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Abstract
This work presents Dynamic Normalization (DN),
which is able to learn arbitrary normalization
operations for different convolutional layers in
a deep ConvNet. Unlike existing normalization
approaches that predefined computations of the
statistics (mean and variance), DN learns to
estimate them. DN has several appealing benefits.
First, it adapts to various networks, tasks, and
batch sizes. Second, it can be easily implemented
and trained in a differentiable end-to-end manner
with merely small number of parameters. Third,
its matrix formulation represents a wide range
of normalization methods, shedding light on
analyzing them theoretically. Extensive studies
show that DN outperforms its counterparts in
CIFAR10 and ImageNet.

1. Introduction
Normalization approaches are indispensable components in
recent deep neural networks (DNNs), such as batch normal-
ization (BN) (Ioffe & Szegedy, 2015), layer normalization
(LN) (Ba et al., 2016), instance normalization (IN) (Ulyanov
et al., 2016), and group normalization (GN) (Wu & He,
2018). They are often stacked after each convolutional or
fully-connected layer of a DNN to improve its optimization
and generalization ability.

However, existing normalizers have two issues. First,
they are designed manually for specific networks and
tasks. For example, BN might improve optimization for
convolutional neural networks (ConvNets) (Santurkar et al.,
2018; Luo et al., 2019b), while LN facilitates gradient
propagation in recurrent neural networks (RNNs) (Ba et al.,
2016). Second, previous deep networks employed a single
normalizer uniformly, leading to sub-optimal performance.
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For instance, BN is used after every convolutional layer of a
ResNet101 (He et al., 2016), which contains a hundred of
convolutional layers.

To address the above issues, this work presents Dynamic
Normalization (DN), which learns arbitrary normalization
operations for different layers of a DNN. DN has several
appealing benefits. (i) Diversity. It not only represents
existing normalizers including BN, IN, LN and GN, but also
learns a wide range of variants of them from training data.
For example, as shown in Fig.1(b), DN learns to divide a
batch of training samples or a set of convolutional channels
into any numbers of groups. This is contrary to previous
methods that treated the number of groups as a hyper-
parameter. (ii) Easy to implement and use. Although DN has
rich representation capacity, it is simple to implement and
train in a differentiable end-to-end manner. (iii) Versatility.
DN is applicable in various networks, tasks, and batch sizes.

This work has four main contributions. (1) We study
the problem of learning-to-normalize by Dynamic Nor-
malization (DN), which is the first approach that learns
arbitrary normalization formulations from data, without
using hand-crafted normalization layers. DN pushes the
frontier of normalization in deep learning. (2) Through
careful investigation, DN is formulated in matrix notations
that unify all previous normalizers, facilitating the usage
and understanding of them. For example, DN enables
geometric explanations of various approaches. We believe
that DN opens up new research directions to analyze
normalization methods in a holistic perspective. (3) A
Kronecker decomposition of matrix is proposed, enabling
DN to have low computation, small number of parameters,
and simple implementation as much as possible. (4)
Extensive studies in CIFAR10 (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015) demonstrate that DN
is able to outperform its counterparts.

1.1. Related Work

Normalization. The recent approaches normalize the
first two moments of the hidden representations of DNNs.
They applied Gaussian standardization to subtract mean
of the representation and dividing the centered repre-
sentation by the standard deviation. Different methods
employ different scopes to estimate the statistics, such
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as BN (Ioffe & Szegedy, 2015), LN (Ba et al., 2016), and
IN (Ulyanov et al., 2016) as shown in Fig.1(a). These
methods are typically used individually and uniformly in a
DNN, although they improve optimization and generaliza-
tion (Santurkar et al., 2018; Teye et al., 2018). In contrast,
switchable normalization (SN) (Luo et al., 2019a) selected
different normalizers for different convolutional layers from
a set of candidate methods (BN, IN, and LN). However, SN
requires to enumerate a set of manually defined approaches,
less representative than DN that provides a unified represen-
tation of normalization methods.

Network Architecture Search. DN is related to but
different from neural architecture search (NAS) (Liu et al.,
2018; Pham et al., 2018). In NAS, an architecture at time t
was sampled according to p(L), where L(Φt,Θt) is a loss
function. Let Φt denote a set of ‘control parameters’ that
describe the network architecture (e.g. operators), while let
Θt represent a set of ‘network parameters’ corresponding
to the proposed architecture (e.g. convolution kernels). The
structural learning in NAS typically iterates two stages
in turn, resembling a Markov decision process, where
the operators p(Φt+1|Φt) are searched on a validation set
and then the network parameters Θt+1 are optimized on a
training set. However, unlike NAS, the ‘control parameters’
in DN represent arbitrary normalization methods, which are
optimized jointly with the network parameters in a single
stage by using only the training set in an end-to-end way.

2. Notation and Background
This section introduces notations and background. In
general, we denote a scalar by using lowercase letter (e.g.
‘a’) and a matrix by using capital letter (e.g. ‘A’) or bold
lowercase letter (e.g. ‘a’). We introduce normalization by
using ConvNet as an example, while the discussions can be
also applied to multilayer perceptrons (MLPs) and RNNs.

Overview. Let F ∈ RN×C×H×W be a 4D tensor of hidden
feature maps, where four dimensions N , C, H and W
denote mini-batch size, number of channels, height and
width of a channel, respectively. Given a pixel h ∈ F , the
recent approaches such as BN, IN, LN, and GN assume
that h follows a normal distribution. They normalize h by
removing its mean and standard deviation. These methods
can be generally formulated as

ĥ =
h − µk√
(σk)2 + ε

, where µk =
1

|Ωk|
∑

(n,c,i,j)∈Ωk

Fncij

and (σk)2 =
1

|Ωk|
∑

(n,c,i,j)∈Ωk

(Fncij − µk)2. (1)

In Eqn.(1), ĥ is the value of h after normalization, µk and
σk are its mean and standard deviation computed by using
a certain normalizer k, k ∈ {BN, IN,LN,GN}. Ωk is a
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(b) Learned numbers of groups in 20 DN layers of ResNet18

Figure 1. (a) N,C,H, and W represent batch size, number of
channels, height and width of a channel respectively. BN in (a.1)
estimates statistics for each channel by averaging over a batch of
N samples. IN in (a.2) normalizes each channel of each sample
independently. LN in (a.3) estimates statistics for each sample
by averaging over C channels. In (b), we show an example of
ResNet18 trained with DN in CIFAR10. For a hidden layer, DN
partitions N = 128 samples in a batch and C channels of a layer
into different numbers of groups (see the right of y-axis). The
number of channels of each layer is shown in x-axis (maximum
512 channels). For instance, the penultimate layer dividesN andC
into 64 and 512 groups. The performance of ResNet18 is improved
by learning different normalizations for different layers. In (b),
‘�’ indicates the layer with shortcut connection. The layers with
kernel size 3 and 1 are indicated by bars with or without slash.

set of indices that indicates a set of pixels in F used to
estimate µk and σk. For example, Fncij ∈ F is a pixel at
location (i, j) in the c-th channel of the n-th sample. ε is
a small constant to prevent dividing by zero. Furthermore,
a scale parameter γ and a bias parameter β are adopted to
rescale and reshift the normalized features, that is, γĥ+ β.
For simplicity of notations, these two parameters are not
presented in the following narrations.

Different normalizers have different definitions of Ωk

in Eqn.(1). For instance, for BN, we have ΩBN =
{(n, i, j)|n = 1...N, i = 1...H, j = 1...W}; for IN,
ΩIN = {(i, j)|i = 1...H, j = 1...W}; and for LN
ΩLN = {(c, i, j)|c = 1...C, i = 1...H, j = 1...W}.

By taking BN as an example, its mean is com-
puted for each channel independently by µBN

c =
1

NHW

∑
(n,i,j)∈ΩBN Fncij , implying that BN averages pix-

els across height H , width W , as well as batch size
N . In contrast, IN treat each channel of each sam-
ple independently, and its mean is provided by µIN

nc =
1

HW

∑
(i,j)∈ΩIN Fncij . The other statistics can be calculated

similarly as above.
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Switchable Normalization (SN). Unlike previous ap-
proaches that estimated statistics in different scopes, SN
(Luo et al., 2019a; Shao et al., 2019) linearly combines the
statistics of existing methods. The definition of SN is

ĥ =
h −

∑
k∈{BN,IN,LN,GN,...} λ

kµk√∑
k∈{BN,IN,LN,GN,...} λ

k(σk)2 + ε
, (2)

where ∀λk ∈ [0, 1] and
∑

k∈{BN,IN,LN,GN,...}

λk = 1.

By comparing Eqn.(2) to Eqn.(1), every λk ∈ [0, 1] is an
additional parameter that represents an important ratio of
a normalizer. And the sum of all important ratios is 1.
They are learned by using the softmax function. In SN, the
important ratios for µk and σk can be different, but they are
shared in Eqn.(2) to simplify the notations.

With Eqn.(2), SN inherits benefits of all the previous
approaches by learning a weighted combination of their
statistics. However, although it demonstrates superiority
compared to individual normalizer (Luo et al., 2018), SN
has an obvious drawback: it exhaustively enumerates a set
of methods for different networks and tasks. Sec.3 resolves
this challenge by presenting dynamic normalization.

3. Dynamic Normalization (DN)
DN enables to learn arbitrary forms of normalization.

Definition. DN can be written in matrix notations. Given
the feature maps F ∈ RN×C×H×W , DN is defined by

F̂ =
F − 1

ZU
UµV 1

ZV

1
ZU
UσV 1

ZV

. (3)

Here, F and F̂ are the feature maps before and after
normalization, UµV ∈ RN×C and UσV ∈ RN×C are
two N -by-C matrixes representing the learned means and
standard deviations respectively. In Eqn.(3), the matrix
subtraction and division are applied elementwisely1 on
F . In particular, both µ and σ are N -by-C matrixes,
which are the statistics computed the same as IN. In other
words, every entry µIN

nc ∈ µ and σIN
nc ∈ σ represent the

statistics estimated independently for each channel c of each
sample n. Furthermore, we have V ∈ {0, 1}C×C and U ∈
{0, 1}N×N , which are two learnable binary matrixes. They
are shared for µ and σ to simplify notations. Moreover, ZU

and ZV are two scalars, which denote the partition numbers
to average the statistics. To ease understanding, we show the
computational graph of the forward propagation in Fig.2.

By comparing Eqn.(3) and Eqn.(2), we see that DN learns a

1Note that we have F ∈ RN×C×H×W , UµV ∈ RN×C , and
UσV ∈ RN×C . By default, the latter two matrixes would be
repeated along the dimensions of H and W before normalization,
to make their sizes the same as F .
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Figure 2. The computational graph of the forward propagation of
DN. The learnable parameters are discussed in Sec.3.2.

normalization method from data by transforming the mean
and variance estimated for every channel in every sample.
DN has richer representation capacity than SN.

Representation Capacity. In DN, V aggregates the
statistics from the channels, while U aggregates those in a
batch of samples. Therefore, different V and U represent
different normalization approaches. To see this, we take
1

ZU
UµV 1

ZV
as an example to illustrate several special cases.

(1) Let V = I , U = I , ZV = 1 and ZU = 1, where I
is an identity matrix. DN represents IN by treating each
channel as a group as shown in Fig.3(a), because IµI is the
same as the means of IN. (2) Let V = I , U = 1, ZV = 1
and ZU = 1

N , where 1 is a matrix of ones. DN turns into
BN, since 1

N · 1µI indicates that the means from a certain
channel ofN samples are averaged2. (3) Let V = 1, U = I ,
ZV = 1

C and ZU = 1. DN becomes LN, as Iµ1· 1C averages
the means from C channels of each sample. (4) By letting
U = I and V be a binary block diagonal matrix that divides
the channels into groups, DN can represent GN with any
numbers of groups as shown in Fig.3(b,c). ZV represents
the number of channels in each group.

Therefore, by changing V and U , DN covers a wide range
of normalization methods, which produce different numbers
of statistical values. To the extreme, when V = 1, U = 1,
ZV = 1

C and ZU = 1
N , DN represents “batch layer

normalization” that has a unique value of mean and variance.
In summary, DN divides the channels into groups by using
V and divides a batch of samples into small batches by using
U , where both V and U are binary block-diagonal matrixes.
For example, DN is able to perform normalization by
adjusting the batch size, leading to better generalization than
pervious methods. It is established that computing statistics
with a moderately small batch size increases regularization
strength (Teye et al., 2018; Luo et al., 2019b).

3.1. DNs in Deep Networks

Let {(xi,yi)}Pi=1 be a set of images and their ground-truth
labels, F (1), F (2), ..., F (L) be the feature maps of L layers

2Similar to SN, UσV in Eqn.(3) approximates the variance of
a batch by using the average of variances of N samples, reducing
computation while maintaining performance.
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of a deep network. Let the network produce a predicted
label ȳi given an image xi,

ȳi = relu(DN(F (L) · · · relu(DN(F (1)(xi))))). (4)

Here the network has multiple DN layers. F (1)(xi)
represents a linear transformation of the input layer. relu(·)
is the ReLU activation function. With Eqn.(4), let Θ be a set
of network parameters (e.g. filters) and Φ = {V `, U `}L`=1

be a set of parameters of all the DN layers. These parameters
are optimized by minimizing an empirical loss function
1
P

∑P
i=1 L(ȳi,yi; Θ,Φ). Eqn.(5) below shows that DN

imposes binary block-diagonal constraints to the learnable
matrixes V ` and U `, which should have diagonal blocks of
any sizes.

arg min
Θ,Φ

1

P

P∑
i=1

L(ȳi,yi; Θ,Φ) (5)

subject to ∀V ` ∈ {0, 1}C
`×C`

, ` = 1...L

∀U ` ∈ {0, 1}N
`×N`

, ` = 1...L

∀V `, U ` are block diagonal matrixes.

Directly solving this discrete optimization problem is
challenging, as the popular solver such as stochastic gradient
descent (SGD) is insufficient to find a feasible solution,
making DN difficult to use. Furthermore, to the extreme, all
the DN layers introduce (N2 + C2)L parameters, which
are nonnegligible. For example, there are 100 million
extra parameters, when a deep model has a hundred of
normalization layers and each layer has a thousand of
channels.

Instead of directly optimizing Eqn.(5), we explicitly con-
struct feasible solutions of V ` and U ` in each forward
propagation of a deep network, as discussed in Sec.3.2.

3.2. Binary Kronecker Decomposition

The forward propagation of DN is carefully designed by
using matrix decomposition in order to have minimum
number of parameters and fast computations.

We devise a matrix decomposition by using Kronecker
products. By taking the C-by-C matrix V of a hidden layer
as an example3, V can be decomposed into a set of K small
matrixes, that is, {Vi|Vi ∈ RCi×Ci ,∀Ci < C,

∏K
i=1 Ci =

C}. We see that each matrix Vi is a Ci-by-Ci matrix where
Ci < C. And the multiplications of C1, C2, ..., CK equal
C. We define

V = f(V1)⊗ · · · ⊗ f(Vi)⊗ · · · ⊗ f(VK), (6)

where ⊗ denotes a Kronecker product and f(·) denotes a
function applied elementwisely to every entry of Vi. For

3The superscript ` is omitted to simplify notations.

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
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0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0
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0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
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0 0 0 0 1 1 1 1
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1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0
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1 0 1 0 1 0 1 0
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(e) a matrix with stripes (f) 4 groups with overlaps
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0 0 0 0 0 0 1 1
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Figure 3. Illustrations of V and U where V ∈ RC×C partitions
channels into groups, while U ∈ RN×N divides a batch of
samples into groups. An 8-by-8 matrix V is shown as an example.
(a,b,c) partition V into C, 4, and 2 groups respectively, while (d,e)
are not block diagonal matrixes. (f) has overlapping groups.

example, when f(a) = a is an identity function, Eqn.(6)
becomes a sequence of the original Kronecker products.

A simple solution. Nevertheless, we are interested when
f(a) = sign(a) is a sign function4. Eqn.(6) turns into
V = sign(V1) ⊗ sign(V2) ⊗ · · · ⊗ sign(VK), where the
binary matrix V can be partitioned into a series of real
matrixes {Vi}Ki=1, which take continuous values. In this
case, these matrixes can be learned by using SGD regardless
of the binary constraints. In other words, learning a large
C-by-C binary matrix V in Eqn.(5) becomes learning a set
of small real matrixes as above, reducing the number of
parameters from C2 to

∑K
i=1 C

2
i . For example, an 8-by-8

matrix with 4 groups as shown in Fig.3(b) can be built by
using three small 2-by-2 matrixes, i.e. I ⊗ I ⊗ 1, reducing
the number of parameters from 64 to 3×22 = 12. Different
matrix decompositions lead to different numbers of groups.
As shown in Fig.3(c), the one with 2 groups can be built by
using I ⊗ 1⊗ 1.

However, using the sign function directly in Eqn.(6) still
possesses two issues. (1) Parameter Size. It has number
of parameters scaled square of the sizes of the submatrixes,
that is,

∑K
i=1 C

2
i . (2) Infeasible Solution. As {Vi}Ki=1 have

continuous values, their compositions do not necessarily
produce a block-diagonal matrix after applying the sign
function. For example, switching a single entry in I of

4We define sign(a) = 1 if a ≥ 0 and sign(a) = 0 if a < 0.
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I ⊗1⊗1 from 0 to 1 already changes the matrix in Fig.3(c)
to the one in (d), which does not have diagonal blocks.

3.3. Computations of V and U

Re-parameterization. To resolve the above issues, we
reparameterize Vi by choosing f(·) as a binary gated
function instead of a simple sign function. Therefore, f(Vi)
in Eqn.(6) is written as

f(Vi) = ~gi1 + (1− ~gi)I, ∀~gi ∈ ~g, (7)
where ~g = Pg and g = sign(g̃). (8)

In these equations, g̃ is a K-by-1 vector of gates that
are continuous learnable parameters. In Eqn.(8), g ∈
{0, 1}K×1 represents a vector of binary gates obtained by
applying the sign function on g̃. P represents a constant
permutation matrix5, which permutates the elements of g to
produce the permutated gates ~g. In Eqn.(7), 1 is a constant
2-by-2 matrix of ones and I is a constant 2-by-2 identity
matrix. Each ~gi ∈ {0, 1}, i = 1...K is a binary gate that
belongs to ~g.

Eqn.(7) and (8) show that a block-diagonal matrix can
be constructed by using a series of Kronecker products
involving 1 and I with certain permutation that is defined by
P . They reparameterize {Vi}Ki=1 by learning g̃, instead of
learning the matrixes directly. In this case, the number
of parameters in DN is reduced from

∑K
i=1 C

2
i to K

parameters, K = log2C. In other words, the parameter
sizes to compute V and U of DN are merely scaled
logarithmically with respect to the number of channels and
the batch size, that is, log2C and log2N . For instance, given
a hidden layer with C = 1024 channels (a common setting
in the recent deep models), the C-by-C matrix V can be
learned by using just 10 parameters.

Permutated Gates. To produce a binary block-diagonal
matrix V in Eqn.(6), it is important to have a specific
permutation of the matrixes {Vi}Ki=1. This is achieved by
using P in Eqn.(8), which sorts the elements of g according
to their values in an ascending order, implying that the value
of 0 would present before the value of 1 in ~g. That is, for all
i, j and i < j, we have ~gi ≤ ~gj . For example, when ~gi = 0,
f(Vi) = I; otherwise when ~gi = 1, f(Vi) = 1. This
means that the matrix I would present before 1 in Eqn.(6),
always producing a matrix that is binary block diagonal. For
instance, when g = [1, 1, 0], we have ~g = Pg = [0, 1, 1],
producing a matrix I ⊗ 1 ⊗ 1 as shown in Fig.3(c). In
contrast, if P is not presented, ~g = g = [1, 1, 0] and the
matrix becomes 1 ⊗ 1 ⊗ I , which has multiple stripes as
shown in Fig.3(e).

5P is a square binary matrix that has exactly one entry of 1 in
each row and each column, and 0s elsewhere.

Algorithm 1 Computations of DN
1: Input: feature map F ∈ RN×C×H×W ; parameters to be

learned: g̃V ∈ Rlog2C×1, g̃U ∈ Rlog2N×1, γ ∈ RC×1, and
β ∈ RC×1; initialize: g̃V = 0, g̃U = 0, γ = 1, β = 0.

2: Output: feature map F̂ = DN(F ) after normalization.
3: ∀µIN

nc = 1
HW

∑H,W
i=1,j=1 Fncij , µ← µIN

nc

4: ∀σIN
nc =

√
1

HW

∑H,W
i=1,j=1(Fncij − µIN

nc)2 + ε, σ ← σIN
nc

5: compute V and U by applying Eqn.(6-8)

6: F̂ = γ
F− 1

ZU
UµV 1

ZV
1

ZU
UσV 1

ZV

+ β

�

subspace {F, 1}

FF dd

Figure 4. By analyzing DN, we are able to obtain a unified
geometric view of the gradients of BN, LN, and GN. In these
normalization layers, the gradients propagated to their inputs F ,
denoted as dF , are the projection of the back-propagated gradients
from the above layer, denoted as dF̂ , to a subspace spanned by the
input F and a vector of ones.

3.4. Discussions

Implementation. Algorithm 1 summarizes the imple-
mentations of DN by following Eqn.(3) and Eqn.(6-8).
Specifically, g̃V and g̃U are the learnable gate parameters
of V and U respectively. γ and β are the scale and shift
parameters, which are applied after normalization as shown
at the 6th line. DN can be easily implemented by using the
recent platforms such as TensorFlow and PyTorch.

In training, the backward propagation can be simply
achieved by auto differentiation in the above platforms, and
the gradient of the sign function is obtained by following
(Rastegari et al., 2016). In the testing stage, the statistics are
estimated online for each sample when U = I . Otherwise,
we process multiple mini-batches and average over them.
This is similar to the batch average used in BN and SN.

Geometric Interpretation. In general, as DN provides
a holistic representation of normalization approaches, our
derivations in the supplementary material show clear geo-
metric meanings of BN, LN, and GN in a unified view, as
shown in Fig.4. For example, we demonstrate that the back-
propagated gradients of BN, LN, and GN are projections
onto the orthogonal complementary subspaces spanned by
vectors of ones and their layer inputs. These results are not
achievable by previous work such as (Ioffe & Szegedy, 2015;
Ba et al., 2016; Tian, 2018), which analyzed normalization
methods separately.
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Extensions. DN can be extended in several ways. In the
first aspect, the matrixes 1 and I in Eqn.(7) can have any
scale rather than 2-by-2, producing groups with different
sizes. We can also have overlapping groups. For instance,
letA = [1, 1, 0; 0, 1, 1] be a 2-by-3 matrix and 1 be a 2-by-2
matrix, and then A⊗ 1 produces groups with two channels
overlapped as shown in Fig.3(f). In the second aspect, we
may combine DN with prior knowledge by introducing two
smooth terms I and 1 into V and U respectively, such as
(U + 1)µ(V + I). Intuitively, I treats each channel as a
group, while 1 treats an entire batch as a group. For example,
the learned means can be expressed by four terms, UµV +
UµI+1µV +1µI , which represent a DN, a ‘grouped BN’,
a ‘batch GN’, and a BN respectively. With prior knowledge,
we can implicitly combine various normalization methods.

4. Experiments
Sec.4.1 evaluates DN in CIFAR10 (Krizhevsky, 2009)
and ImageNet (Russakovsky et al., 2015), where it is
demonstrated by comparing with previous normalization
techniques. Ablation studies are presented in Sec.4.3.
The details of all experimental setups are presented in
supplementary material.

4.1. Image Recognition in CIFAR10

Batch sizes. Table 1 compares DN with three representative
normalizers, including BN (Ioffe & Szegedy, 2015), GN
(Wu & He, 2018), and SN (Luo et al., 2019a). All models
are trained on CIFAR10 with different batch sizes, where the
gradients are aggregated across GPUs, while the statistics
are estimated within each GPU. We see that DN works
well in a wide range of batch sizes, outperforming the other
methods. We repeat to train all models five times and the
standard deviation of the accuracy is smaller than 0.15%,
rendering significance of the results.

In particular, by comparing (8, 8), (4, 8) and (2, 8) when
the number of GPUs decreases from 8 to 2, we observe that
the accuracies slightly increase. We conjecture that reducing
the sample size to aggregate the gradients would increase
randomness and regularization when training in CIFAR10.
By comparing (8, 8), (8, 4) and (8, 2) when the mini-batch
size used to estimate the statistics decreases from 8 to 2, it is
seen that DN is more robust in small mini-batch. Although
GN is independent with mini-batch size, its accuracies are
lower than the other methods. Moreover, we see that GN
prefers different group numbers for different batch sizes,
making hyper-parameter tuning cumbersome.

Architectures. Table 2 reports classification accuracies of
different networks trained with DN, BN, SN, and GN on
CIFAR10. We observe that DN performs better than the
other methods. In addition, we found that BN and SN

(1,128) (8,8) (8,4) (4,8) (8,2) (2,8)
BN 94.80 93.31 93.01 94.18 91.55 94.84
GN32 93.67† 90.22† 90.58 92.66† 90.85 93.65†

GN16 93.17 89.49 90.90† 92.32 90.89† 93.21
GN8 93.33 89.52 90.00 91.92 90.06 92.93
SN 94.40 93.33 93.10 93.87 92.38 94.26
DN 94.98 93.81 93.45 94.67 92.45 94.95

Table 1. Comparisons on CIFAR10. The classification accura-
cies (%) are reported on the test set. ResNet18 is trained with
BN, GN, SN, and DN by using different batch sizes. The bracket
(·, ·) denotes (#GPUs, #samples per GPU). GN is trained with
different number of groups denoted by the subscripts, where the
best result of GN is marked by †. The two best-performing results
of each column are shown in bold.

BN GN32 GN16 GN8 SN DN
ResNet18 94.80 93.67 93.17 93.33 94.40 94.98
ResNet34 95.16 93.79 93.63 92.43 94.59 95.35
ResNet50 95.61 90.18 92.51 91.67 94.72 95.81

Table 2. Comparisons on CIFAR10. The classification accura-
cies (%) are reported on the test set. ResNet18, ResNet34, and
ResNet50 are trained with BN, GN, SN, and DN by using (1, 128)
respectively. The best accuracy of each network architecture (in
each row) is shown in bold.

achieve reasonable results, whereas the performances are
impeded by GN, especially when the depth of network is
increased.

Furthermore, Fig.1(b) and Fig.5(a,c) illustrate the learned
numbers of groups for all the DN layers in three networks
that are trained by using (1, 128). We see that the DN layers
learn diverse normalizers, rather than BN, GN, and LN. For
example, we point out two extreme cases.

First, when N samples and C channels are both treated as
a single group, DN learns a batch layer normalization, as
shown in the 4th layer of Fig.1(b), the 4th and 6th layer
of Fig.5(a). Second, when N groups and C groups are
presented in a layer, DN becomes IN. However, this case
does not exist in the above models, showing that IN is not
desirable when the batch has normal size. This observation
is consistent with (Luo et al., 2019a). Apart from the above
cases, the 5th and 7th layer in Fig.5(c) are GNs with 64
and 4 groups respectively, while the penultimate layer of
Fig.5(a) resembles a grouped BN with its batch partitioned
into 16 groups.

Another interesting phenomenon is provided in Fig.5(b),
where plots the learned groups of ResNet18 trained with
small batch size (8, 2). For example, we see that 18 DN
layers treat each sample as a group (i.e. 2 groups for the N
dimension), 2 layers treat each channel as a group (i.e. 256
groups for the C dimension), and 7 layers treat all channels
as a single group. They result in 2 INs, 7 LNs, and the
remains are GNs. This phenomenon is consistent with (Wu
& He, 2018; Luo et al., 2019a) when the batch size is small,
where IN, LN, and GN could be used to reduce dependency
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(a) 36 DN layers of ResNet34 trained with (1, 128) (b) 20 DN layers of ResNet18 trained with (8, 2)
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(c) 53 DN layers of ResNet50 trained with (1, 128)

Figure 5. Learned numbers of groups for each DN layer in different networks, including (a) ResNet34, (b) ResNet18, and (c) ResNet50,
which are trained with different batch sizes in CIFAR10. The y-axis shows that each DN layer partitions the N training samples in a
batch as well as the C channels into groups. The x-axis plots the number of channels for each layer. Specifically, (a,c) are trained with
(1, 128) i.e. N = 128 samples in a batch, while (b) is trained with (8, 2) i.e. N = 2 samples in a batch. In (a,b,c), N can be divided
into maximum 128, 2, and 128 groups respectively, while C can be divided into maximum 512, 512, and 2048 groups respectively. In
the above figures, ‘�’ indicates the layer with shortcut connection, and the layers with kernel size 3 and 1 are indicated by bars with or
without slash.

on batch size.

4.2. ImageNet

Table 3 reports results on ImageNet, where DN performs
well in both architectures. This trend is similar to CIFAR10.
In ResNet101, DN outperforms SN and BN by 0.8% and
1.4%, showing its benefits in large-scale dataset. We see
that IN (Ulyanov et al., 2016) and LN (Ba et al., 2016)
are not optimal for image classification. For example,
ResNet101 trained with IN and LN achieve 72.2% and
75.3% respectively, which are reduced by 7.0% and 3.9%
compared to 79.2% of DN.

In Table 3, BRN (Ioffe, 2017) has two hyper-parameters
that renormalize the means and variances. We choose their
best settings to obtain 76.3% and 78.1% for BRN, which
reduces 1.9% and 1.1% compared to DN. Moreover, BKN
(Wang et al., 2018) estimated the statistics in a certain layer
by combining those estimated in the preceding layers. BKN
obtains 76.8% and 78.3% that are 1.4% and 0.9% drop
compared to DN. In addition, the connections between
layers in BKN are carefully designed for every specific
network, making it difficult to use in practice.

4.3. DN Analysis

This section investigates characteristics of DN as well as
how it helps training deep models.

BN GN LN IN SN BRN BKN DN
ResNet50 76.4 75.9 74.7 71.6 76.9 76.3 76.8 78.2
ResNet101 77.8 77.6 75.3 72.2 78.4 78.1 78.3 79.2

Table 3. Comparisons on ImageNet. The top-1 classification
accuracies (%) on the validation set are reported. ResNet50 and
ResNet101 are trained with BN, GN, LN, IN, SN, BRN (Ioffe,
2017), BKN (Wang et al., 2018), and DN. The batch size is (8, 32).
The best accuracy of each network architecture (in each row) is
shown in bold.

Learning dynamics. For every DN layer of ResNet18,
we plot the learning procedures of the numbers of groups
and the values of their corresponding gates as shown in
Fig.7. We have two observations. First, different DN
layers have different learning dynamics, which are smoothly
converged in training. Second, lower layers (e.g. C = 64)
prefer smaller numbers of groups as shown in (a), which is
corresponding to the positive gates in (b). Whereas larger
number of groups (negative gates) are typically presented
in higher layers (e.g. C > 64). This is consistent with (Luo
et al., 2018; 2019b), showing that upper layers would prefer
statistics of each instance.

Optimization Landscape. To compare the impact of
different normalizers on the stability of optimization, we
follow (Santurkar et al., 2018) to study the “Lipschitzness”
of the loss function by computing its gradient at an update
step and measuring how the loss changes along that gradient
direction (a slice of the loss landscape). Fig.6(a) shows that
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Figure 6. (a) Analyses of the loss landscapes of ResNet18 trained with different methods on CIFAR10. The x-axis is number of epochs
while the y-axis plots variances of the loss values, which are estimated by using different step sizes (learning rates) along the gradient
direction at each update step. (b) compares the variances of losses of DN and BN, where DN has slightly smoother losses than BN after
45 training epochs. (c) calculates the variances of the gradients similar to (a). GN has larger variations of the gradients than the other
methods.

GN has wider range of loss values in the gradient direction
than the others, while DN, SN, and BN produce comparable
smoothing effects on the loss landscape. Similarly, we make
analogous measurement for the gradient values along the
gradient direction as shown in Fig.6(c). It is also observed
that GN has large variation of gradient values, while the
others comparably stabilize the gradients.

The above smoothing effects impact training in several ways.
First, the smoothed loss landscape makes SGD stable, such
as avoiding exploding or vanishing gradients. Second, more
smooth losses and gradients are less sensitive to the choice
of learning rate and initialization.

Internal Covariance Shift (ICS). We also compare the
Internal Covariance Shift (ICS) of DN with BN, SN, and GN
in the supplementary material. We see that GN has higher
ICS than the other methods. Whereas DN has slightly higher
ICS than SN and BN, but DN performs better in terms of
accuracy, suggesting that normalization method does not
necessarily reduce ICS as also discussed in (Santurkar et al.,
2018).

5. Conclusions and Future Work
This work proposed Dynamic Normalization (DN), the
first approach that learns arbitrary normalization forms
in data- and task-driven way for deep neural networks,
without using manually designed normalization layers. DN
offers a holistic formulation by representing not only BN,
IN, LN and GN, but also a wide range of variants of
them, for example, ‘layer batch normalization’. Through
extensive experiments and studies, DN not only adapts to
various networks, batch sizes, and tasks outperforming its
counterparts, but also improves training by smoothing the
optimization landscape.

DN also opens up a new research direction to theoreti-
cally understand normalization methods in a unified view.

(a) Group numbers of 20 DN layers when training ResNet18

(b) Gate values (g̃) corresponded to 20 DN layers as shown in (a)

Figure 7. The numbers of groups of N and C during training
ResNet18 on CIFAR10 with (1, 128) are shown in (a). The
corresponding gate values (g̃) are shown in (b), where the dashed
lines represent values of zeros. In (b), when a continuous gate
in g̃ is positive, its corresponding binary gate in g equals one;
otherwise, the binary gate is zero. The number of channels is
plotted for each layer (in the bottom).

For example, we show the geometric meanings of many
normalizers, where the gradient of a normalization layer,
which would be propagated down to its preceding layer, is
achieved by projecting its input gradient onto the orthogonal
complementary space spanned by its layer inputs and a
vector of ones. Understanding the learning dynamics and
generalization of different normalization methods by using
DN would be an important future direction.

DN might also combine with existing whitened neural
networks such as (Desjardins et al., 2015; Luo, 2017b;a), as
well as facilitate the investigation of whitening approaches
like switchable whitening (Pan et al., 2019).
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