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Abstract

In this paper, we study the generative models of
sequential discrete data. To tackle the exposure
bias problem inherent in maximum likelihood es-
timation (MLE), generative adversarial networks
(GANSs) are introduced to penalize the unrealis-
tic generated samples. To exploit the supervi-
sion signal from the discriminator, most previ-
ous models leverage REINFORCE to address the
non-differentiable problem of sequential discrete
data. However, because of the unstable property
of the training signal during the dynamic process
of adversarial training, the effectiveness of RE-
INFORCE, in this case, is hardly guaranteed. To
deal with such a problem, we propose a novel ap-
proach called Cooperative Training (CoT) to im-
prove the training of sequence generative models.
CoT transforms the min-max game of GANs into
a joint maximization framework and manages to
explicitly estimate and optimize Jensen-Shannon
divergence. Moreover, CoT works without the
necessity of pre-training via MLE, which is cru-
cial to the success of previous methods. In the
experiments, compared to existing state-of-the-art
methods, CoT shows superior or at least competi-
tive performance on sample quality, diversity, as
well as training stability.

1. Introduction

Generative modeling is essential in many scenarios, in-
cluding continuous data modeling (e.g. image generation
(Goodfellow et al., 2014; Arjovsky et al., 2017), stylization
(Ulyanov et al., 2016), semi-supervised classification (Rad-
ford et al., 2015)) and sequential discrete data modeling,
typically neural text generation (Bahdanau et al., 2014; Yu
etal., 2017; Lu et al., 2018).
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For sequential discrete data with tractable density like nat-
ural language, generative models are predominantly opti-
mized through Maximum Likelihood Estimation (MLE),
inevitably introducing exposure bias (Ranzato et al., 2015),
which results in that given a finite set of observations, the
optimal parameters of the model trained via MLE do not
correspond to the ones yielding the optimal generative qual-
ity. Specifically, the model is trained on the data distribution
of inputs and tested on a different distribution of inputs,
namely, the learned distribution. This discrepancy implies
that in the training stage, the model is never exposed to its
own errors and thus in the test stage, the errors made along
the way will quickly accumulate.

On the other hand, for general generative modeling tasks,
an effective framework, named Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014), was proposed to
train an implicit density model for continuous data. GAN
introduces a discriminator D, parametrized by ¢ to distin-
guish the generated samples from the real ones. As is proved
by Goodfellow et al. (2014), GAN essentially optimizes an
approximately estimated Jensen-Shannon divergence (JSD)
between the currently learned distribution and the target
distribution. GAN shows promising results in many unsu-
pervised and semi-supervised learning tasks. The success
of GAN brings the naissance of a new paradigm of deep
generative models, i.e. adversarial networks.

However, since the gradient computation requires back-
propagation through the generator’s output, i.e. the data,
GAN can only model the distribution of continuous vari-
ables, making it non-applicable for generating discrete se-
quences like natural language. Researchers then proposed
Sequence Generative Adversarial Network (SeqGAN) (Yu
et al., 2017), which uses a model-free policy gradient algo-
rithm to optimize the original GAN objective. With Seq-
GAN, the expected JSD between current and target discrete
data distribution is minimized if the training is perfect. Seq-
GAN shows observable improvements in many tasks. Since
then, many variants of SeqGAN have been proposed to im-
prove its performance. Nonetheless, SeqGAN is not an ideal
algorithm for this problem, and current algorithms based on
it cannot show stable, reliable and observable improvements
that covers all scenarios, according to a previous survey (Lu
et al., 2018). The detailed reasons will be discussed in detail
in Section 2.
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In this paper, we propose Cooperative Training (CoT), a
novel algorithm for training likelihood-based generative
models on discrete data by directly optimizing a well-
estimated Jensen-Shannon divergence. CoT coordinately
trains a generative module GG, and an auxiliary predictive
module M, called mediator, for guiding G in a cooperative
fashion. For theoretical soundness, we derive the proposed
algorithm directly from the definition of JSD. We further
empirically and theoretically demonstrate the superiority of
our algorithm over many strong baselines in terms of gener-
ative performance, generalization ability and computational
performance in both synthetic and real-world scenarios.

2. Background

Notations. P denotes the target data distribution. 6 denotes
the parameters of the generative module G. ¢ denotes the
parameters of the auxiliary predictive mediator module M.
Any symbol with subscript 4 and ,,, stands for that of the
generator and mediator, respectively. s stands for a complete
sample from the training dataset or a generated complete
sequence, depending on the specific context. s; means the
t-length prefix of the original sequence, i.e. an incomplete
sequence of length ¢. = denotes a token, and x; stands for
a token that appears in the ¢-th place of a sequence. Thus
$¢ = [xo,x1,X2,...,2; 1] while the initial case sq is ;.

2.1. Maximum Likelihood Estimation

Maximum likelihood estimation is equivalent to minimizing
the KL divergence using the samples from the real distribu-
tion:

MinE, pu. [ 10gGo(s)], M

where Gy(s) is the estimated probability of s by Gy and
Ddata 18 the underlying real distribution.

Limitations of MLE. MLE is essentially equivalent to
optimizing a directed KullbackLeibler (KL) divergence be-
tween the target distribution pgae, and the currently learned
distribution G, denoted as K L(pg.KG). However, since
KL divergence is asymmetric, given finife observations this
target is actually not ideal. As stated in Arjovsky & Bottou
(2017), MLE tries to minimize

Ddata (S )

KL(pdatakG) = G(S) .
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When pgaa(s) > 0 and G(s) ¥ 0, the KL divergence
grows to infinity, which means MLE assigns an ex-
tremely high cost to the “mode dropping” scenarios,
where the generator fails to cover some parts of the
data.

When G(s) > 0 and pga(s) ¥ 0, the KL divergence
shrinks to 0, which means MLE assigns an extremely

low cost to the scenarios, where the model generates
some samples that do not locate on the data distribu-
tion.

Likewise, optimizing K L(GKpgaa) Will lead to exactly the
reversed problems of the two situations. An ideal solution
is to optimize a symmetrized and smoothed version of
KL divergence, i.e. the Jensen-Shannon divergence (JSD),
which is defined as

1
JSD(pdatakG) = E KL(pdatakM) + KL(GkM) ) (3)

where M = %(pdala + (). However, directly optimizing
JSD is conventionally considered as an intractable problem.
JSD cannot be directly evaluated and optimized since the
equally interpolated distribution M is usually considered to
be unconstructible, as we only have access to the learned
model G instead of P.

2.2. Sequence Generative Adversarial Network

SeqGAN incorporates two modules, i.e. the generator and
discriminator, parametrized by 6 and ¢ respectively, as in
the settings of GAN. By alternatively training these two
modules, SeqGAN optimizes such an adversarial target:

min max Es pa 109(Dg(N]FEs ¢ [log(L  Dg(s))]-
4)

The objectives of generator Gy and discriminator Dy in
SeqGAN can be formulated as:

Generator:
h > i
mein Es ¢ Qi(st,7¢) log Go(xtjsy) (5)
t=1
Discriminator:

MaxEs pu, 109(Do(sNI+Es o [log(l Dy ()],
(6)

where s Gy = [z1, ..., z,] denotes a complete sequence
sampled from the generator and the actually implemented
action value Q¢(s¢,7¢) = Es @ (jsear) [Do(5)] is the ex-
pectation of the discriminator’s evaluation on the completed
sequences sampled from the prefix s;+1 = [s¢, 2], which
can be approximated via Monte Carlo search.

Limitations of SeqGAN & its Variants. SeqGAN is an
algorithm of high variance, which relies on pre-training via
Maximum Likelihood Estimation as a variance reduction
procedure. During the adversarial epochs, even if with
variance reduction techniques such as Actor-Critic methods
(Sutton, 1984), the fact that SeqGAN is essentially based
on model-free reinforcement learning makes it a non-trivial
problem for SeqGAN to converge well. One consequent
result is the “mode collapse” problem, which is similar to
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Algorithm 1 Cooperative Training
Require: Generator Gg; mediator My; samples from real data
distribution pgawa; hyper-parameter Ny, .
1: Initialize Gg, My with random weights 6, ¢.

2: repeat
3:  for N,, steps do
4: Collect two equal-sized mini-batch of samples fsyg and

Tspg from Gy and pya, respectively
5 Mix Fsy,0 and Fs,g as Fsg
6 Update mediator My with Tsg via Eq. (9)
7 end for
8:  Generate a mini-batch of sequences fsg G
9 Update generator Gy with Fsg by applying Eq. (14)
0: until CoT converges

the original GAN but more severe here. In this case, the
learned distribution “collapses” towards the minimization
of Reverse KL divergence, i.e. K L(GKpga), which leads
to the loss of diversity of generated samples. In other words,
SeqGAN trains the model for better generative quality at
the cost of diversity.

3. Methodology

To be consistent with the goal that the target distribution
should be well-estimated in both quality and diversity
senses, an ideal algorithm for such models should be able
to optimize a symmetric divergence or distance.

For sequential discrete data modeling, since the data dis-
tribution is decomposed into a sequential product of finite-
dimension multinomial distributions (always based on the
softmax form), the failures of effectively optimizing JSD
when the generated and real data distributions are distant, as
discussed in Arjovsky et al. (2017), will not appear. As such,
to optimize JSD is feasible. However, to our knowledge, no
previous algorithms provide a direct, low-variance optimiza-
tion of JSD. In this paper, we propose Cooperative Training
(CoT), as shown in Algorithm 1, to directly optimize a well-
estimated JSD for training such models. Figure 1 illustrates
the whole Cooperative Training process.

Data
Gg . _ Samples Mediator
Generator
Minimize JSD(Gy||P)

Figure 1. Process of Cooperative Training.

3.1. Algorithm Derivation
3.1.1. THE OBJECTIVE FOR MEDIATOR

Each iteration of Cooperative Training mainly consists of
two parts. The first part is to train a mediator My, which
is a density function that estimates a mixture distribution
of the learned generative distribution Gy and target latent
distribution pqae, as

1
M¢ ” E(pdata + GG) @)

Since the mediator is only used as a density prediction
module during training, the directed KL divergence is now
greatly relieved from so-called exposure bias for optimiza-
tion of M. Denote %(pdam + Gy) as M , we have:

Lemma 1 (Mixture Density Decomposition)

r¢Jm(¢)
=r¢KL(M kM¢) i
_ M (s)"
_r¢s I;M Iog M¢(S)

=r,  E [logMy(s)]

=roy E [ logQu(M+ E [ log(My(s))]

S Pdata

®)

By Lemma 1, for each step, we can simply mix balanced
samples from training data and the generator, then train
the mediator via Maximum Likelihood Estimation with the
mixed samples. The objective J,,,(¢) for the mediator M
parameterized by ¢ therefore becomes

Tn(®) =5 l0g(M(s)] -

€))

JE [ log(My(s)]+ E

data

The training techniques and details will be discussed in
Section 4.

After each iteration, the mediator is exploited to optimize
an estimated Jensen-Shannon divergence for Gy:

Jq(6)
= JSD(Gokpaua)
= % KL(ngM¢)+KL(pdalakM¢)
R 70 L L Ok
25 G M¢(S) 2 Pdata M¢(8)
(10)

When calculating ¥y.J,(6), the second term has no effect on
the final results. Thus, we could use this objective instead:

h i
1 o Go(s)

2.5 My(s)

J1,0) = (11)
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3.1.2. GENERATOR OBJECTIVE AND MARKOV
BACKWARD REDUCTION

For any sequence or prefix of length ¢, we have:
Lemma 2 (Markov Backward Reduction)

h i
Ge(St)
E lo
we O My(s) _
h>< Go(sijse 1) !

E Go(sijs lo .
o 1 G 9( t)St 1) g M¢(5tJSt l)

h Go(st 1)

E log Mo(st 1) (12)

Nl NP N

The detailed derivations can be found in the supplementary
material. Note that Lemma 2 can be applied recursively.
That is to say, given any sequence s; of arbitrary length
t, optimizing s;’s contribution to the expected JSD can
be decomposed into optimizing the first term of Eq. (12)
and solving an isomorphic problem for s; 1, which is the
longest proper prefix of s;. When ¢ = 1, since in Markov
decision process the probability for initial state sg is always
1.0, it is trivial to prove that the final second term becomes
0.

Therefore, Eq. (11) can be reduced through recursively ap-
plying Lemma 2. After removing the constant multipliers
and denoting the predicted probability distribution over the
action space, i.e. Gg(js¢) and My(jst), as my(s:) and
T (5¢) respectively, the gradient ¥ ¢.J,(9) for training gen-
erator via Cooperative Training can be formulated as

log 7 (s1)) -

13)
For tractable density models with finite discrete action space
in each step, the practical availability of this objective’s gra-
dient is well guaranteed for the following reasons. First,
with a random initialization of the model, the supports of
distributions Gg and P are hardly disjoint. Second, the first
term of Eq. (13) is to minimize the cross entropy between G
and M , which tries to enlarge the overlap of two distribu-
tions. Third, since the second term of Eq. (13) is equivalent
to maximizing the entropy of G, it encourages the support
of G to cover the whole action space, which avoids the case
of disjoint supports between G and P.

>
Jg(0) = E_ m(s0)7(10g mn(se)

t=0 °t

3.1.3. FACTORIZING THE CUMULATIVE GRADIENT
THROUGH TIME FOR IMPROVED TRAINING

Up to now, we are still not free from REINFORCE, as the
objective Eq. (13) incorporates expectation over the learned
distribution G. In this part, we propose an effective way to

eventually avoid using REINFORCE.

rGJg(e) 1
-~ 1
=ry E 7rg(St)>(|09 Tm(se) logmg(se))
t=0 °t

For time step ¢, the gradient of Eq. (13) can be calculated as

rOJg,t(a)
=ry E_my(s))”(logmm(sy) logmy(sy))
w5t G #
=ry Go(s:)(mg(s)~(log mm(se)  10g7y(se)))
> "
= 1y Go(st)(my(se)”(logmm(s:) logmy(se))) -
Let
L(st) = my(s¢)~(log mm(se)  logmg(se)),
then
r>_0<<]g.,t(0)
= (roGo(st)L(st) + Go(se)roL(st))
X

= Go(st) (rolog Go(st)L(s¢) + YoL(s))

St

= EG y[stop_gradient(L(s¢)) log Go(s:) + L(sy)].

The total gradient in each step consists of two terms. The
first term stop_gradient(L(s;)) log Gy (s;) behaves like RE-
INFORCE, which makes the main contribution to the
variance of the optimization process. The second non-
REINFORCE term is comparatively less noisy, though for
the first sight it seems not to work alone.

Considering the effects of the two terms, we argue that they
have similar optimization directions (towards minimization
of K L(GykMy) ). To study and control the balance of the
two terms, we introduce an extra hyper-parameter v 2 [0, 1],
to control the balance of the high-variance first term and
low-variance second term. The objective in each time step
thus becomes

rGJ_;{,t(e)
= E To [(stop-gradient(L(s:)) log Go(s:)) + L(s:)].

In the experiment part, we will show that the algorithm
works fine when v = 0.0 and the bias of the finally adopted
term is acceptable. In practice, we could directly drop the
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REINFORCE term, the total gradient would thus become needs to obtain not only the mixture density mokliel=
%(P + G) but al§3 its decomposed form in each time
¢ 300 )= E r o(s) log m(st) : stepi.e. M (s) = M (sijst 1), without which the
s o o(St) term n,(st) in EQ. (13) cannot be computed ef ciently.
t=0 (14) This indicates that if we directly estimalfeand compute
M = %(G + P), the obtainedV will be actually useless

since its decomposed form is not available.

1

3.2. Discussions
Besides, as a derivative problem of “exposure bias”, the
model P would have to generalize to work well on the
The overall objective of CoT can be regarded as nding agenerated samplé®. s G to guide the generator to-

3.2.1. GONNECTION WITH ADVERSARIAL TRAINING

solution of wards the target distribution. Given nite observations, the
learned distributior® is trained to provide correct predic-
maxmax % [log(M (s))] + E [log(M (s))]: tions for samples from the target distributiBn There is
data

(15) no guarantee that can stably provide correct predictions

Note the strong connections and differences between th@r guiding the generator. Ablation study is provided in the
optimization objective of CoT (15) and that of GAN (4) SuPplementary material.
lie in the max-max and minimax operations of the joint

objective. 4. Experiments
3.2.2. ADVANTAGES OVER PREVIOUS METHODS 4.1. Universal Sequence Modeling in Synthetic Turing
Test

CoT has several practical advantages over previous methods, . . ] o
including MLE, Scheduled Sampling (SS) (Bengio et al.,Following the synthetic data experiment setting in Yu et al.

2015) and adversarial methods like SeqGAN (Yu et al.(2017); Zhu et al. (2018), we design a synthetic Turing
2017). test, in which the negative log-likelihood Nblyce from

) ) o _an oracle LSTM is calculated for evaluating the quality of
First, although CoT and GAN both aim to optimize an esti-samples from the generator.

mated JSD, CoT is exceedingly more stable than GAN. This )

is because the two modules, namely generator and mediatétarticularly, to support our claim that our method causes
have similar tasks,e. to approach the same data distribu-little mode collapse, we calculated Niek; , which is to

tion asgenerativeandpredictive models, respectively. The Sample an extra batch of samples from the oracle, and to

superiority of CoT over inconsistent methods like ScheduledFalculate the negative log-likelihood measured by the gener-
Sampling is solid, since CoT has a systematic theoretica}tor-

explanation of its behavior. Compared with methods that reyye show that under this more reasonable setting, our pro-
quire pre-training in order to reduce variance like SquANposed algorithm reaches the state-of-the-art performance
(Yuetal., 2017), CoT is computationally cheaper. Moreyith exactly the same network architecture. Note that mod-
speci cally, under recommended settings, CoT has the samgjs jike LeakGAN (Guo et al., 2017) contain architecture-
order of computational complexity as MLE. level modi cation, which is orthogonal to our approach, thus
Besides, CoT works independently. In practice, it does notVill not be included in this part. The results are shown in
require model pre-training via conventional methods likeTable 1. Code for repeatable experiments of this subsection
MLE. This is an important property of an unsupervisediS Provided in supplementary materials.

learning algorithm for sequential discrete data without using

supervised approximation for variance reduction or sophis?-1-1- BEMPIRICAL ANALYSIS OF ESTIMATED

ticated smoothing as in Wasserstein GAN with gradient GRADIENTS

penalty (WGAN-GP) (Gulrajani et al., 2017). As a part of the synthetic experiment, we demonstrate the
empirical effectiveness of the estimated gradient. During

3.2.3. THE NECESSITY OF THEMEDIATOR the training of CoT model, we record the statistics of the

An interesting problem is to ask why we need to train agradient with respect to model parameters estimated by
mediator by mixing the samples from both sourGeand ~ Pack-propagating Jg( ) andr Jq( ), including the
P, instead of directly training a predictive mod&lon the ~ Mean and log variance of such gradients.

training set via MLE. There are basically two points t0\ye are mainly interested in two properties of the estimated
interpret this. gradients, which can be summarized as:

To apply the efcient training objective Eqg. (13), one
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Table 1.Likelihood-based benchmark and time statistics for synthetic Turing test. *-(MLE)' means the best performance is acquired
during MLE pre-training.

MODEL NLL oracle NLLtest (FINAL/BEST) BESTNLLoracle + NLLest TIME/EPOCH
MLE 9.08 8.97/7.60 9.43 +7.67 16.14 0.97s
SEQGAN(YU ET AL., 2017) 8.68 10.10/-(MLE) - (MLE) 817.64 5:41s
RANKGAN(LIN ET AL., 2017) 8.37 11.19/-(MLE) - (MLE) 1270 13:.01s
MALIGAN(CHE ET AL., 2017) 8.73 10.07/-(MLE) - (MLE) 741:31 1:45s
SCHEDULED SAMPLING . .

(BENGIO ET AL, 2015) 8.89 8.71/-(MLE) - (MLE) 3254 1:14s
PROFESSORFORCING . .

(LAMB ET AL ., 2016) 9.43 8.31/-(MLE) - (MLE) 487:13 0:95s
CoT (OURY9) 8.19 8.03/7.54 8.19 + 8.03 53194 1.01s

(a) JSD of SeqGAN (b) NLLoracle Of CoT (c) JSD of CoT

Figure 2.Curves of evaluation on JSD, Nblsce during iterations of CoT under different training settings. To show the hyperparameter
robustness of CoT, we compared it with a typical language GANSeqGAN (Yu et al., 2017).

Bias Obviously, r J3°( ) is exactly the original 4.1.2. DSCUSSION
gradient which is unbiased towards the minimization
of Eq. (13). If the estimated gradient JJ°( ) is
highly biased, the cosine similarity of the average
of r J3°( ) andr Jg°( ) would be close to 0.0,
otherwise it would be close to 1.0. To investigate
this, we calculate the cosine similarity of expected
r 390 )andr Jg°().

Computational Ef ciency Although in terms of time cost
per epoch, CoT does not achieve the state-of-the-art, we
do observe that CoT is remarkably faster than previous
language GANs. Besides, consider the fact that CoT is a
sample-based optimization algorithm, which involves time
cost in sampling from the generator, this result is acceptable.
The result also veri es our claim that CoT has the same
order {.e. the time cost only differs in a constant multiplier
or extra lower order term) of computational complexity as

Variance We calculate the log variance of J$°( ) ~ MLE.

andr J5*°( ') in each dimension, and compute the Hyper-parameter Robustness We perform a hyper-

average log variance of each variance. In the gure, 10y, 2 meter robustness experiment on synthetic data exper-

better illustrate _the comparison, we plot the advantaggment. When compared with the results of similar experi-

of mean log variance of Jg*°( ) overr J@0(). If  onie asin SeqGAN (Yu et al., 2017), our approach shows

the variance of the estimated gradient is lower, such ggg5 sensitivity to hyper-parameter choices, as shown in

statistic would be steadily positive. Figure 2. Note that in all our attempts, the curves of the
evaluated JSD of SeqGAN fail to converge.

To calculate these statistics, we sample 3,000 sequenceglf-estimated Training Progress Indicator Like the
from the generator and calculate the average gradient undgfitic loss,i.e. estimated Earth Mover Distance, in WGANSs,
each settings every 100 iterations during the training of thgve nd that the training loss of the mediator (9), namely
model. The results are shown in Figure 3. The estimate@lalanced NL| can be a real-time training progress indicator
gradient of our approach shows both properties of low biags shown in Figure 4. Speci cally, in a wide range, balanced
and effectively reduced variance.
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(a) Curves of cosine similarity of averaged Iy Jg ()
and 1g.J;°(0) during training.

(b) Curves of log variance reduction per dimension of
rng'o(H) compared to I J;-O(e)

Figure 3. Empirical study on bias and variance comparison.

NLL is a good estimation of real J.SD(GkP) with a steady
translation, namely, 2 N LLpgiancea = 2JSD(GKP) +
H(G) + H(P).

4.2. TextCoT: Zero-prior Long & Diverse Text
Generation

As an important sequential data modeling task, zero-prior
text generation, especially long and diversified text genera-
tion, is a good testbed for evaluating the performance of a
generative model.

Following the experiment proposed in LeakGAN (Guo et al.,
2017), we choose EMNLP 2017 WMT News Section as our
dataset, with maximal sentence length limited to 51. We pay
major attention to both quality and diversity. To keep the
comparison fair, we present two implementations of CoT,
namely CoT-basic and CoT-strong. As for CoT-basic, the
generator follows the settings of that in MLE, SeqGAN,
RankGAN and MaliGAN. As for CoT-strong, the generator
is implemented with the similar architecture in LeakGAN.

For quality evaluation, we evaluated BLEU on a small batch
of test data separated from the original dataset. For diver-
sity evaluation, we evaluated the estimated Word Mover
Distance (Kusner et al., 2015), which is calculated through

(a) Curves of JSD(GKP) during training for MLE, Se-
qGAN and CoT.

(b) Curves of balanced NLL and real JSD. Both results
are from synthetic data experiments.

Figure 4. Training progress curves indicated by different values.

training a discriminative model between generated samples
and real samples with 1-Lipschitz constraint via gradient
penalty as in WGAN-GP (Gulrajani et al., 2017). To keep
it fair, for all evaluated models, the architecture and other
training settings of the discriminative models are kept the
same.

The results are shown in Table 2 and Table 3. In terms of
generative quality, CoT-basic achieves state-of-the-art per-
formance over all the baselines with the same architecture-
level capacity, especially the long-term robustness at n-gram
level. CoT-strong using a conservative generation strategy,
i.e. setting the inverse temperature parameter « higher than
1, as in (Guo et al., 2017) achieves the best performance
over all compared models. In terms of generative diversity,
the results show that our model achieves the state-of-the-art
performance on all metrics including NLL, 4, which is the
optimization target of MLE.

Implementation Details of eWMD To calculate eWMD,
we adopted a multi-layer convolutional neural network as
the feature extractor. We calculate the gradient w.rf. the
one-hot representation O, of the sequence s for gradient
penalty. The training loss of the Wasserstein critic f,, can



