresponds to one symbol in each of the production rules
(e.g., performs low-rank factorization on the original matrix).
These components can be further recursively decomposed
(e.g., performs clustering on the first component matrix).
An expert-designed metric is applied to rank all candidate
structures after each expansion. In practice, only top-ranked
candidate structures are further expanded. Such algorithms
are robust w.r.t. the complexity of the structures, but are
slow for large-scale data.

Data-driven structure inference. Data-driven algo-
rithms (Figure 1b) infer the structure of data by learning
from annotated data. Deep neural networks enable efficient
amortized inference: after learning from past inferences,
they can efficiently recognize similar structures for test data.
Structure inference on sequential data includes sequence
labelling, assigning categorical labels (e.g., part-of-speech
tags) for each item in the sequence (Ma & Hovy, 2016), pars-
ing, generating graphical structures of input sequences such
as dependency trees (Yih et al., 2014; Chen & Manning,
2014), and sequence-to-sequence translation (Sutskever
et al., 2014), which has been further extended to sequence-
to-tree learning (Dong & Lapata, 2016) and tree-to-tree
learning (Chen et al., 2018b). This line of research has been
adapted to applications such as program synthesis (Parisotto
et al., 2017; Reed & De Freitas, 2016). As an represen-
tative example, sequence-to-sequence model (Sutskever
et al., 2014) generates the entire structure symbol by sym-
bol. However, the symbolic and compositional nature of
structures has brought a remarkable difficulty to data-driven
approaches: they tend to overfit to training examples and fail
to generalize to test data with more complex structures. For
example, in sequence encoding, recurrent networks easily
fail when tested on longer sequences. In general, data-driven
approaches are more efficient but less robust than search-
based alternatives.

Guided search. Data-driven models such as neural net-
works can be used to improve the efficiency of search-based
inference. Beneš et al. (2011) first implemented this idea in
procedural modeling, where the task is to reconstruct visual
data such as objects or textures using a set of generative
rules. In Beneš et al. (2011), external data-driven models
are used to improve the stability of the procedural modeling.
Similarly, Ritchie et al. (2016) proposed to embed neural
modules into the stochastic algorithm. The neural modules
are trained to maximize the likelihood of the outputs gen-
erated by sequential Monte Carlo. Menon et al. (2013) and
Devlin et al. (2017) proposed to use data-driven methods for
program induction. Many algorithms have been proposed
to improve the guided search by introducing type informa-
tion (Osera & Zdancewic, 2015), learning from multiple
demonstrations (Sun et al., 2018), using execution-guided
inference (Chen et al., 2019; Tian et al., 2019), predicting at-

Algorithm 1 Neurally-Guided Structure Inference
Function Infer(D, Type):

rule← SelectRule(D,Type)
for each non-terminal symbol s in rule do

Cs ← DecomposeData(D, rule, s)
Replace s in rule with Infer(Cs, s)

return rule

tributes of programs (Balog et al., 2017; Ellis et al., 2018b),
predicting sketches (Lezama, 2008), or inducing subrou-
tines from existing programs (Ellis et al., 2018a). The key
difference between our approach and prior works lies in our
exploitation of the compositionality in structure inference:
we use neural networks to amortize the per-layer inference
and keep the hierarchical search process. Each production
rule is associated with an expert-designed algorithm to de-
compose the data into multiple components, and the same
inference algorithm could be recursively applied to each
of the components. This helps the generalization of the
amortized inference.

3. Neurally-Guided Structure Inference
In this paper, we propose the Neurally-Guided Structure
Inference (NG-SI, see Figure 1c), a hybrid inference algo-
rithm that integrates the advantages of both search-based
and data-driven approaches. Algorithm 1 shows the pseu-
docode. The algorithm builds the hierarchical structure
by recursively choosing the production rule to expand a
non-terminal symbol. Meanwhile, a decomposition algo-
rithm, DecomposeData, decomposes the input data D
into several components ({Cs}), whose structure can be
recursively inferred by the Infer function. For simplicity,
in Algorithm 1, only one production rule is applied to a non-
terminal symbol (determined by SelectRule). One can
also extend this greedy algorithm to the beam search-based
inference or other variants.

We implement SelectRule as a neural network, namely,
the neural guider. The neural guider enables efficient amor-
tized inference at a layer level: it learns to predict the best
production rule for a non-terminal symbol in the structure.
By contrast, purely search-based approaches need to evalu-
ate all possible rules to select the best one.

We illustrate this idea by a running example of matrix de-
composition based on the DSL introduced by Grosse et al.
(2012). Consider the simple matrix shown in Figure 2. Note
that the matrix does not have a full column rank. Thus, at
the first step, the neural guider should select the “low-rank
factorization” rule and decompose the input data into two
components. Next, note that the first decomposed matrix
has a clustering structure: all row vectors can be grouped
around two centers. Thus, the neural guider should select the
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Low-rank G → GG+G

Clustering G → MG+G | GMT +G
M → MG+G

Markov chains G → CG+G | GCT +G

Gaussian scales G → exp(G) ◦G

Binary factors G → BG+G | GBT +G
B → BG+G

Misc. M → B

Table 1. Production rules in the context-free DSL for structure in-
ference. The left-most column indicates the type of the production
rules.

“clustering” rule at the second step. Such recursive inference
may continue for data with more complex structures.

Recursion lies at the core of NG-SI. First, recursion reduces
the infinitely compositional search space of structures to the
space of available production rules. It also ensures gener-
alization to arbitrarily complex data. Moreover, recursion
is a critical inductive bias for the data-driven neural guider.
The amortized inference happens at the layer level instead
of at the full structure level. This ensures efficient structure
inference while allowing combinatorial generalization.

Below, we demonstrate the advantages of our formulation
on two representative structure inference tasks: probabilistic
matrix decomposition (Section 4) and symbolic program
parsing (Section 5).

4. Study I: Matrix Decomposition
With the proliferation of structured probabilistic models
such as binary latent factors (Ghahramani & Griffiths, 2006)
and sparse coding (Olshausen & Field, 1996; Berkes et al.,
2008), people are getting more interested in the discovery of
structures from data. In this section, we revisit the problem
of structure inference for matrices (Grosse et al., 2012).

4.1. Problem Formulation

We formally introduce the DSL for structural matrix de-
composition via a motivating example. One of the sim-
plest structures—Bayesian clustering—can be written as
F = MG + G. Here, the symbol M stands for a multi-
nomial matrix, whose rows are sampled identically from a
multinomial distribution. This matrix M is multiplied by
a Gaussian matrix G, whose rows are identically sampled
from a Gaussian distribution. The conceptual meaning of
the structure MG+G could be interpreted as such: the row
vector of the matrix stands for a stochastic choice of the
cluster label, and the parameters of the multinomial distribu-
tion represent the probability of choosing each cluster. The
first Gaussian matrix represents the center of each cluster.
The last Gaussian matrix captures the i.i.d. Gaussian noise.

Other types of matrices in the DSL include C (time-series
Cumulative matrices) and B (Binomial matrices).

Grosse et al. (2012) proposed a context-free grammar to
describe the structures of data matrices. Table 1 shows all
production rules in the grammar. The inference always starts
from a single symbol G, i.e., assuming all of the data items
in the matrix to be i.i.d. Gaussian.

4.2. Method

The search-based algorithm Grosse et al. (2012) requires
evaluating all possible rules and ranking them with a proper
metric to choose the one to be applied. Intuitively, each
production rule has a specific pattern of its matrices to be
decomposed. For example, the data matrices having the
“clustering” structure may have different patterns with matri-
ces having the “low-rank” structure. Based on such observa-
tion, in NG-SI, we adopt a Convolutional Neural Network
(CNN) as a neural guider for the neurally-guided search.
Requiring only limited synthetic data during training, the
neural guider remarkably outperforms the algorithm-based
exhaustive search of production rules in inference efficiency.

In detail, NG-SI infers structures in a recursive manner
following the paradigm shown as Algorithm 1. At each
step, the neural guider and the symbolic decomposition
algorithm work jointly: given the input data D, the neural
guider predicts the production rule to be applied, and the
symbolic decomposition algorithm decomposes the input
data into multiple components. We use the decomposition
algorithms and the metrics for ranking candidate structures
in Grosse et al. (2012).

Neural guider. The neural guider is trained in the follow-
ing way. Given a matrix G, the neural guider learns to
distinguish a finer structure from all possible candidates, in-
cludingGG+G,MG+G,GMT +G, CG+G,GCT +G,
BG+G, GBT +G and exp(G) ◦G.

Training. We generate synthetic data for training the neu-
ral guider on the fly. For each data point, we first randomly
sample a production rule (e.g., G → MG + G) from the
DSL. Then, we randomly generate a data matrix following
the production rule (e.g., generate a multinomial matrix and
two Gaussian matrices and compose them together) and
use the underlying production rule as the label. The neural
guider is trained to convergence on this dataset. It is then
fixed for structure inference.

Hyperparameters. We build our neural guider as an 8-
layer convolutional neural network. The detailed architec-
ture of the neural guider can be found in the supplementary
material. To handle matrices of arbitrary sizes, we always
pad the input matrices to 200× 200 by adding zero entries.
We also stack the padded input matrix, along the channel
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Data Ground Truth Grosse et al. (2012) Mat2Seq NG-SI (ours)

Low-rank GG+G Correct Correct Correct
Clustering MG+G Correct Correct Correct
Binary latent features BG+G Correct Correct Correct
Co-clustering M(GMT +G) +G Correct MG+G Correct
Binary matrix factorization B(GBT +G) +G Correct BG+G Correct
BCTF (MG+G)(GMT +G) +G Correct BG+G Correct
Sparse coding s(G)G+G Correct s(G) Correct
Dependent GSM s(GG+G)G+G s(G)G+G s(G) s(G)G+G
Random walk CG+G Correct Correct Correct
Linear dynamical system (CG+G)G+G Correct CG+G B(s(G)G+G) +G

Motion Capture - Level 1 - CG+G CG+G CG+G
Motion Capture - Level 2 - C(GG+G) +G CG+G C(GG+G) +G

/
CG+G

Image Patch - Level 1 - GG+G GG+G GG+G
Image Patch - Level 2 - s(G)G+G GG+G s(G)G+G
Image Patch - Level 3 - s(GG+G)G+G

/
s(G)G+G GG+G s(G)G+G

Table 2. Search results of our approach and several baselines. We denote exp(f(G)) ◦G as s(f(G)). We run each model for three times
with different random seeds. If the results produced by three runs disagree, we include all possible outcomes in the table, separated by

/
.

See the main text for a detailed analysis.
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Figure 3. We compare the running time for structure inference of
(Grosse et al., 2012) and NG-SI. For all experiments, we set the
standard deviation for the input noise to 1. Remarkably, the speed
of NG-SI is 3× ∼ 39× faster than the baseline.

dimension, with a padding indicator matrix P : if the value
at position (i, j) belongs to the original input matrix, then
P [i, j] = 1; otherwise, P [i, j] = 0.

We train the model with the Adam optimizer (Kingma &
Ba, 2015). The hyperparameters for the optimizer are set to
be β1 = 0.9, β2 = 0.9, α = 10−4. The model is trained for
100,000 iterations, with a batch size of 100.

4.3. Experiments

To evaluate the accuracy of our approach, we replicate the
experiments in Grosse et al. (2012), including one syntheti-
cally generated dataset and two real-world datasets: motion
capture and image patches. For the synthetic dataset, we
generated matrices of size 200× 200 from 10 models listed
in Table 2. All models have a hidden dimension of 10, fol-

lowing Grosse et al. (2012). The dataset of human motion
capture (Hsu et al., 2005; Taylor et al., 2007) consists of
a person walking in a variety of styles. Each row of the
data matrix describes the human pose in one frame, in the
form of the person’s orientation, displacement, and joint
angles. The natural image patches dataset contains samples
from the Sparsenet dataset proposed in Olshausen & Field
(1996). It contains 10 images of natural scenes (smoothed
and whitened), from which 1,000 patches of size 12 × 12
are selected and flattened as the rows of the matrix. We
study the inferred structure with different search depth lim-
its, varying from level 1 to level 3. Note that there is no
groundtruth structure for such real-world datasets.

Baselines. Beside the search-based baseline in Grosse
et al. (2012), we also implement a simple matrix-to-
sequence model as a data-driven baseline. This model takes
the data matrix as input and generates the structure of the ma-
trix using a CNN-GRU model (Vinyals et al., 2015b). The
baseline is trained on the same data as our neural guider.

Accuracy. Shown in Figure 3 and Table 2, our model
successfully finds most of the optimal structures of synthetic
data except for two of them: the dependent GSM and the
linear dynamical system. Remarkably, the search process
is accelerated with a multiplier of 3× ∼ 39×. NG-SI
also generalizes well to real-world datasets. The inferred
structures on both real-world datasets are consistent with
the structures inferred by the search-based baseline.

For dependent GSM matrices, (exp(GG+G) ◦G)G+G,
the final structure determined by NG-SI is the sparse coding
model, (exp(G) ◦G)G+G. This is a typical failure case
as discussed in Grosse et al. (2012), since the variational
lower-bound used for ranking candidate structures cannot
distinguish two structures by a margin. We attribute the fail-
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Depth = 1 Depth = 2 Depth = 3

Grosse et al. (2012) 16min 1h 32min 5h 37min
NG-SI 2min 12min 43min
Speed up 8× 7.67× 7.83×

Table 3. Running time needed for the search of structures of differ-
ent depths. Our algorithm consistently outperforms the baseline
in efficiency. We ran all experiments on a machine with an Intel
Xeon E5645 CPU and a GTX 1080 Ti GPU.

ure of the linear dynamical system case to the imbalance of
training data: most production rules imply the independence
of rows in the data matrix, while the ruleG→ CG+G does
not. Thus, we see the misclassifications of structures that
include this rule. In practice, the problem can be alleviated
by techniques such as sampling more data with the CG+G
structure.

For real-world datasets, the structures inferred by NG-SI
agree with the search-based baseline (Grosse et al., 2012) in
most cases. Both methods show unstable results for complex
structures; they sometimes fall back to a structure with a
simpler but plausible form. We attribute this to the noises
in real-world datasets, which affects the robustness of both
the neural guider—for ranking production rules, and the
variational lower-bound—for ranking inferred structures.

Efficiency. We empirically compare our algorithm against
the original greedy search algorithm proposed by Grosse
et al. (2012). We generate a 200× 200 matrix from a depen-
dent GSM model with 10 latent dimensions. Table 3 sum-
marizes the running time needed for the search of structures
of different depths. In general, our algorithm consistently
speeds up the greedy search version by a factor of 8.

Rule similarity discovery. Our approach can be regarded
as using an approximated probability distribution of struc-
tures conditioned on the input data to guide the structure
search. Interestingly, we find that the learned distribution
by the neural guider recovers the similarity between rules.

To visualize this, we first generate a dataset of matrices
following different production rules, such as G→ GG+G
and G → MG + G. All these rules start from a single
matrix G. We then use the trained neural guider to predict
the structure, i.e., the approximated probability distribution.
We accumulate the output probabilities and visualize them
as a matrix in Figure 4, where lighter entries indicate a
higher probability of misclassification, or equivalently, a
higher similarity between the two structures.

Ideally, the matrix should be symmetric, as it reflects the
similarity between each two of the production rules. The em-
pirical results support this intuition. Moreover, it recovers
the similarity between some production rules. For example,
MG+G and BG+G are similar (due to the similar binary
structure of M and B); MG+G (mixture of Gaussian) and
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Figure 4. Visualization of the similarities between production rules
for expanding a “G” node. The similarities are implicitly learned
by our neural guider. We manually highlight some entries indica-
tion pairs of similar production rules. �: Clustering vs. Binary
factor, �: Binary factor vs. Markov Chain, and �: Clustering
(mixture of Gaussian) vs. Gaussian.
G (pure Gaussian) are similar. These findings are consistent
with human intuition.

4.4. Application: Inspecting GANs

The generative adversarial network (GANs) learns a trans-
formation function Gθ (the generator) from a specific distri-
bution (e.g., Gaussian) to the target data distribution (Good-
fellow et al., 2014). Such transformations are implemented
as neural networks. Thus, it is usually difficult to interpret
the generation process.

We view the generator of a GAN as a stack of distribution
transformers, where each transformer is a single layer in the
network. We show that it is possible to partially reveal the
transformation process inside the GAN generator by detect-
ing the structures of its intermediate features. By tracking
these structures, we can obtain a better understanding of
how GANs transform the distributions layer by layer.

As an example, we train an MLP-GAN to map a Gaus-
sian distribution to randomly generated vectors from a set
of dependent GSM distributions sampled from a common
prior. The model is trained by the Wasserstein GAN-GP
algorithm (Gulrajani et al., 2017). The generator is trained
for 10,000 iterations, and before each, the discriminator is
trained for 4 iterations. The architecture of the generator
and the discovered structure of the intermediate features is
summarized in Table 4. In general, the trace of the struc-
tures is consistent with the natural compositional structure
of the dependent GSM: G→ GG+G→ s(G)G+G→
s(GG+G)G+G.
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Gaussian noise z, dimension = 128, structure: G

Fully connected, dimension = 256
structure: G

ReLU nonlinearity

Fully connected, dimension = 256
structure: MG+G

ReLU nonlinearity

Fully connected, dimension = 256
structure: GG+G

/
BG+G

ReLU nonlinearity

Fully connected, dimension = 256
structure: s(G)G+G

ReLU nonlinearity

Fully connected, dimension = 256
structure: s(G)G+G or s(GG+G)G+G

Table 4. The architecture and the discovered structures from the
intermediate features of an MLP-GAN’s generator. We run this
experiment multiple times and show the top-ranked structures for
each layer.

5. Study II: Program Parsing
The framework of neurally-guided structure inference can
be naturally extended to other domains. In this section,
we consider the task of program parsing from sequential
data: given a discrete program written in a programming
language, we want to translate it into a symbolic abstract
syntax tree.

5.1. Problem Formulation

For program parsing, we adopt the WHILE program lan-
guage (Chen et al., 2018a) as our testbed. The WHILE lan-
guage is defined by 73 production rules. It covers most of
the functionality of modern programming languages: arith-
metic expressions, variable assignments, conditions, and
loops. Our goal is to translate a program written in the
WHILE language into a hierarchical abstract syntax tree
(AST). Figure 5 shows a sample code written in the WHILE
language and its corresponding AST. Ideally, after learning
from a limited number of programs and the AST labels,
the algorithms should generalize to parse longer programs
or more complex programs, i.e., programs with a deeper
AST. As we show later, such generalizability is difficult for
many data-driven algorithms such as sequence-to-sequence
models (Sutskever et al., 2014).

5.2. Model

Following the same hybrid search paradigm as presented
in Algorithm 1, we build a neurally-guided program parser.
We keep the design of recursive inference: at each step,

while

==

y 0

if

==

x 0

=

y +

while y == 0 {
y = x + 1 if x == 0

}

x 1

Figure 5. A sample code in the WHILE language (left) and its
corresponding AST (right).

the neural guider infers the production rule based on the
input code. Then we decompose the code into components
(such as the conditions and the body for an if-statement).
Thus, the data are represented as code strings. Here, we use
hand-coded algorithms for code decomposition.

Because the neural guider determines only the top-level
production rule for the input code, intuitively, it does not
require specific architecture designs. In our experiments,
we implement it as a combination of a GRU encoder and a
linear classifier. The input code string is first fed into the
GRU encoder; then the classifier takes the last hidden state
of the encoded string as its input.

Training. We randomly generate training samples based
on the context-free grammar of the WHILE language.
Roughly, starting from the start symbol of the grammar,
we randomly apply a number of production rules on non-
terminal symbols. For each generated program, all of its
sub-strings corresponding to one of the sub-trees in the AST
are used as the training data. To test the generalizability of
the models, we restrict the depth of the AST of the training
examples and the length of the programs to be less than 9
and 15, respectively. The learned model is tested on longer
programs or more complex programs (i.e., with a deeper
AST).

Hyperparameters. We adopt a unidirectional GRU with
a hidden dimension of 256 as the code string encoder for
production rule selection. We train the model using the
Adam optimizer, with hyperparameters β1 = 0.9, β2 =
0.9, α = 10−4. The batch size is set to 64. We perform
curriculum learning similar to the training process described
in Chen et al. (2018a), where the model is trained with
programs of gradually increasing length and depth. The
shortest program has a length of 5, while the longest has 15.
We repeat the curriculum learning process three times for
training the neural guider.

5.3. Experiments

Baselines. We implement a sequence to sequence
(Seq2Seq) model (Sutskever et al., 2014) with attention
and a Seq2Tree model (Dong & Lapata, 2016) model with
attention as the data-driven baselines for AST inference.
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(a) Depth = 6
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(b) Depth = 7
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(c) Depth = 8
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(d) Depth = 9
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(e) Depth = 10
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(f) Depth = 11

Figure 6. The performance of NG-SI and the baselines (Seq2Seq and Seq2Tree) on test programs with different AST depths (6 to 11) and
different lengths (15 to 30). Deep programs (depth ≥ 10) have a minimal length larger than 15: Figure 6(e) and Figure 6(f)

The Seq2Seq model with attention uses GRUs as the encoder
and the decoder, both with a hidden dimension of 256. We
slightly modify the output format of the Seq2Seq baseline to
support the tree-structured output. Specifically, we perform
a pre-order traversal of the AST and use the traversal order
of all nodes as the label for training (Vinyals et al., 2015a).

The Seq2Tree model uses GRU as the encoder, with a hid-
den dimension of 256 and a hierarchical tree decoder. It
generates the AST in a top-down manner. Starting from
the starting symbol, the decoder iteratively expands a non-
terminal symbol with a production rule predicted by the
decoder network.

For training both baseline models, we use the teacher forcing
method and the Adam optimizer with the same hyperparam-
eters as the neural guider.

Results. Figure 6 shows the results. We evaluate the per-
formance of NG-SI and the baseline models on programs
with different AST depths (6 to 11) and different lengths
(15 to 30). Figure 6 shows that NG-SI robustly infers the
hierarchical AST from more complex and longer programs
than training examples. By contrast, the performance of the
purely data-driven baseline drops significantly as the com-
plexity or the length of the program grows beyond training
examples. It is worth noting that NG-SI is remarkably robust
w.r.t. the program depth. Although the model has never seen
programs with depth 11 during training, it achieves an accu-
racy ≥ 90% during inference. In contrast, the accuracies of
all baselines are ≤ 20%.

As for the running time, Seq2Seq, Seq2Tree, and our pro-

posed NG-SI give prediction in less than 1s per instance. We
also compare our model with an exhaustive search baseline.
Specifically, it uses iterative deepening depth-first search
for programs. The search stops when it finds an AST that
exactly reconstructs the input program. The algorithm runs
in a single thread on a machine with an Intel Core i7-8700
4.0GHz and 16G RAM, and the running time limit is 1 hour.
With a fixed program depth = 6, the search-based baseline
achieves perfect accuracy on programs with length ≤ 24 but
exceeds the running time limit when length > 24.

6. Conclusion
We have proposed the Neurally-Guided Structure Inference
(NG-SI), a hybrid algorithm for structure inference that
keeps the advantages of both search-based and data-driven
approaches. The key idea is to use a neural network to learn
to guide a hierarchical, layer-wise search process. The data-
driven module enables efficient inference: it recursively
selects the production rules to build the structure, so that
only a small number of nodes in the search tree need to be
evaluated. The search-based framework of NG-SI ensures
robust inference on test data with arbitrary complexity. Re-
sults on probabilistic matrix decomposition benchmarks and
program parsing datasets support our arguments.
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