
Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction

Leveraging Low-Rank Relations Between Surrogate Tasks in Structured
Prediction: Supplementary Material
The supplementary material is organized as follows:

• In Appendix A we show how the loss trick for both the vector-valued and multitask SELF estimator is derived.

• In Appendix B we carry out the theoretical analysis for trace norm estimator in the vector-valued setting.

• In Appendix C we prove the theoretical results characterizing the generalization properties of the SELF multitask
estimator.

• In Appendix D we recall some results that are used in the proofs of previous sections.

• In Appendix E more details on the equivalence between Ivanov and Tikhonov regularization are provided.

A. Loss Trick(s)
In this section we discuss some aspects related to the loss trick of the SELF framework when considering different
vector-valued or MTL estimators.

A.1. Loss Tricks with Matrix Factorization

In this section we provide full details of the loss trick for trace norm regularization partly discussed in Section 3. To fix the
setting, recall that we are interested in studying the following surrogate problem

min
G∈HY⊗HX

1

n

n∑

i=1

‖Gφ(xi)− ψ(yi)‖2HY + λ‖G‖∗. (19)

Theorem 2 (Loss Trick for Trace Norm). Under Asm. 1, let M,N ∈ Rn×r and (Ak, Bk) be the k-th iterate of gradient
descent on Eq. (12) from A0 =

∑n
i=1 φ(xi) ⊗M i and B0 =

∑n
i=1 ψ(yi) ⊗ N i, with M i, N i denoting the i-th rows of

M and N respectively. Let ĝk : X → HY be such that ĝk(·) = AkB
∗
kφ(·). Then, the structured prediction estimator

f̂k = d ◦ ĝk : X → Y with decoding d in Eq. (5) is such that

f̂k(x) = argmin
y∈Y

n∑

i=1

αtn
i (x) `(y, yi)

for any x ∈ X , with αtn(x) ∈ Rn the output of Alg. 1 after k iterations starting from (M0, N0) = (M,N).

Proof. We show the proof in the finite dimensional setting first and then note how it is valid in the infinite dimensional case
as well. Assume X = Rd andHY = RT . Let (xi, yi)

n
i=1 be the training set and denote by X the Rn×d matrix containing

the training inputs xi, i = 1, . . . , n and Y the Rn×T matrix whose rows are ψ(yi), i = 1, . . . , n. Denote by KX the matrix
XX> and by KY the matrix Y Y >.

Using the variational form of trace norm, problem (19) can be rewritten as

min
A∈Rd×r,B∈RT×r

1

n
‖Y −XAB>‖2 + λ(‖A‖2HS + ‖B‖2HS), (20)

where r ∈ N in a further hyperparameter of the problem. In the following we will absorb the factor 1/n in the hyperparameter
λ.

We first show that starting gradient descent algorithm with A0 := X>M0 for some matrix M0 ∈ Rn×r and B0 := Y >N0

for some matrix N0 ∈ Rn×r, then at every iteration Ak := X>Mk and Bk := Y >Nk.

Let us set
L(A,B) := ‖Y −XAB>‖2 + λ(‖A‖2HS + ‖B‖2HS);

the gradients of L with respect to A and B are given by
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1) ∇AL(A,B) = X>(XAB> − Y )B + λA

2) ∇BL(A,B) = (XAB> − Y )>XA+ λB.

We show that Ak := X>Mk and Bk := Y >Nk by induction. Assume it is true for k and show it holds for k + 1; denoting
by ν the stepsize, we have

Ak+1 = Ak − ν∇AL(Ak, Bk) = Ak − ν(X>(XAkB
>
k − Y )Bk + λAk)

= X>Mk − ν(X>XX>MkB
>
k Bk −X>Y Bk)− νλX>Mk

= X>((1− λν)Mk − ν(KXMkB
>
k Bk − Y Bk)

= X>
(
(1− λν)Mk − ν(KXMkN

>
k KYNk −KYNk)

)
,

and hence Ak+1 = X>Mk+1

Mk+1 = (1− λν)Mk − ν
(
KXMkN

>
k KYNk −KYNk

)
. (21)

As for B, assume Bk = Y >Nk:

Bk+1 = Bk − ν∇BL(Ak, Bk)

= Bk − ν((XAkB
>
k − Y )>XAk + λBk)

= Y >Nk − ν(Y >NkA
>
k X
>XAk − Y >XAk)− νλY >Nk

= Y >((1− λν)Nk − ν(Nk(KXMk)>KXMk −KXMk))

and hence Bk+1 = Y >Nk+1 with

Nk+1 = (1− λν)Nk − ν(NkM
>
k K

>
XKXMk −KXMk). (22)

Then, denote by M and N the limits of Mk and Nk. Given a new x, the estimator is

ĝk(x) = xX>MkN
>
k Y.

Expanding the product we can rewrite

ĝk(x) =

n∑

i=1

αtn
i (x)ψ(yi), αtn(x) = NkM

>
k Xx

> = NkM
>
k vx,

where vx = Xx> ∈ Rn. Let d be the decoding map defined by

d(h) = argmin
y∈Y

〈ψ(y), V h〉.

Then

f̂k(x) = d ◦ ĝk(x) = argmin
y∈Y

n∑

i=1

αtn
i (x)〈ψ(y), V ψ(yi)〉 = argmin

y∈Y

n∑

i=1

αtn
i (x)`(y, yi).

Note that in order to obtain the estimator ĝk, only the access to Mk and Nk is needed. Also, examining the updates for Mk

and Nk outlined in (21) and (22) we note that the data are accessed through KX and KY only, which are kernels on input and
output respectively. This leads to a direct extension of the argument in the infinite dimensional setting, where the RKHSs
HX andHY on input and output spaces are infinite dimensional Hilbert spaces.
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A.2. Loss Trick in the Multitask Setting

We now turn to the multitask case.

We recall the surrogate problem with trace norm regularization, i.e.

min
G∈RT⊗HX

1

T

T∑

t=1

1

nt

nt∑

i=1

‖Gtφ(xit)− ψ(yit)‖2 + λ‖G‖∗. (23)

Proposition 6. Let kX : X × X → R be a reproducing kernel with associated RKHS HX . Let ĝ = Ĝφ(·) be the solution
of problem (23), denote by ĝt, t = 1, . . . , T its components. Then the loss trick applies to this setting, i.e. the estimator
f̂ = d ◦ ĝ with dT as in Eq. (16), is equivalently written as

f̂(x) = argmin
c∈C

T∑

t=1

nt∑

i=1

αtn
it (x)`(ct, yit), (24)

for some coefficients αit which are derived in the proof below.

Proof. Assume X = Rd and HY = RT for the sake of clarity, so that Gφ(x) = Gx. For any t = 1, . . . , T , let
{(xit, yit)}nti=1, be the training set for the tth task.

Denote by X ∈ Rn×d the matrix containing the training inputs xit, and by Y ∈ Rn×T the matrix whose rows are ψ(yit);
denote by Xt the nt × d matrix containing training inputs of the tth task and by Yt the nt × 1 vector with entries ψ(yit)
i = 1, . . . , nt. We rewrite (23) using the variational form of the trace norm:

min
A∈Rd×r,B∈RT×r

‖Q� (Y −XAB>)‖2 + λ(‖A‖2HS + ‖B‖2HS), (25)

where r ∈ N is now a hyperparameter and Q is a mask which contains zeros in correspondence of missing data. The
expression above is also equivalent to

min
A∈Rd×r,B∈RT×r

1

T

T∑

t=1

(
1

nt
‖XtABt − Yt‖2 + λ(‖Bt‖2HS + ‖A‖2HS)

)
,

where Bt denotes the tth row of B, i.e. Bt is a 1 × r vector. Thanks to this split, we can update B by updating its rows
separately, via (we omit factors 2 which would come from derivatives)

Bt,k+1 = Bt,k − ν
(
n−1t (Bt,kA

>
k X
>
t − Y >t )XtAk + λBt,k

)
.

Initialising Bt,0 = Y >t Nt,0 for some matrix Nt,0 ∈ Rnt×r, gradient descent updates preserve the structure, and for each k,
Bt,k = Y >t Nt,k. Indeed,

Bt,k+1 = Bt,k − ν
(
n−1t (Bt,kA

>
k X
>
t − Y >t )XtAk + λBt,k

)

= Y >t Nt,k − ν
(
n−1t (Y >t Nt,kA

>
k X
>
t − Y >t )XtAk + λY >t Nt,k

)

= Y >t
(
(1− νλ)Nt,k − νn−1t (Nt,kA

>
k X
>
t XtAk −XtAk)

)

= Y >t Nt,k+1

where

Nt,k+1 = (1− νλ)Nt,k − νn−1t (Nt,kA
>
k X
>
t XtAk −XtAk).

Let us now focus on updates of A, and then combine the two. Set

L(A,B) := ‖Q� (Y −XAB>)‖2 + λ

(
‖A‖2HS + ‖B‖2HS

)
.
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Note that the gradient with respect to A reads as ∇AL(A,B) = X>(Q � (XAB> − Y ))B + λA. Hence, initialising
A0 = X>M0, each iterate Ak has the form X>Mk and it is possible to perform updates on Mk only as in the proof of
Thm. 2, via

Mk+1 = (1− λν)Mk −
(
(Q� (XX>MkB

>
k − Y )Bk

)
.

Let us analyse the term (Q� (XX>MkB
>
k − Y ))Bk: leveraging the structure of the mask,

(Q� (XX>MkB
>
k − Y ))Bk = [S>1 , . . . , S

>
T ]> (26)

where St is a nt × r matrix equal to

St = XtX
>MkB

>
t,kBt,k = XtX

>MkN
>
t,kYtY

>
t Nt,k.

At convergence, we will have A = X>M and Bt = Y >t Nt for t = 1, . . . , T . Hence, the tth component of the estimator is
given by

ĝt(x) = xAB>t = xX>MN>t Yt =

nt∑

i=1

αtn
it (x)ψ(yit), αtn

t (x) = NtM
>Xx>.

Then, the estimator f̂N , with N = (n1, . . . , nT ) is given by

f̂N (x) = argmin
c∈C

T∑

t=1

〈ct, V ĝt(x)〉 = argmin
c∈C

T∑

t=1

nt∑

i=1

αtn
it (x)〈ct, V ψ(yit)〉 = argmin

c∈C

T∑

t=1

nt∑

i=1

αtn
it (x)`(ct, yit),

and hence the loss trick holds.

A.3. Remark on the lack of loss trick for regularizers via positive semidefinite operator

Assume X = Rd, HY = RT and let Y be the n × T matrix containing ψ(yi) in its rows. Given A ∈ RT×T symmetric
positive definite, the surrogate problem with regularizer tr(GAG>) reads as

1

n
‖Y −XG‖2 + λtr(GAG>).

We omit the factor 1/n as it is does not affect what follows. The problem above has the following solution (see for instance
(Alvarez et al., 2012))

vec(G) = (I ⊗X>X + λA⊗ I)−1(I ⊗X>)vec(Y ).

This can be rewritten as

vec(G) = (A−1/2 ⊗ I)(A−1 ⊗X>X + λI)−1(A−1/2 ⊗X>)vec(Y )

= (A−1 ⊗X>)(A−1 ⊗K + λI)−1vec(Y ),

where K = XX> is the kernel matrix. Setting vec(M(Y )) = (A−1 ⊗K + λI)−1vec(Y ),

vec(G) = (A−1 ⊗X>)vec(M(Y )) = vec(X>M(Y )A−>) = vec(X>M(Y )A−1),

since A is symmetric. Then G = X>M(Y )A−1. The decoding procedure yields

f̂(x) = d(ĝ(x)) = argmin
y∈Y

〈Y, V ĝ(x)〉 = argmin
y∈Y

〈Y, V A−1M(Y )>vx〉,

and due to the product V A−1 we cannot retrieve the loss function, i.e. the loss trick.

Now, let us distinguish the following cases
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1. Y has finite cardinality;

2. Y has not finite cardinality,HY is infinite dimensional or ψ and V are unknown.

In the first case, let us set N = {1, . . . , |Y|} and HY = R|Y|. Let q : Y → N be a one-to-one function and for y ∈ Y set
Y = eq(y) where ei denoted the ith element of the canonical basis of R|Y|. Also, set V ∈ R|Y|×|Y| the matrix with entries
Vij = `(q−1(i), q−1(j)). Then, since A is a known matrix, ψ and V are defined as above, the estimator f̂ can be retrieved
despite the lack of loss trick.

In the second case, it is not clear how to manage the operation V A−1 since V is unknown and also, both V and A
are bounded operators from an infinite dimensional space to itself. While in the standard SELF framework, the infinite
dimensionality is hidden in the loss trick, and there is no need to explicitly deal with infinite dimensional objects, here it
appears to be necessary due to the action of A.

B. Theoretical Analysis
Theorem 3. Under Asm. 2, let Y be a compact set, let (xi, yi)

n
i=1 be a set of n points sampled i.i.d. and let ĝ(·) = Ĝφ(·)

with Ĝ the solution of Eq. (13) for γ = ‖G∗‖∗. Then, for any δ > 0

R(ĝ)−R(g∗) ≤ (mY + M)

√
4 log r

δ

n
+O(n−1), (14)

with probability at least 1− δ, where

M = 2mX‖C‖1/2op ‖G∗‖2∗ + mXR(g∗)‖G∗‖∗, (15)

with r a constant not depending on δ, n or G∗.

Proof. We split the error as follows:

R(ĝ)−R(g∗) ≤R(ĝ)− R̂(ĝ) + R̂(ĝ)− R̂(gγ∗)

+R̂(gγ∗)−R(gγ∗) +R(gγ∗)−R(g∗).

Now, by definition of ĝ the term R̂(ĝ)− R̂(gγ∗) is negative. Also, denoting by ρt|X the marginal on X of the probability
measure ρt,

R(gγ∗)−R(g∗) =

∫

X
‖Gγ∗φ(x)−G∗φ(x)‖2HY dρX (x) = inf

{G∈Gγ}
‖Gφ(x)−G∗φ(x)‖2L2(ρX ) (27)

≤ ‖
( γ

‖G∗‖∗
)
G∗φ(x)−G∗φ(x)‖2L2(ρX ) ≤

(
1− γ

‖G∗‖∗

)2
‖G∗φ‖2L2(ρX ) (28)

≤
(

1− γ

‖G∗‖∗

)2
mX‖G∗‖2HS ≤ (‖G∗‖∗ − γ)2m2

X . (29)

It remains to bound R1 := R(ĝ)− R̂(ĝ) and R2 := R̂(gγ∗)−R(gγ∗). Since

R1 +R2 ≤ 2 sup
G∈Gγ

|R̂(G)−R(G)|,

we just have to bound the term on the right hand side.

Denote

C = Eφ(x)⊗ φ(x), Ĉ =
1

n

n∑

i=1

φ(xi)⊗ φ(xi)

Z = Eψ(y)⊗ φ(x), Ẑ =
1

n

n∑

i=1

ψ(yi)⊗ φ(xi).
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For any operator G inHY ⊗HX , we have

|R̂(G)−R(G)| =
∣∣∣∣∣
1

n

n∑

i=1

‖ψ(yi)−Gφ(xi)‖2H − E‖ψ(y)−Gφ(x)‖2H

∣∣∣∣∣

=

∣∣∣∣∣
1

n

n∑

i=1

(
〈G∗G,φ(xi)⊗ φ(xi)〉HS − 2 〈G,ψ(yi)⊗ φ(xi)〉HS + ‖ψ(yi)‖2HY

)

− E
(
〈G∗G,φ(x)⊗ φ(x)〉HS − 2 〈G,ψ(y)⊗ φ(x)〉HS + ‖ψ(y)‖2HY

)
∣∣∣∣∣

=

∣∣∣∣∣
〈
G∗G, Ĉ − C

〉
HS
− 2

〈
G, Ẑ − Z

〉
HS

+
1

n

n∑

i=1

‖ψ(yi)‖2HY − E‖ψ(y)‖2HY

∣∣∣∣∣

≤ ‖G‖2HS‖C − Ĉ‖op + 2‖G‖∗‖Z − Ẑ‖op +

∣∣∣∣∣E‖ψ(y)‖2HY −
1

n

n∑

i=1

‖ψ(yi)‖2HY

∣∣∣∣∣ .

In the last inequality we used that ‖G∗G‖∗ = ‖G∗G‖HS = ‖G‖2HS in the first part. In the following we bound ‖C − Ĉ‖op
and ‖Z − Ẑ‖op, in two different steps.

STEP 1 Let us start with ‖C − Ĉ‖op. We leverage the result in (Minsker, 2017) on Bernstein’s inequality for self adjoint
operators, which are recalled in Lemma 11 below. Let us set

Xi := (φ(xi)⊗ φ(xi)− C)/n

and note that E(Xi) = 0. Also, resolving the square we have that

E(X2
i ) =

1

n2
E(〈φ(xi), φ(xi)〉φ(xi)⊗ φ(xi)− 2φ(xi)⊗ φ(xi)C + C2) =

1

n2
E(m2

Xφ(xi)⊗ φ(xi))− C2,

and hence (we assume mX ≥ 1)

‖
n∑

i=1

EX2
i ‖ ≤

1

n
(m2

X‖C‖op + ‖C‖2op) ≤ 2m2
X

n
‖C‖op =: σ2,

Since ‖φ(xi)‖ ≤ mX for any i = 1, . . . , n, we get

‖Xi‖ ≤
m2
X + ‖C‖op

n
≤ 2m2

X

n
:= U.

Set

r̄1 :=
tr
(∑n

i=1 EX2
i

)

‖∑n
i=1 EX2

i ‖op
.

Note that the quantity above is the effective rank of
∑n
i=1 EX2

i . With σ2 and U as above, Lemma 11 yields

‖C − Ĉ‖op ≤
4

n

(m2
X

3
ln
(14r̄1

δ

))
+

√
4m2

X‖C‖op
n

ln
(14r̄1

δ

)

with probability greater or equal to 1− δ.
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STEP 2 As for ‖Z − Ẑ‖op we proceed in a similar way: let Xi := (ψ(yi)⊗ φ(xi)− Z)/n. Then,

‖Xi‖ ≤
mYmX + ‖Z‖op

n
≤ 2mXmY

n
.

Also,

EX∗i Xi =
1

n2
E[(φ(xi)⊗ ψ(yi)− Z∗)(ψ(yi)⊗ φ(xi)− Z)] (30)

=
1

n2
(E(〈ψ(yi), ψ(yi)〉φ(xi)⊗ φ(xi))− Z∗Z) � 2

n2
E(〈ψ(yi), ψ(yi)〉φ(xi)⊗ φ(xi)). (31)

Then

‖
n∑

i=1

EX∗i Xi‖op ≤
2

n
‖E(〈ψ(y), ψ(y)〉φ(x)⊗ φ(x))‖op.

Applying Lemma 14, we obtain

‖
n∑

i=1

EX∗i Xi‖op ≤
2m2

X

n
(‖G∗‖2HS‖C‖op +R(g∗)).

Similarly,

EXiX
∗
i =

1

n2
E[(ψ(yi)⊗ φ(xi)− Z)(φ(xi)⊗ ψ(yi)− Z∗)]

=
1

n2
(E(〈φ(xi), φ(xi)〉ψyi)⊗ ψ(yi))− ZZ∗) �

2

n2
E(〈φ(xi), φ(xi)〉ψ(yi)⊗ ψ(yi))

� 2

n2
m2
XE(ψ(yi)⊗ ψ(yi))

and

‖
n∑

i=1

EXiX
∗
i ‖op ≤

2m2
X

n
‖E(ψ(y)⊗ ψ(y))‖op.

Applying Lemma 13, we conclude

‖
n∑

i=1

EXiX
∗
i ‖op ≤

2m2
X

n
(‖G∗‖2HS‖C‖op +R(g∗)).

Hence both ‖∑n
i=1 EXiX

∗
i ‖op and ‖∑n

i=1 EX∗i Xi‖op are bounded by 2m2
X
n (‖G∗‖2HS‖C‖op +R(g∗)).

Moreover, let

r̄2 = max

(
tr(
∑n
i=1 EXiX

∗
i )

‖∑n
i=1 EXiX∗i ‖op

,
tr(
∑n
i=1 EX∗i Xi)

‖∑n
i=1 EX∗i Xi‖op

)
,

which corresponds to the maximum between effective ranks of
∑n
i=1 EXiX

∗
i and

∑n
i=1 EX∗i Xi.

Bernstein’s inequality shown in (Minsker, 2017) (and recalled in Lemma 12) gives

‖Z − Ẑ‖op ≤
4

n

(mXmY

3
ln
(28r̄2

δ

))
+

√
2m2

X (‖G∗‖2HS‖C‖op +R(g∗))

n
ln
(28r̄2

δ

)
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with probability greater or equal to 1− δ. Splitting the second term we see that

‖Z − Ẑ‖op ≤
4

n

(mXmY

3
ln
(28r̄2

δ

))
+
(
‖G‖HS‖C‖

1
2
opmX + mX

√
R(g∗)

)√ 2

n
ln
(28r̄2

δ

)
.

STEP 3. Finally, by Hoeffding inequality
∣∣∣∣∣E‖ψ(y)‖2HY −

1

n

n∑

i=1

‖ψ(yi)‖2HY

∣∣∣∣∣ ≤ mY

√
ln
(2

δ

) 1

n

with probability at least 1− δ.

FINAL STEP. We have now all the bounds that we need. By taking r = max(r̄1, r̄2) and performing an intersection bound
on the three parts we conclude

|R̂(G)−R(G)| ≤ γ2
(A
n

+
B√
n

)
+ γ
(A′
n

+
B′√
n

)
+ mY

√
ln
(2

δ

) 1

n
(32)

with probability greater or equal than 1− 3δ, with

A = 4 ln
(28r

δ

)m2
X

3
, B = (2 +

√
2)mX‖C‖

1
2
op

√
ln
(28r

δ

)

A′ = 4 ln
(28r

δ

)mXmY

3
, B′ = mX

√
2R(g∗)

√
ln
(28r

δ

)
.

Combining with the approximation error in Eq. (27), we obtain

R(ĝ)−R(g∗) ≤ γ2
(A
n

+
B√
n

)
+ γ
(A′
n

+
B′√
n

)
+

√
ln
(2

δ

)m2
Y

n
+ (‖G∗‖∗ − γ)2m2

X .

In principle, starting from the bound above we should optimize with respect to γ to find the optimal value, which will be
between 0 and ‖G∗‖∗. Here we consider the simpler case where γ = ‖G∗‖∗. Isolating the faster terms, the bound above
becomes

R(ĝ)−R(g∗) ≤
‖G∗‖2∗√

n

(
mX‖C‖

1
2
op(2 +

√
2) + ‖G∗‖∗mX

√
2R(g∗)

)√
ln
(28r

δ

)
+ mY

√
ln
(2

δ

) 1

n

Rearranging we get

R(ĝ)−R(g∗) ≤
‖G∗‖∗√

n

[(
(
√

2 + 1)mX‖G∗‖∗‖C‖
1
2
op + mX

√
R(g∗)

)√
2 ln

(28r

δ

)]
+ mY

√
ln
(2

δ

) 1

n
(33)

with probability greater or equal to 1− 3δ. Bounding ln
(
2
δ

)
with ln

(
28r
δ

)
we get

R(ĝ)−R(g∗) ≤ (M + mY)

√
ln( r

δ )

n
+O(n−1)

where M = (2 +
√

2)mX‖G∗‖2∗‖C‖
1
2
op +

√
2‖G∗‖∗mXR(g∗). In the main body of the paper we bound it as

R(ĝ)−R(g∗) ≤ (M + mY)

√
4 ln( r

δ )

n
+O(n−1)

with M = 2mX‖G∗‖2∗‖C‖
1
2
op + ‖G∗‖∗mXR(g∗) to make it neater.
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Comparison with Hilbert-Schmidt regularization. The goal of this remark is a comparison between the constants in the
bound for the trace norm estimator and in the bound we would obtain with Hilbert-Schmidt estimator.

Bound for HS-regularization. We show here the bound obtained with Hilbert-Schmidt regularization. In this case,
Gγ := {g(·) = Gφ(·) | ‖G‖HS ≤ γ}. Note that if G is a Hilbert-Schmidt operator, then G∗G is a trace norm operator.

Therefore, the term
〈
G∗G, Ĉ − C

〉
HS

can be bounded as before:

‖C − Ĉ‖op ≤
4

n

(m2
X

3
ln
(14r̄1

δ

))
+

√
4m2

X‖C‖op
n

ln
(14r̄1

δ

)

On the other hand, for the second term
〈
G, Ẑ − Z

〉
HS

we have

∣∣∣
〈
G, Ẑ − Z

〉
HS

∣∣∣ ≤ ‖G‖HS‖Ẑ − Z‖HS.

Now, in order to bound ‖Ẑ − Z‖HS, we note that ‖Z‖2HS ≤ m2
XE‖ψ(y)‖2HS = m2

X tr(CY ). Proceeding in a similar way as in
Lemma 13, we obtain that tr(CY ) ≤ R(g∗) + m2

X‖G∗‖HS and hence ‖Z‖2HS ≤ m2
XR(g∗) + m4

X‖G∗‖2HS. From Lemma 2 in
(Smale & Zhou, 2007),

‖Ẑ − Z‖HS ≤
√

2(m2
XR(g∗) + m4

X‖G∗‖2HS)

n

√
ln
(2

δ

)
+O(n−1).

Finally, no difference holds for the last term
∣∣∣E‖ψ(y)‖2HY − 1

n

∑n
i=1 ‖ψ(yi)‖2HY

∣∣∣. Hence, combining the three parts and

bounding ln( 2
δ ) with ln( 14r

δ ), we get

R(ĝHS)−R(g∗) ≤
‖G∗‖HS√

n

(
‖G∗‖HS‖C‖

1
2
op2κx +

√
2m2

X‖G∗‖HS + mX

√
2R(g∗) + mY

)√
ln
(14r

δ

)
+O(n−1). (34)

Note that this bound slightly refines the excess risk bounds for HS regularization provided in (Ciliberto et al., 2016).

Comparison and discussion. Let us compare the bound with HS regularization in Eq. (34) with the bound for the trace
norm estimator that we derived in the proof of Thm. 3:

R(ĝ)−R(g∗) ≤
‖G∗‖∗√

n

(
‖G∗‖∗‖C‖

1
2
opmX + mX

√
2R(g∗) + mY

)√
ln
(28r̄

δ

)
+O(n−1).

To make the comparison easier, we isolate the constants in the bounds:

HS: 2mX‖G∗‖2HS‖C‖
1
2
op +

√
2mX‖G‖2HS + mXR(g∗)‖G∗‖HS + mY versus

TN: (2 +
√

2)mX‖G∗‖2∗‖C‖
1
2
op + mXR(g∗)‖G∗‖∗ + mY .

We can summarize the cases as below.
• If ‖G∗‖HS � ‖G∗‖∗, then the TN bound gives no advantage over the HS one.

•Whenever ‖G∗‖HS and ‖G∗‖∗ are of the same order, our result shows an advantage in the constant of the bound: indeed,

while in trace norm case, the norm ‖G∗‖∗ is mitigated by ‖C‖
1
2
op, in the HS case is it not, because of the extra term

‖G∗‖2HSmX . Note that ‖C‖op ≤ mX and the gap between the two can be significant: for instance, if C is the covariance
operator of a uniform distribution on a d-dimensional unit sphere, ‖C‖op = 1/d while mX = 1. Hence the entity of the
improvement depends on how smaller ‖C‖op is with respect to tr(C).
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The point above holds true when the other quantities (mY , ‖G‖∗R(G∗)) in the constant do not dominate. However, this is
reasonable to expect:
-R(g∗) is the minimum expected risk;
-mX is 1 whenever we choose a normalized kernel on the input (Gaussian);
-mY is also typically 1: mY is such that supy∈Y ‖kY(y, ·)‖HY ≤ m2

Y where kY is a reproducing kernel on the output. Whenever
Y is finite (and hence kY(y, y′) = δy==y′ ) or the loss is smooth (and hence kY is the Abel kernel), mY = 1.

C. Theoretical Analysis: Multitask Case
We consider the general multitask learning case which allows a different loss function for each task: the goal is to minimize
the multi-task excess risk

min
f :X→C

E(f), E(f) =
1

T

T∑

t=1

∫

X×R
`t(ft(x), y)dρt(x, y),

where ρt is an unknown probability distribution on X ×R that is observed via finite samples (xit, yit)
nt
i=1, for t = 1, . . . , T .

Each `t is required to satisfy the SELF assumption in Def. 1, i.e.

`t(y, y
′) = 〈ψt(y), Vtψt(y

′)〉,

and for t = 1, . . . T mY,t is a constant such that supy∈Y ‖ψt(y)‖ ≤ mY,t. In this setting the surrogate problem corresponds
to

min
G:HX→HYT

R(G) RT (G) :=
1

T

∫

X×Y
‖ψt(y)−Gtφ(x)‖2HYdρt(x, y),

and its solution is denoted with G∗. Note that each Gt is an operator in HX ⊗ HY and G denotes the operator
from HX to HYT whose tth component is Gt, t = 1, . . . T . Formally, G =

∑T
t=1Gt ⊗ et, with (et)

T
t=1 the canonical

basis of RT . Since ‖G‖2HS =
∑
t ‖Gt‖2HS, in case of HS regularization the surrogate problem considers each task t separately.

Here we perform regularization with trace norm of the operator G. Setting Gγ = {g(·) = Gφ(·) | G : HX →
HYT is s.t. ‖G‖∗ ≤ γ}, we study the estimator ĝ given by

ĝ = argmin
g∈Gγ

1

T

T∑

t=1

1

nt

n∑

i=1

‖gt(xit)− ψt(yit)‖2HY . (35)

In the following we will consider nt = n for simplicity and denote RT with R, to avoid cumbersome notation. The
estimator ĝ satisfies the following excess risk bound:

Theorem 7. For t = 1, . . . T , let (xit, yit)
n
i=1 be an iid sample of ρt and ĝ is the solution of Eq. (35) with γ = ‖G∗‖∗.

R(ĝ)−R(g∗) ≤
1√
nT

(
‖G∗‖2∗‖C̄‖

1
2
opmX (2 +

√
2) + mX‖G∗‖∗

√
2R(G∗) + m̄Y

)√
ln
(T r
δ

)
+O((nT )−1),

with probability greater or equal then 1− 3δ, where C̄ is the average covariance operator,R(G∗) the expected true risk,

m̄Y =
√

1
T

∑
tm

2
Y,t and r a number independent of n, T, δ and G∗.

The section is devoted to the proof of this result, which is the formal version of theorem Thm. 5 in the main paper. We split
the error as follows:

R(ĝ)−R(g∗) ≤R(ĝ)− R̂(ĝ) + R̂(ĝ)− R̂(gγ∗)

+R̂(gγ∗)−R(gγ∗) +R(gγ∗)−R(g∗).
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Now, by definition of ĝ the term R̂(ĝ)− R̂(gγ∗) is negative. Also, denoting by ρt|X the marginal on X of the probability
measure ρt,

R(gγ∗)−R(g∗) =
1

T

T∑

t=1

∫

X
‖Gtγ∗φ(x)−Gt∗φ(x)‖2HY dρt|X (x) = inf

{G∈Gγ}
1

T

T∑

t=1

‖Gtφ(x)−Gt∗φ(x)‖2L2(ρt|X )

≤ 1

T

T∑

t=1

‖
( γ

‖G∗‖∗
)
Gt∗φ(x)−Gt∗φ(x)‖2L2(ρt|X ) ≤

(
1− γ

‖G∗‖∗

)2 1

T

T∑

t=1

‖Gt∗φ‖2L2(ρt|X )

≤
(

1− γ

‖G∗‖∗

)2m2
X

T
‖G∗‖2HS ≤ (‖G∗‖∗ − γ)2

m2
X

T
.

It remains to bound R1 := R(ĝ)− R̂(ĝ) and R2 := R̂(gγ∗)−R(gγ∗). Since

R1 +R2 ≤ 2 sup
G∈Gγ

|R̂(G)−R(G)|,

we just have to bound the term on the right hand side. In the following we assume nt = n for t = 1, . . . , T for clarity. Also,
the notation Eu(xt)⊗ v(yt) is to be interpreted as E(x,t)∼ρtu(x)⊗ v(y). For t = 1, . . . , T , denote

Ct = Eφ(xt)⊗ φ(xt), Ĉt =
1

n

n∑

i=1

φ(xit)⊗ φ(xit)

Zt = Eψ(yt)⊗ φ(xt), Ẑt =
1

n

n∑

i=1

ψ(yit)⊗ φ(xit).

For any operator G, we have

|R̂(G)−R(G)| =
∣∣∣∣∣

1

T

n∑

t=1

1

n

n∑

i=1

‖ψ(yit)−Gtφ(xit)‖2HY − E‖ψ(yt)−Gtφ(xt)‖2HY

∣∣∣∣∣ (36)

=

∣∣∣∣∣
1

T

T∑

t=1

1

n

n∑

i=1

(
〈G∗tGt, φ(xit)⊗ φ(xit)〉HS − 2 〈Gt, ψ(yit)⊗ φ(xit)〉HS + ‖ψ(yit)‖2HY

)
(37)

− E
(
〈G∗tGt, φ(xt)⊗ φ(xt)〉HS − 2 〈Gt, ψ(yt)⊗ φ(xt)〉HS + ‖ψ(yt)‖2HY

)
∣∣∣∣∣ (38)

=

∣∣∣∣∣
1

T

T∑

t=1

〈
G∗tGt, Ĉt − Ct

〉
HS
− 2

〈
Gt, Ẑt − Zt

〉
HS

+
1

T

T∑

t=1

1

n

n∑

i=1

‖ψ(yit)‖2HY − E‖ψ(yt)‖2HY

∣∣∣∣∣
(39)

We analyse each term separately in the following lemmas.

Lemma 8. The first term in Eq. (39) satisfies the following inequality:
∣∣∣∣∣

1

T

T∑

t=1

〈
G∗tGt, Ĉt − Ct

〉
HS

∣∣∣∣∣ ≤
1

T

4‖G‖2HS
n

(m2
X

3
ln
(T r1
δ

))
+
‖G‖2HS
T

√
4m2

X maxt ‖Ct‖op
n

ln
(T r1
δ

))

with probability 1− δ, where r1 is a constant independent of n, T,G and which is given by the problem.

Proof.

1

T

T∑

t=1

〈
G∗tGt, Ĉt − Ct

〉
HS

=
1

T
tr(G∗C) ≤ 1

T
‖G‖∗‖Cop‖,



Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction

where G =
∑T
t=1(et ⊗ et)⊗ (G∗tGt) and C =

∑T
t=1(et ⊗ et)⊗ (Ĉt − Ct). Now,

‖G‖∗ =
T∑

t=1

‖G∗tGt‖∗ =
T∑

t=1

‖GtG∗t ‖HS = ‖G‖2HS

and

‖C‖op = max
t=1,...,T

‖Ct − Ĉt‖op.

Using Lemma 11, we get

‖Ct − Ĉt‖op ≤
4

n

(m2
X

3
ln
(14r̄t

δ

))
+

√
4m2

X‖Ct‖op
n

ln
(14r̄t

δ

))

with probability greater than 1− δ. Performing an intersection bound we have that for t = 1, . . . , T

max
t=1,...,T

‖Ct − Ĉt‖op ≤
4

n

(m2
X

3
ln
( r1
δ

))
+

√
4m2

X‖Ct‖op
n

ln
( r1
δ

))

=
4

n

(m2
X

3
ln
( r1
δ

))
+

√
4m2

X maxt ‖Ct‖op
n

ln
( r1
δ

))

with probability 1− Tδ, where r1 = 14 maxt r̄t. With some abuse of notation take δ = δ/T and we get

max
t=1,...,T

‖Ct − Ĉt‖op ≤
4

n

(m2
X

3
ln
(T r1
δ

))
+

√
4m2

X maxt ‖Ct‖op
n

ln
(T r1
δ

))

with probability 1− δ.

Lemma 9.

1

T

T∑

t=1

〈
Gt, Ẑt − Zt

〉
≤ 4‖G‖∗

nT

(k1
3

ln
(28r̄

δ

))
+

mX‖G‖∗
T

√
2TR(G∗)

n
ln
( r2
δ

)
+
‖G‖2∗
T

mX

√
‖
∑

t

Ct‖op
2

n
ln
( r2
δ

)

with probability at least 1− δ, where k1 = mX maxtmY,t, and r2 is independent of G∗, δ, n and T .

Proof. Let us start with the following bound

1

T

T∑

t=1

〈
Gt, Ẑt − Zt

〉
=

1

T
tr(GZ) ≤ 1

T
‖G‖∗‖Z‖op

where Z =
∑T
t=1(Ẑt − Zt)⊗ et. To bound ‖Z‖op some extra work is needed. We aim to apply Lemma 12 again. Let us

define

Xit =
1

n

(
ψ(yit)⊗ φ(xit)− Eψ(yt)⊗ φ(xt)

)
⊗ et,

so that
∑
i,tXit = Z. Note that

‖Xit‖op ≤
maxtmXmY,t + maxt ‖Zt‖op

n
≤ 2 maxtmXmY,t

n
for any i, t.

In order to apply Lemma 12 we need to bound the following two quantities

‖
∑

i,t

EXitX
∗
it‖, ‖

∑

i,t

EX∗itXit‖.
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Note that

EXitX
∗
it =

1

n2
(
E(ψ(yit)

2φ(xit)⊗ φ(xit))− ZtZ∗t
)

∑

it

EXitX
∗
it =

1

n

∑

t

(
1

n

n∑

i=1

E(ψ(yit)
2φ(xit)⊗ φ(xit))− ZtZ∗t )

and hence

‖
∑

it

EXitX
∗
it‖op ≤

2

n
‖
∑

t

E(ψ(yt)
2φ(xt)⊗ φ(xt))‖op. (40)

A direct application of Lemma 16 yields

‖
∑

it

EXitX
∗
it‖op ≤

2m2
X

n
(TR(g∗) + ‖

∑

t

Ct‖op‖G‖2HS).

Also,

X∗itXit =
1

n2
(k(xit, xit)ψ(yit)

2 − ‖E(ψ(yt)⊗ φ(xt)‖2)et ⊗ et

and

∑

it

EX∗itXit =
1

n

∑

t

1

n

n∑

i=1

(Ek(xit, xit)ψ(yit)
2 − ‖E(ψ(yt)⊗ φ(xt)‖2)et ⊗ et

� 1

n

∑

t

(m2
XCY,t − ‖E(ψ(yt)⊗ φ(xt)‖2)et ⊗ et.

Taking the operator norm, we obtain

‖
∑

it

EX∗itXit‖op ≤
2

n
max

t=1,...,T
(m2

X‖CY,t‖op) ≤ 2m2
X

n
‖
∑

t

CY,t‖op ≤
2m2

X

n
(TR(G∗) + ‖G∗‖2HS‖

∑

t

Ct‖op), (41)

where the last inequality follows by Lemma 15.

Both‖∑it EX∗itXit‖op and ‖∑it EXitX
∗
it‖op are upper bounded by 2m2

X
n (TR(G∗) + ‖G∗‖2HS‖

∑
t Ct‖op).

Then, by Lemma 12, we have

‖Z‖op ≤
4

n

(maxtmXmY,t

3
ln
(28r̄

δ

))
+

√
2m2

X (TR(G∗) + ‖G∗‖2HS‖
∑
t Ct‖op)

n
ln
(28r̄

δ

)
,

where r̄ is the effective rank of Z. Rearranging we get

‖Z‖op ≤
4

n

(k1
3

ln
(28r̄

δ

))
+ mX

√
2TR(G∗)

n
ln
( r2
δ

)
+ ‖G‖∗mX

√
‖
∑

t

Ct‖op
2

n
ln
( r2
δ

)

where k1 = mX maxtmY,t and r2 = 28r̄.

Lemma 10. Recall that ‖ψ(yit)‖2 ≤ m2
Y,t for i = 1, . . . , n, t = 1, . . . T .

∣∣∣∣∣
1

T

T∑

t=1

1

n

n∑

i=1

‖ψ(yit)‖2HY − E‖ψ(yt)‖2HY

∣∣∣∣∣ ≤
√( 1

T

∑

t

m2
Y,t

) 1

nT
ln
(2

δ

)

with probability at least 1− δ.
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Proof. The bound follows by a direct application of Hoeffding inequality.

We are now ready to prove theorem Thm. 7.

Proof. Recall that

R(ĝ)−R(g∗) ≤ (‖G∗‖∗ − γ)2
m2
X

T
+ 2 sup

G∈Gγ
|R(Ĝ)−R(G))|.

Recall that for any G ∈ Gγ , ‖G‖∗ ≤ γ. Now, combining Eq. (39) and Lemma 8, Lemma 9 and 10, we get

R(ĝ)−R(g∗) ≤ ((‖G∗‖∗ − γ)2
m2
X

T
+ γ2

(
A

n
+

B√
n

)
+ γ

(
A′

n
+
B′√
n

)
+

√( 1

T

∑

t

m2
Y,t

) 1

nT
ln
(2

δ

)
,

where

A =
4

T

(m2
X

3
ln
(T r1
δ

))
B =

1

T

√
4m2

X max
t
‖Ct‖op ln

(T r1
δ

))
+

1

T
mX

√
2‖
∑

t

Ct‖op ln
( r2
δ

)

A′ =
4

T

(maxtmXmY,t

3
ln
( r2
δ

))
B′ =

1

T

√
2TR(G∗) ln

( r2
δ

)
.

Optimizing with respect to γ we could find the optimal parameter and compute the corresponding bound. However, in the
following we choose γ = ‖G∗‖∗, so that the approximation error is zero. In the following we will bound maxt ‖Ct‖op with
‖∑t Ct‖op and both the logarithm terms with ln(T r

δ ) for a suitable r (e.g. max(r1, r2)). Isolating the faster term we obtain

R(ĝ)−R(g∗) ≤‖G∗‖2∗mX

[√
‖∑t Ct‖op

T

2 +
√

2√
n

+
mX‖G∗‖∗

T

√
2TR(G∗)

n

]
ln
(T r
δ

)

+

√( 1

T

∑

t

m2
Y,t

) 1

nT
ln
(2

δ

)
+O((nT )−1).

Denote by C̄ the average of C1, . . . , CT , i.e. 1
T

∑
t Ct. Then,

1

T

√
‖
∑

t

Ct‖op =
1√
T
‖C̄‖

1
2
op.

Rearranging the terms we get the final bound

R(ĝ)−R(g∗) ≤
1√
nT

(
‖G∗‖2∗‖C̄‖

1
2
opmX (2 +

√
2) + mX‖G∗‖∗

√
2R(G∗) + m̄Y

)√
ln
(T r
δ

)
+O((nT )−1),

where m̄Y =
√

1
T

∑
tm

2
Y,t.
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D. Auxiliary Lemmas
In this section we recall some auxiliary results that are used in the proofs of the work. Let us recall the definition of effective
rank. Given an Hilbert spaceH let A : H → H, be a compact operator. The effective rank of A is refined as

r(A) =
trA
‖A‖op

.

Lemma 11. Let X1, . . . , Xn ∈ Cd×d a sequence of independent self adjoint random matrices such that EXi = 0, for
i = 1, . . . , n and σ2 ≥ ‖∑n

i=1 EX2
i ‖op. Assume that ‖Xi‖ ≤ U almost surely for all 1 ≤ i ≤ n and some positive U ∈ R.

Then, for any t ≥ 1
6 (U +

√
U + 36σ2),

P
(
‖

n∑

i=1

Xi‖op > t
)
≤ 14r(

n∑

i=1

EX2
i ) exp

(
− t2/2

σ2 + tU/3

)
, (42)

where r(·) denotes the effective rank.

A similar results holds true for general matrices with no requirements on self adjointness:
Lemma 12. Let X1, . . . , Xn ∈ Cd×d a sequence of independent random matrices such that EXi = 0, for i = 1, . . . , n
and σ2 ≥ max(‖∑n

i=1 EXiX
∗
i ‖op, ‖

∑n
i=1 EX∗i Xi‖op. Assume that ‖Xi‖ ≤ U almost surely for all 1 ≤ i ≤ n and some

positive U ∈ R. Then, for any t ≥ 1
6 (U +

√
U + 36σ2),

P
(
‖

n∑

i=1

Xi‖op > t
)
≤ 28d̃ exp

(
− t2/2

σ2 + tU/3

)
, (43)

where d̃ = max(r(
∑n
i=1 EXiX

∗
i ), r(

∑n
i=1 EX∗i Xi))) and r(·) denotes the effective rank.

The lemma above holds true for Hilbert Schmidt operators between separable Hilbert spaces, as shown in section 3.2 in
(Minsker, 2017).
Lemma 13. The following bound on the operator norm of the covariance operator on the output Eψ(y)⊗ ψ(y) holds true:

‖Eψ(y)⊗ ψ(y)‖op ≤ ‖G∗‖2HS‖C‖op +R(g∗).

Proof. Let us start for the identity below:

ψ(y)⊗ ψ(y) = (ψ(y)−G∗φ(x))⊗ (ψ(y)−G∗φ(x)) +G∗φ(x)⊗ (ψ(y)−G∗φ(x)) + ψ(y)⊗G∗φ(x). (44)

Taking the expectation on the right hand side we obtain

E((ψ(y)−G∗φ(x))⊗ (ψ(y)−G∗φ(x))) + EG∗φ(x)⊗ (ψ(y)−G∗φ(x)) + Eψ(y)⊗G∗φ(x).

Note that the second term is zero, since

EG∗φ(x)⊗ (ψ(y)−G∗φ(x)) =

∫

X×Y
G∗φ(x)⊗ (ψ(y)−G∗φ(x))dρ(x, y)

=

∫

X
G∗φ(x)

(∫

Y
ψ(y)dρ(y | x)−G∗φ(x)

)
dρX

and G∗φ(x) =
∫
Y φ(y)dρ(y | x). As for the last term, we have

Eψ(y)⊗G∗φ(x) =

∫

X

∫

Y
ψ(y)dρ(y | x)⊗G∗φ(x)dρX =

∫

X
G∗φ(x)⊗G∗φ(x).

Taking the operator norm we get

‖Eψ(y)⊗ ψ(y)‖op ≤ ‖E((ψ(y)−G∗φ(x))⊗ (ψ(y)−G∗φ(x)))‖op + ‖G∗CG∗∗‖HS

≤ R(g∗) + ‖G∗CG∗∗‖2HS ≤ R(g∗) + ‖G‖2HS‖C‖op.
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Lemma 14. The following bound holds true

‖E(〈ψ(y), ψ(y)〉φ(x)⊗ φ(x))‖op ≤ m2
X (‖G∗‖2HS‖C‖op +R(g∗)).

Proof. Let us rewrite E(〈ψ(y), ψ(y)〉φ(x)⊗ φ(x)) as follows
∫

X×Y
〈ψ(y), ψ(y)〉φ(x)⊗ φ(x)dρ(x, y) =

∫

X
φ(x)⊗ φ(x)

(∫

Y
〈ψ(y), ψ(y)〉dρ(y | x)

)
dρX (x). (45)

The inner integral corresponds to Ey|xtr(ψ(y)⊗ ψ(y)) = tr Ey|x(ψ(y)⊗ ψ(y)). Writing ψ(y)⊗ ψ(y) as in Eq. (44) and
integrating wrt ρ(· | x), we observe that

∫

Y
ψ(y)⊗ ψ(y)dρ(y | x) =

∫

Y
(ψ(y)−G∗φ(x))⊗ (ψ(y)−G∗φ(x))dρ(y | x)

+G∗φ(x)⊗
(∫

Y
ψ(y)dρ(y | x)−G∗φ(x)

)

+G∗φ(x)⊗ φ(x)G∗∗.

Since
∫
Y ψ(y)dρ(y | x) = G∗φ(x), the second term on the right hand side is zero and hence

tr Ey|xψ(y)⊗ ψ(y) = tr Ey|x(ψ(y)−G∗φ(x))⊗ (ψ(y)−G∗φ(x)) + tr G∗φ(x)⊗ φ(x)G∗∗.

Substituting it on the right hand side of Eq. (45) and taking the operator norm and using the triangle inequality, we obtain

‖
∫

X
φ(x)⊗ φ(x)

(∫

Y
‖ψ(y)−G∗φ(x)‖2HYdρ(y | x)

)
dρX (x)‖op

≤ m2
X

∫

X×Y
‖ψ(y)−G∗φ(x)‖2HYdρ(y, x) = m2

XR(g∗)

and

‖
∫

X
φ(x)⊗ φ(x) tr(G∗φ(x)⊗ φ(x)G∗∗)‖op ≤ ‖C‖opm2

X‖G∗‖2HS.

Combining the parts together leads to the desired inequality

‖E(〈ψ(y), ψ(y)〉φ(x)⊗ φ(x))‖op ≤ m2
X (‖G∗‖2HS‖C‖op +R(g∗)).

Lemma 15. Let CY,t denote the covariance on the output for the tth task, that is

CY,t := Eψ(yt)⊗ ψ(yt). (46)

Then the following inequality holds true

‖
∑

t

CY,t‖op ≤ ‖G∗‖2HS‖
∑

t

Ct‖op + TR(G∗). (47)

Proof. Let us start from the identity below:

ψ(yt)⊗ ψ(yt) = (ψ(yt)−Gt∗φ(xt))⊗ (ψ(yt)−Gt∗φ(xt)) +Gt∗φ(xt)⊗ (ψ(yt)−Gt∗φ(xt)) + ψ(yt)⊗Gt∗φ(xt).

Taking the expectation on the right hand side we obtain

E((ψ(yt)−Gt∗φ(xt))⊗ (ψ(yt)−Gt∗φ(xt) + EGt∗φ(xt)⊗ (ψ(yt)−Gt∗φ(xt)) + Eψ(yt)⊗Gt∗φ(xt).
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As in Lemma 13, note that the second term is zero. As for the last term, we have

Eψ(yt)⊗Gt∗φ(xt) =

∫

X

∫

Y
ψ(yt)dρt(y | x)⊗Gt∗φ(x)dρtX =

∫

X
(Gt∗φ(x))⊗ (Gt∗φ(x))dρt,X

=

∫

X
(Gt∗φ(x)⊗ φ(x)G∗t∗)ρt,X = Gt∗CtG

∗
t∗.

Therefore, summing on t and taking the operator norm we get

‖
∑

t

CY,t‖op ≤ ‖
∑

t

E((ψ(yt)−Gt∗φ(xt))
2‖op + ‖Gt∗CtG∗t∗‖HS

≤
∑

t

R(Gt∗) + ‖
∑

t

Gt∗CtG
∗
t∗‖HS ≤

∑

t

R(Gt∗) + ‖
∑

t

Gt∗
∑

s

CsG
∗
t∗‖HS

≤
∑

t

R(Gt∗) +
∑

t

‖Gt∗‖2HS‖
∑

t

Ct‖op ≤ TR(G∗) + ‖G∗‖2HS‖
∑

t

Ct‖op.

Lemma 16. The following bound holds true

‖
∑

t

E(ψt(yt)
2φ(xt)⊗ φ(xt))‖op ≤ m2

X (‖G∗‖2HS‖
∑

t

Ct‖op +R(g∗)).

Proof. It is a immediate variation of the proof of Lemma 14.

E. Equivalence between Tikhonov and Ivanov Problems for trace norm Regularization
In this section we provide more details regarding the relation between the Tikhonov regularization problem considered
in Eq. (11) and the corresponding Ivanov problem in Eq. (13). As discussed in the paper this approach guarantees that
theoretical results characterizing the excess risk of the Ivanov estimator extend automatically to the Tikhonov one.

Let (xi, yi)
n
i=1 be a training set and consider Φ : HX → Rn and Ψ : HY → Rn the operators

Φ =
n∑

i=1

ei ⊗ φ(xi) and Ψ =
n∑

i=1

ei ⊗ ψ(yi)

with ei ∈ Rn the i-th element of the canonical basis in Rn. We can write the empirical surrogate risk in compact operatorial
notation as

R̂(G) =
1

n

n∑

i=1

‖Gφ(xi)− ψ(yi)‖2HY =
1

n
‖ΦG∗ −Ψ‖2HY⊗Rn .

Proposition 17 (Representer Theorem for Trace Norm Regularization). Let Ĝ ∈ HX ⊗HY be a minimizer of

min
G∈HX⊗HY

R̂(G) + λ‖G‖∗.

Then the range of Ĝ∗ is contained in the range of Φ∗, or equivalently

Ĝ(Φ†Φ) = Ĝ,

where Φ† denotes the pseudoinverse of Φ.

The proof of this result is essentially equivalent to the one in (Thm. 3 Abernethy et al., 2009). We report it here for
completeness.
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Proof. For any G ∈ HY ⊗HX , consider the factorization

G = G0 +G⊥ with G0 = G(Φ†Φ) and G⊥ = (I − (Φ†Φ)).

Note that (Φ†Φ) ∈ HX ⊗HX corresponds to the orthogonal projector ofHX onto the range of Φ∗ inHX (equivalently onto
the span of (φ(xi))

n
i=1). By construction, we have that ΦG∗ = ΦG∗0. Hence R̂(G) = R̂(G0). However, since (Φ†Φ) is an

orthogonal projector, we have that

‖G0‖∗ = ‖G(Φ†Φ)‖∗ ≤ ‖G‖∗,

with equality holding if and only if G0 = G.

Now, if Ĝ is a minimizer of the trace norm regularized ERM we have

R̂(Ĝ0) + λ‖Ĝ0‖∗ ≥ R̂(Ĝ) + λ‖Ĝ‖∗
= R̂(Ĝ0) + λ‖Ĝ‖∗,

which implies ‖Ĝ0‖∗ ≥ ‖Ĝ‖∗.
We conclude that Ĝ = Ĝ0 = Ĝ(Φ†Φ). This corresponds to the range ofG∗ being contained in the range of Φ as desired.

Proposition 18. The empirical risk minimization for R̂(G) + λ‖G‖∗ admits a unique minimizer.

Proof. According to Prop. 17, all minimizers of the trace norm regularized empirical risk minimization belong to the set

S =
{
G ∈ HY ⊗HX

∣∣ G(Φ†Φ) = G
}
.

Hence we can restrict to the optimization problem

min
G∈S

R̂(G) + λ‖G‖∗.

Note that S is idetified by a linear relation and thus is a convex set and thus the problem above is a convex program. We now
show that on S the ERM objective functional is actually strongly convex for the case of the least-squares loss. To see this,
let us consider the Hessian of R̂(·). We have that, the gradient corresponds to

∇R̂(G) =
2

n
(GΦ∗Φ−Ψ∗Φ) ,

and therefore the Hessian is the operator∇2R̂(G) : HY ⊗HX → HY ⊗HX such that

∇2R̂(G)H =
2

n
HΦ∗Φ,

for any H ∈ HY ⊗HX (see e.g. Kollo & von Rosen, 2006). Now, we have that for any H ∈ S
〈
H,∇2R̂(G)H

〉
HY⊗HX

=
2

n
〈H,HΦ∗Φ〉HY⊗HX =

2

n
tr(H∗HΦ∗Φ).

Now, let r ≤ n be the rank of Φ and consider the singular value decomposition of Φ = UΣV ∗, with U ∈ Rn×r a matrix
with orthonormal columns V ∈ HX → Rr a linear operator such that V ∗V = I ∈ Rr×r and Σ ∈ Rr×r a diagonal matrix
with all positive diagonal elements. Then,

tr(H∗HΦ∗Φ) = tr(H∗HV Σ2V ∗) = tr(V ∗H∗HV Σ2) ≥ σ2
min‖HV ‖2HY⊗Rr ,

where σ2
min denotes the smallest singular value of Σ (equivalently, σmin is the smallest singular value of Φ greater than

zero).

Now, recall that H ∈ S. Therefore

H = H(Φ†Φ) = HV V ∗,
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which implies that

‖H‖2HY⊗HX = tr(H∗H) = tr(V V ∗H∗HV V ∗) = tr(V ∗H∗HV (V ∗V )) = tr(V ∗H∗HV ) = ‖HV ‖2HY⊗Rr ,

where we have used the orthonormality V ∗V = I ∈ Rr×r.

We conclude that
〈
H,∇2R̂(G)H

〉
HY⊗HX

≥ 2σ2
min

n
‖H‖2HY⊗HX ,

for any H ∈ S. Note that σmin > 0 is greater than zero since it is the smallest singular value of Φ greater than zero and Φ
has finite rank r ≤ n. Hence, on S, the function R̂(G) is strongly convex. As a consequence also the objective functional
R̂(G) + λ‖G‖∗ is strongly convex and thus admits a unique minimizer, as desired.

We conclude this section by reporting the result stating the equivalence between Ivanov and Tikhonov for trace norm
regularization.

In the following we will denote by Gλ the minimizer of the Tikhonov regularization problem corresponding to minimizing
R̂(G) + λ‖G‖∗ and by GIγ the minimizer of the Ivanov regularization problem introduced in Eq. (13), namely

min
‖G‖∗≤γ

R̂(G).

We have the following.

Theorem 19. For any γ > 0 there exists λ(γ) such that Gλ(γ) is a minimizer of Eq. (13). Moreover, for any λ > 0 there
exists a γ = γ(λ) > 0 such that Gλ is a minimizer of Eq. (13).

Proof. We first consider the case where, given a γ > 0 we want to relate a solution of the Ivanov regularization problem to
that of Tikhonov regularization. We will show that there exists GIγ and λ(γ) such that Gλ(γ) = GIγ . In particular we will
show that such equality holds for GIγ the solution of minimal trace norm in the set of solutions of the Ivanov problem.

Consider again the linear subspace

S =
{
G ∈ HY ⊗HX

∣∣ G = G(Φ†Φ)
}
.

We can restrict the original Ivanov problem to

min
‖G‖∗≤γ
G∈S

R̂(G).

Note that the above is still a convex program and attains the same minimum value of the original Ivanov problem in GIγ .

Moreover, we can assume γ = ‖GIγ‖∗ without loss of generality. Indeed, if γ > ‖GIγ‖∗ we still have that GIγ is a minimizer
of R̂(G) over the smaller set of operators ‖G‖∗ ≤ γ′ = ‖GIγ‖∗.
Now, consider the Lagrangian associated to this constrained problem problem, namely

L(G,λ, ν) = R̂(G) + λ(‖G‖∗ − γ) + ν(G−G(Φ†Φ)).

By Slater’s constraint qualification (see e.g. Sec. 5 in Boyd & Vandenberghe, 2004), we have that

max
λ≥0,ν

min
G∈HY⊗HX

L(G,λ, ν) = min
‖G‖∗≤γ
G∈S

R̂(G).

Denote by (λ(γ), Gλ(γ), νγ) the pair form which the saddle point of L(G,λ, γ) is attained. Note that since γ is a constant

Gλ(γ) = argmin
G∈HY⊗HX

R̂(G) + λ(γ)(‖G‖∗ − γ) + νγ(G−G(Φ†Φ)) = argmin
G∈HY⊗HX

R̂(G) + λ(γ)‖G‖∗,
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where we have made use of the representer theorem from Prop. 17, which guarantees any minimizer of R̂(G) + λ(γ)‖G‖∗
to belong to the set S and this satisfy G = G(Φ†Φ). Therefore, we have

R̂(Gλ(γ)) + λ(γ)‖Gλ,γ‖∗ − λ(γ)γ = R̂(GIγ),

recalling that γ = ‖GIγ‖∗, this implies that

R̂(Gλ,γ) + λ(γ)‖Gλ,γ‖∗ = R̂(GIγ) + λ(γ)‖GIγ‖∗.

Since by Prop. 18 the minimizer of R̂(G) + λ‖G‖∗ is unique, it follows that Gλ,γ = GIγ as desired.

The vice-versa is straightforward: let λ > 0 and Gλ be the minimizer of the Tikhonov problem. Then, for any G ∈ HY ⊗HX

R̂(Gλ) + λ‖Gλ‖∗ ≤ R̂(G) + λ‖G‖∗.

If ‖G‖∗ ≤ ‖Gλ‖∗, the inequality above implies

R̂(Gλ) ≤ R̂(G),

which implies that Gλ is a minimizer for the Ivanov problem with γ(λ) = ‖Gλ‖∗, namely Gλ = GIγ(λ) as desired.


