
CoT: Cooperative Training for Generative Modeling of Discrete Data

Sidi Lu 1 Lantao Yu 2 Siyuan Feng 1 Yaoming Zhu 1 Weinan Zhang 1 Yong Yu 1

Abstract
In this paper, we study the generative models of
sequential discrete data. To tackle the exposure
bias problem inherent in maximum likelihood es-
timation (MLE), generative adversarial networks
(GANs) are introduced to penalize the unrealis-
tic generated samples. To exploit the supervi-
sion signal from the discriminator, most previ-
ous models leverage REINFORCE to address the
non-differentiable problem of sequential discrete
data. However, because of the unstable property
of the training signal during the dynamic process
of adversarial training, the effectiveness of RE-
INFORCE, in this case, is hardly guaranteed. To
deal with such a problem, we propose a novel ap-
proach called Cooperative Training (CoT) to im-
prove the training of sequence generative models.
CoT transforms the min-max game of GANs into
a joint maximization framework and manages to
explicitly estimate and optimize Jensen-Shannon
divergence. Moreover, CoT works without the
necessity of pre-training via MLE, which is cru-
cial to the success of previous methods. In the
experiments, compared to existing state-of-the-art
methods, CoT shows superior or at least competi-
tive performance on sample quality, diversity, as
well as training stability.

1. Introduction
Generative modeling is essential in many scenarios, in-
cluding continuous data modeling (e.g. image generation
(Goodfellow et al., 2014; Arjovsky et al., 2017), stylization
(Ulyanov et al., 2016), semi-supervised classification (Rad-
ford et al., 2015)) and sequential discrete data modeling,
typically neural text generation (Bahdanau et al., 2014; Yu
et al., 2017; Lu et al., 2018).
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For sequential discrete data with tractable density like nat-
ural language, generative models are predominantly opti-
mized through Maximum Likelihood Estimation (MLE),
inevitably introducing exposure bias (Ranzato et al., 2015),
which results in that given a finite set of observations, the
optimal parameters of the model trained via MLE do not
correspond to the ones yielding the optimal generative qual-
ity. Specifically, the model is trained on the data distribution
of inputs and tested on a different distribution of inputs,
namely, the learned distribution. This discrepancy implies
that in the training stage, the model is never exposed to its
own errors and thus in the test stage, the errors made along
the way will quickly accumulate.

On the other hand, for general generative modeling tasks,
an effective framework, named Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014), was proposed to
train an implicit density model for continuous data. GAN
introduces a discriminator Dφ parametrized by φ to distin-
guish the generated samples from the real ones. As is proved
by Goodfellow et al. (2014), GAN essentially optimizes an
approximately estimated Jensen-Shannon divergence (JSD)
between the currently learned distribution and the target
distribution. GAN shows promising results in many unsu-
pervised and semi-supervised learning tasks. The success
of GAN brings the naissance of a new paradigm of deep
generative models, i.e. adversarial networks.

However, since the gradient computation requires back-
propagation through the generator’s output, i.e. the data,
GAN can only model the distribution of continuous vari-
ables, making it non-applicable for generating discrete se-
quences like natural language. Researchers then proposed
Sequence Generative Adversarial Network (SeqGAN) (Yu
et al., 2017), which uses a model-free policy gradient algo-
rithm to optimize the original GAN objective. With Seq-
GAN, the expected JSD between current and target discrete
data distribution is minimized if the training is perfect. Seq-
GAN shows observable improvements in many tasks. Since
then, many variants of SeqGAN have been proposed to im-
prove its performance. Nonetheless, SeqGAN is not an ideal
algorithm for this problem, and current algorithms based on
it cannot show stable, reliable and observable improvements
that covers all scenarios, according to a previous survey (Lu
et al., 2018). The detailed reasons will be discussed in detail
in Section 2.
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In this paper, we propose Cooperative Training (CoT), a
novel algorithm for training likelihood-based generative
models on discrete data by directly optimizing a well-
estimated Jensen-Shannon divergence. CoT coordinately
trains a generative module G, and an auxiliary predictive
module M , called mediator, for guiding G in a cooperative
fashion. For theoretical soundness, we derive the proposed
algorithm directly from the definition of JSD. We further
empirically and theoretically demonstrate the superiority of
our algorithm over many strong baselines in terms of gener-
ative performance, generalization ability and computational
performance in both synthetic and real-world scenarios.

2. Background
Notations. P denotes the target data distribution. θ denotes
the parameters of the generative module G. φ denotes the
parameters of the auxiliary predictive mediator module M .
Any symbol with subscript g and m stands for that of the
generator and mediator, respectively. s stands for a complete
sample from the training dataset or a generated complete
sequence, depending on the specific context. st means the
t-length prefix of the original sequence, i.e. an incomplete
sequence of length t. x denotes a token, and xt stands for
a token that appears in the t-th place of a sequence. Thus
st = [x0, x1, x2, . . . , xt−1] while the initial case s0 is ∅.

2.1. Maximum Likelihood Estimation

Maximum likelihood estimation is equivalent to minimizing
the KL divergence using the samples from the real distribu-
tion:

min
θ

Es∼pdata [− logGθ(s)] , (1)

where Gθ(s) is the estimated probability of s by Gθ and
pdata is the underlying real distribution.

Limitations of MLE. MLE is essentially equivalent to
optimizing a directed KullbackLeibler (KL) divergence be-
tween the target distribution pdata and the currently learned
distribution G, denoted as KL(pdata‖G). However, since
KL divergence is asymmetric, given finite observations this
target is actually not ideal. As stated in Arjovsky & Bottou
(2017), MLE tries to minimize

KL(pdata‖G) =
∑
s

pdata(s) log
pdata(s)

G(s)
. (2)

• When pdata(s) > 0 and G(s)→ 0, the KL divergence
grows to infinity, which means MLE assigns an ex-
tremely high cost to the “mode dropping” scenarios,
where the generator fails to cover some parts of the
data.

• When G(s) > 0 and pdata(s)→ 0, the KL divergence
shrinks to 0, which means MLE assigns an extremely

low cost to the scenarios, where the model generates
some samples that do not locate on the data distribu-
tion.

Likewise, optimizing KL(G‖pdata) will lead to exactly the
reversed problems of the two situations. An ideal solution
is to optimize a symmetrized and smoothed version of
KL divergence, i.e. the Jensen-Shannon divergence (JSD),
which is defined as

JSD(pdata‖G) =
1

2

(
KL(pdata‖M) +KL(G‖M)

)
, (3)

where M = 1
2 (pdata + G). However, directly optimizing

JSD is conventionally considered as an intractable problem.
JSD cannot be directly evaluated and optimized since the
equally interpolated distribution M is usually considered to
be unconstructible, as we only have access to the learned
model G instead of P .

2.2. Sequence Generative Adversarial Network

SeqGAN incorporates two modules, i.e. the generator and
discriminator, parametrized by θ and φ respectively, as in
the settings of GAN. By alternatively training these two
modules, SeqGAN optimizes such an adversarial target:

min
θ

max
φ

Es∼pdata [log(Dφ(s))]+Es∼Gθ [log(1−Dφ(s))] .

(4)
The objectives of generator Gθ and discriminator Dφ in
SeqGAN can be formulated as:
Generator:

min
θ
−Es∼Gθ

[ n∑
t=1

Qt(st, xt) · logGθ(xt|st)
]

(5)

Discriminator:

max
φ

Es∼pdata [log(Dφ(s))] + Es∼Gθ [log(1−Dφ(s))] ,

(6)
where s ∼ Gθ = [x1, ..., xn] denotes a complete sequence
sampled from the generator and the actually implemented
action value Qt(st, xt) = Es∼Gθ(·|st+1) [Dφ(s)] is the ex-
pectation of the discriminator’s evaluation on the completed
sequences sampled from the prefix st+1 = [st, xt], which
can be approximated via Monte Carlo search.

Limitations of SeqGAN & its Variants. SeqGAN is an
algorithm of high variance, which relies on pre-training via
Maximum Likelihood Estimation as a variance reduction
procedure. During the adversarial epochs, even if with
variance reduction techniques such as Actor-Critic methods
(Sutton, 1984), the fact that SeqGAN is essentially based
on model-free reinforcement learning makes it a non-trivial
problem for SeqGAN to converge well. One consequent
result is the “mode collapse” problem, which is similar to
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Algorithm 1 Cooperative Training
Require: Generator Gθ; mediator Mφ; samples from real data

distribution pdata; hyper-parameter Nm.
1: Initialize Gθ , Mφ with random weights θ, φ.
2: repeat
3: for Nm steps do
4: Collect two equal-sized mini-batch of samples {sg} and

{sp} from Gθ and pdata, respectively
5: Mix {sg} and {sp} as {s}
6: Update mediator Mφ with {s} via Eq. (9)
7: end for
8: Generate a mini-batch of sequences {s} ∼ Gθ
9: Update generator Gθ with {s} by applying Eq. (14)

10: until CoT converges

the original GAN but more severe here. In this case, the
learned distribution “collapses” towards the minimization
of Reverse KL divergence, i.e. KL(G‖pdata), which leads
to the loss of diversity of generated samples. In other words,
SeqGAN trains the model for better generative quality at
the cost of diversity.

3. Methodology
To be consistent with the goal that the target distribution
should be well-estimated in both quality and diversity
senses, an ideal algorithm for such models should be able
to optimize a symmetric divergence or distance.

For sequential discrete data modeling, since the data dis-
tribution is decomposed into a sequential product of finite-
dimension multinomial distributions (always based on the
softmax form), the failures of effectively optimizing JSD
when the generated and real data distributions are distant, as
discussed in Arjovsky et al. (2017), will not appear. As such,
to optimize JSD is feasible. However, to our knowledge, no
previous algorithms provide a direct, low-variance optimiza-
tion of JSD. In this paper, we propose Cooperative Training
(CoT), as shown in Algorithm 1, to directly optimize a well-
estimated JSD for training such models. Figure 1 illustrates
the whole Cooperative Training process.

Maximum 
Likelihood Estimation

Samples

Samples

Minimize  

Data

Generator

Mediator

Figure 1. Process of Cooperative Training.

3.1. Algorithm Derivation

3.1.1. THE OBJECTIVE FOR MEDIATOR

Each iteration of Cooperative Training mainly consists of
two parts. The first part is to train a mediator Mφ, which
is a density function that estimates a mixture distribution
of the learned generative distribution Gθ and target latent
distribution pdata as

Mφ '
1

2
(pdata +Gθ). (7)

Since the mediator is only used as a density prediction
module during training, the directed KL divergence is now
greatly relieved from so-called exposure bias for optimiza-
tion of Mφ. Denote 1

2 (pdata +Gθ) as M∗, we have:

Lemma 1 (Mixture Density Decomposition)

∇φJm(φ)

=∇φKL(M∗‖Mφ)

=∇φ E
s∼M∗

[
log

M∗(s)

Mφ(s)

]
=∇φ

(
− E
s∼M∗

[logMφ(s)]
)

=∇φ
1

2

(
E

s∼Gθ
[− log(Mφ(s))] + E

s∼pdata

[− log(Mφ(s))]
)
(8)

By Lemma 1, for each step, we can simply mix balanced
samples from training data and the generator, then train
the mediator via Maximum Likelihood Estimation with the
mixed samples. The objective Jm(φ) for the mediator M
parameterized by φ therefore becomes

Jm(φ) =
1

2

(
E

s∼Gθ
[− log(Mφ(s))] + E

s∼pdata

[− log(Mφ(s))]
)
.

(9)

The training techniques and details will be discussed in
Section 4.

After each iteration, the mediator is exploited to optimize
an estimated Jensen-Shannon divergence for Gθ:

Jg(θ)

=− ˆJSD(Gθ‖pdata)

=− 1

2

[
KL(Gθ‖Mφ) +KL(pdata‖Mφ)

]
=− 1

2
E

s∼Gθ

[
log

Gθ(s)

Mφ(s)

]
− 1

2
E

s∼pdata

[
log

pdata(s)

Mφ(s)

]
(10)

When calculating∇θJg(θ), the second term has no effect on
the final results. Thus, we could use this objective instead:

Jg(θ) = −
1

2
E

s∼Gθ

[
log

Gθ(s)

Mφ(s)

]
. (11)
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3.1.2. GENERATOR OBJECTIVE AND MARKOV
BACKWARD REDUCTION

For any sequence or prefix of length t, we have:

Lemma 2 (Markov Backward Reduction)

− 1

2
E

st∼Gθ

[
log

Gθ(st)

Mφ(st)

]
=− 1

2
E

st−1∼Gθ

[∑
st

Gθ(st|st−1) log
Gθ(st|st−1)
Mφ(st|st−1)

]
− 1

2
E

st−1∼Gθ

[
log

Gθ(st−1)

Mφ(st−1)

]
. (12)

The detailed derivations can be found in the supplementary
material. Note that Lemma 2 can be applied recursively.
That is to say, given any sequence st of arbitrary length
t, optimizing st’s contribution to the expected JSD can
be decomposed into optimizing the first term of Eq. (12)
and solving an isomorphic problem for st−1, which is the
longest proper prefix of st. When t = 1, since in Markov
decision process the probability for initial state s0 is always
1.0, it is trivial to prove that the final second term becomes
0.

Therefore, Eq. (11) can be reduced through recursively ap-
plying Lemma 2. After removing the constant multipliers
and denoting the predicted probability distribution over the
action space, i.e. Gθ(·|st) and Mφ(·|st), as πg(st) and
πm(st) respectively, the gradient ∇θJg(θ) for training gen-
erator via Cooperative Training can be formulated as

Jg(θ) =

n−1∑
t=0

E
st∼Gθ

[
πg(st)

>(log πm(st)− log πg(st))
]
.

(13)
For tractable density models with finite discrete action space
in each step, the practical availability of this objective’s gra-
dient is well guaranteed for the following reasons. First,
with a random initialization of the model, the supports of
distributions Gθ and P are hardly disjoint. Second, the first
term of Eq. (13) is to minimize the cross entropy between G
and M∗, which tries to enlarge the overlap of two distribu-
tions. Third, since the second term of Eq. (13) is equivalent
to maximizing the entropy of G, it encourages the support
of G to cover the whole action space, which avoids the case
of disjoint supports between G and P .

3.1.3. FACTORIZING THE CUMULATIVE GRADIENT
THROUGH TIME FOR IMPROVED TRAINING

Up to now, we are still not free from REINFORCE, as the
objective Eq. (13) incorporates expectation over the learned
distribution Gθ. In this part, we propose an effective way to

eventually avoid using REINFORCE.

∇θJg(θ)

=∇θ

(
n−1∑
t=0

E
st∼Gθ

[
πg(st)

>(log πm(st)− log πg(st))
])

For time step t, the gradient of Eq. (13) can be calculated as

∇θJg,t(θ)

=∇θ
[

E
st∼Gθ

πg(st)
>(log πm(st)− log πg(st))

]
=∇θ

[∑
st

Gθ(st)(πg(st)
>(log πm(st)− log πg(st)))

]
=
∑
st

∇θ
[
Gθ(st)(πg(st)

>(log πm(st)− log πg(st)))
]
.

Let

L(st) = πg(st)
>(log πm(st)− log πg(st)),

then

∇θJg,t(θ)

=
∑
st

(∇θGθ(st)L(st) +Gθ(st)∇θL(st))

=
∑
st

Gθ(st) (∇θ logGθ(st)L(st) +∇θL(st))

= E
st∼Gθ

∇θ[stop gradient(L(st)) logGθ(st) + L(st)].

The total gradient in each step consists of two terms. The
first term stop gradient(L(st)) logGθ(st) behaves like RE-
INFORCE, which makes the main contribution to the
variance of the optimization process. The second non-
REINFORCE term is comparatively less noisy, though for
the first sight it seems not to work alone.

Considering the effects of the two terms, we argue that they
have similar optimization directions (towards minimization
of KL(Gθ‖Mφ) ). To study and control the balance of the
two terms, we introduce an extra hyper-parameter γ ∈ [0, 1],
to control the balance of the high-variance first term and
low-variance second term. The objective in each time step
thus becomes

∇θJγg,t(θ)
= E
st∼Gθ

∇θ [γ(stop gradient(L(st)) logGθ(st)) + L(st)] .

In the experiment part, we will show that the algorithm
works fine when γ = 0.0 and the bias of the finally adopted
term is acceptable. In practice, we could directly drop the
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REINFORCE term, the total gradient would thus become

∇θJ0.0
g (θ) =

n−1∑
t=0

E
st∼Gθ

[
∇θπg(st)>

(
log

πm(st)

πg(st)

)]
.

(14)

3.2. Discussions

3.2.1. CONNECTION WITH ADVERSARIAL TRAINING

The overall objective of CoT can be regarded as finding a
solution of

max
θ

max
φ

E
s∼pdata

[log(Mφ(s))] + E
s∼Gθ

[log(Mφ(s))] .

(15)
Note the strong connections and differences between the
optimization objective of CoT (15) and that of GAN (4)
lie in the max-max and minimax operations of the joint
objective.

3.2.2. ADVANTAGES OVER PREVIOUS METHODS

CoT has several practical advantages over previous methods,
including MLE, Scheduled Sampling (SS) (Bengio et al.,
2015) and adversarial methods like SeqGAN (Yu et al.,
2017).

First, although CoT and GAN both aim to optimize an esti-
mated JSD, CoT is exceedingly more stable than GAN. This
is because the two modules, namely generator and mediator,
have similar tasks, i.e. to approach the same data distribu-
tion as generative and predictive models, respectively. The
superiority of CoT over inconsistent methods like Scheduled
Sampling is solid, since CoT has a systematic theoretical
explanation of its behavior. Compared with methods that re-
quire pre-training in order to reduce variance like SeqGAN
(Yu et al., 2017), CoT is computationally cheaper. More
specifically, under recommended settings, CoT has the same
order of computational complexity as MLE.

Besides, CoT works independently. In practice, it does not
require model pre-training via conventional methods like
MLE. This is an important property of an unsupervised
learning algorithm for sequential discrete data without using
supervised approximation for variance reduction or sophis-
ticated smoothing as in Wasserstein GAN with gradient
penalty (WGAN-GP) (Gulrajani et al., 2017).

3.2.3. THE NECESSITY OF THE MEDIATOR

An interesting problem is to ask why we need to train a
mediator by mixing the samples from both sources G and
P , instead of directly training a predictive model P̂ on the
training set via MLE. There are basically two points to
interpret this.

To apply the efficient training objective Eq. (13), one

needs to obtain not only the mixture density model M =
1
2 (P + G) but also its decomposed form in each time
step i.e. Mφ(s) =

∏n
t=1Mφ(st|st−1), without which the

term πm(st) in Eq. (13) cannot be computed efficiently.
This indicates that if we directly estimate P and compute
M = 1

2 (G + P ), the obtained M will be actually useless
since its decomposed form is not available.

Besides, as a derivative problem of “exposure bias”, the
model P̂ would have to generalize to work well on the
generated samples i.e. s ∼ Gθ to guide the generator to-
wards the target distribution. Given finite observations, the
learned distribution P̂ is trained to provide correct predic-
tions for samples from the target distribution P . There is
no guarantee that P̂ can stably provide correct predictions
for guiding the generator. Ablation study is provided in the
supplementary material.

4. Experiments
4.1. Universal Sequence Modeling in Synthetic Turing

Test

Following the synthetic data experiment setting in Yu et al.
(2017); Zhu et al. (2018), we design a synthetic Turing
test, in which the negative log-likelihood NLLoracle from
an oracle LSTM is calculated for evaluating the quality of
samples from the generator.

Particularly, to support our claim that our method causes
little mode collapse, we calculated NLLtest, which is to
sample an extra batch of samples from the oracle, and to
calculate the negative log-likelihood measured by the gener-
ator.

We show that under this more reasonable setting, our pro-
posed algorithm reaches the state-of-the-art performance
with exactly the same network architecture. Note that mod-
els like LeakGAN (Guo et al., 2017) contain architecture-
level modification, which is orthogonal to our approach, thus
will not be included in this part. The results are shown in
Table 1. Code for repeatable experiments of this subsection
is provided in supplementary materials.

4.1.1. EMPIRICAL ANALYSIS OF ESTIMATED
GRADIENTS

As a part of the synthetic experiment, we demonstrate the
empirical effectiveness of the estimated gradient. During
the training of CoT model, we record the statistics of the
gradient with respect to model parameters estimated by
back-propagating∇θJ0.0

g (θ) and∇θJ1.0
g (θ), including the

mean and log variance of such gradients.

We are mainly interested in two properties of the estimated
gradients, which can be summarized as:
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Table 1. Likelihood-based benchmark and time statistics for synthetic Turing test. ‘-(MLE)’ means the best performance is acquired
during MLE pre-training.

MODEL NLLoracle NLLtest(FINAL/BEST) BEST NLLoracle + NLLtest TIME/EPOCH

MLE 9.08 8.97/7.60 9.43 + 7.67 16.14 ± 0.97S
SEQGAN(YU ET AL., 2017) 8.68 10.10/-(MLE) - (MLE) 817.64± 5.41s
RANKGAN(LIN ET AL., 2017) 8.37 11.19/-(MLE) - (MLE) 1270± 13.01s
MALIGAN(CHE ET AL., 2017) 8.73 10.07/-(MLE) - (MLE) 741.31± 1.45s
SCHEDULED SAMPLING 8.89 8.71/-(MLE) - (MLE) 32.54± 1.14s(BENGIO ET AL., 2015)
PROFESSOR FORCING 9.43 8.31/-(MLE) - (MLE) 487.13± 0.95s(LAMB ET AL., 2016)

COT (OURS) 8.19 8.03/7.54 8.19 + 8.03 53.94± 1.01s
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Figure 2. Curves of evaluation on JSD, NLLoracle during iterations of CoT under different training settings. To show the hyperparameter
robustness of CoT, we compared it with a typical language GAN i.e. SeqGAN (Yu et al., 2017).

• Bias Obviously, ∇θJ1.0
g (θ) is exactly the original

gradient which is unbiased towards the minimization
of Eq. (13). If the estimated gradient ∇θJ0.0

g (θ) is
highly biased, the cosine similarity of the average
of ∇θJ0.0

g (θ) and ∇θJ1.0
g (θ) would be close to 0.0,

otherwise it would be close to 1.0. To investigate
this, we calculate the cosine similarity of expected
∇θJ0.0

g (θ) and∇θJ1.0
g (θ).

• Variance We calculate the log variance of∇θJ0.0
g (θ)

and ∇θJ1.0
g (θ) in each dimension, and compute the

average log variance of each variance. In the figure, to
better illustrate the comparison, we plot the advantage
of mean log variance of∇θJ1.0

g (θ) over∇θJ0.0
g (θ). If

the variance of the estimated gradient is lower, such a
statistic would be steadily positive.

To calculate these statistics, we sample 3,000 sequences
from the generator and calculate the average gradient under
each settings every 100 iterations during the training of the
model. The results are shown in Figure 3. The estimated
gradient of our approach shows both properties of low bias
and effectively reduced variance.

4.1.2. DISCUSSION

Computational Efficiency Although in terms of time cost
per epoch, CoT does not achieve the state-of-the-art, we
do observe that CoT is remarkably faster than previous
language GANs. Besides, consider the fact that CoT is a
sample-based optimization algorithm, which involves time
cost in sampling from the generator, this result is acceptable.
The result also verifies our claim that CoT has the same
order (i.e. the time cost only differs in a constant multiplier
or extra lower order term) of computational complexity as
MLE.

Hyper-parameter Robustness We perform a hyper-
parameter robustness experiment on synthetic data exper-
iment. When compared with the results of similar experi-
ments as in SeqGAN (Yu et al., 2017), our approach shows
less sensitivity to hyper-parameter choices, as shown in
Figure 2. Note that in all our attempts, the curves of the
evaluated JSD of SeqGAN fail to converge.

Self-estimated Training Progress Indicator Like the
critic loss, i.e. estimated Earth Mover Distance, in WGANs,
we find that the training loss of the mediator (9), namely
balanced NLL, can be a real-time training progress indicator
as shown in Figure 4. Specifically, in a wide range, balanced
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Figure 3. Empirical study on bias and variance comparison.

NLL is a good estimation of real JSD(G‖P ) with a steady
translation, namely, 2 NLLbalanced = 2JSD(G‖P ) +
H(G) +H(P ).

4.2. TextCoT: Zero-prior Long & Diverse Text
Generation

As an important sequential data modeling task, zero-prior
text generation, especially long and diversified text genera-
tion, is a good testbed for evaluating the performance of a
generative model.

Following the experiment proposed in LeakGAN (Guo et al.,
2017), we choose EMNLP 2017 WMT News Section as our
dataset, with maximal sentence length limited to 51. We pay
major attention to both quality and diversity. To keep the
comparison fair, we present two implementations of CoT,
namely CoT-basic and CoT-strong. As for CoT-basic, the
generator follows the settings of that in MLE, SeqGAN,
RankGAN and MaliGAN. As for CoT-strong, the generator
is implemented with the similar architecture in LeakGAN.

For quality evaluation, we evaluated BLEU on a small batch
of test data separated from the original dataset. For diver-
sity evaluation, we evaluated the estimated Word Mover
Distance (Kusner et al., 2015), which is calculated through
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Figure 4. Training progress curves indicated by different values.

training a discriminative model between generated samples
and real samples with 1-Lipschitz constraint via gradient
penalty as in WGAN-GP (Gulrajani et al., 2017). To keep
it fair, for all evaluated models, the architecture and other
training settings of the discriminative models are kept the
same.

The results are shown in Table 2 and Table 3. In terms of
generative quality, CoT-basic achieves state-of-the-art per-
formance over all the baselines with the same architecture-
level capacity, especially the long-term robustness at n-gram
level. CoT-strong using a conservative generation strategy,
i.e. setting the inverse temperature parameter α higher than
1, as in (Guo et al., 2017) achieves the best performance
over all compared models. In terms of generative diversity,
the results show that our model achieves the state-of-the-art
performance on all metrics including NLLtest, which is the
optimization target of MLE.

Implementation Details of eWMD To calculate eWMD,
we adopted a multi-layer convolutional neural network as
the feature extractor. We calculate the gradient w.r.t. the
one-hot representation Os of the sequence s for gradient
penalty. The training loss of the Wasserstein critic fω can
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Table 2. N-gram-level quality benchmark: BLEU on test data of
EMNLP2017 WMT News.
*: Results under the conservative generation settings as is described
in LeakGAN’s paper.

MODEL BLEU2 BLEU3 BLEU4 BLEU5

MLE 0.781 0.482 0.225 0.105
SEQGAN 0.731 0.426 0.181 0.096
RANKGAN 0.691 0.387 0.178 0.095
MALIGAN 0.755 0.456 0.179 0.088
LEAKGAN* 0.835 0.648 0.437 0.271

COT-BASIC 0.785 0.489 0.261 0.152
COT-STRONG 0.800 0.501 0.273 0.200
COT-STRONG* 0.856 0.701 0.510 0.310

Table 3. Diversity benchmark: estimated Word Mover Distance
(eWMD) and NLLtest

MODEL EWMDtest EWMDtrain NLLtest

MLE 1.015 σ=0.023 0.947 σ=0.019 2.365
SEQGAN 2.900 σ=0.025 3.118 σ=0.018 3.122
RANKGAN 4.451 σ=0.083 4.829 σ=0.021 3.083
MALIGAN 4.891 σ=0.061 4.962 σ=0.020 3.240
LEAKGAN 1.803 σ=0.027 1.767 σ=0.023 2.327

COT-BASIC 0.766 σ=0.031 0.886 σ=0.019 2.247
COT-STRONG 0.923 σ=0.018 0.941 σ=0.016 2.144

be formulated as

Lc(ω, λ) = E
s∼Gθ

[fω(Os)]− E
s∼pdata

[fω(Os)]

+ λmax(0, ‖∇fω(Ô)‖2 − 1)2,

where
Ô = (1− µ)Osp + µOsq

µ ∼ Uniform(0, 1)

sq ∼ Gθ
sp ∼ pdata.

We use Adam (Kingma & Ba, 2014) as the optimizer, with
hyper-parameter settings of α = 1e − 4, β1 = 0.5, β2 =
0.9. For each evaluated generator, we train the critic fω for
100,000 iterations, and calculate eWMD(pdata, Gθ) as

E
s∼pdata

[fω(Os)]− E
s∼Gθ

[fω(Os)] .

The network architecture for fω is shown in Table 4.

5. Future Work & Conclusion
We proposed Cooperative Training, a novel algorithm for
training generative models of discrete data. CoT achieves

Table 4. Detailed implementation of eWMD network architecture.

Word Embedding Layer, hidden dim = 128

Conv1d, window size= 2, strides= 1, channels = 64

Leaky ReLU Nonlinearity (α = 0.2)

Conv1d, window size= 3, strides= 2, channels = 64

Leaky ReLU Nonlinearity (α = 0.2)

Conv1d, window size= 3, strides= 2, channels = 128

Leaky ReLU Nonlinearity (α = 0.2)

Conv1d, window size= 4, strides= 2, channels = 128

Leaky ReLU Nonlinearity (α = 0.2)

Flatten

Fully Connected, output dimension = 512

Leaky ReLU Nonlinearity (α = 0.2)

Fully Connected, output dimension = 1

independent success without the necessity of pre-training via
maximum likelihood estimation or involving REINFORCE.
In our experiments, CoT achieves superior performance on
sample quality, diversity, as well as training stability.

As for future work, one direction is to explore whether
there is better way to factorize the dropped term of Eq. (14)
into some low-variance term plus another high-variance
residual term. This would further improve the performance
of models trained via CoT. Another interesting direction is to
investigate whether there are feasible factorization solutions
for the optimization of other distances/divergences, such as
Wasserstein Distance, total variance and other task-specific
measurements.
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