Bayesian Leave-One-Out Cross-Validation for Large Data - Supplementary Material

Johan Jonasson ${ }^{1}$ Måns Magnusson ${ }^{2}$ Michael Riis Andersen ${ }^{2}$ Aki Vehtari ${ }^{2}$

1. Proof of Proposition 1

A generic Bayesian model is considered; a sample $\left(y_{1}, y_{2}, \ldots, y_{n}\right), y_{i} \in \mathcal{Y} \subseteq \mathbb{R}$, is drawn from a true density $p_{t}=p\left(\cdot \mid \theta_{0}\right)$ for some true parameter θ_{0}. The parameter θ_{0} is assumed to be drawn from a prior $p(\theta)$ on the parameter space Θ, which we assume to be an open and bounded subset of \mathbb{R}^{d}.

A number of conditions are used. They are as follows.
(i) the likelihood $p(y \mid \theta)$ satisfies that there is a function $C: \mathcal{Y} \rightarrow \mathbb{R}_{+}$, such that $\mathbb{E}_{y \sim p_{t}}\left[C(y)^{2}\right]<\infty$ and such that for all θ_{1} and $\theta_{2},\left|p\left(y \mid \theta_{1}\right)-p\left(y \mid \theta_{2}\right)\right| \leq$ $C(y) p\left(y \mid \theta_{2}\right)\left\|\theta_{1}-\theta_{2}\right\|$.
(ii) $p(y \mid \theta)>0$ for all $(y, \theta) \in \mathcal{Y} \times \Theta$,
(iii) There is a constant $M<\infty$ such that $p(y \mid \theta)<M$ for all (y, θ),
(iv) all assumptions needed in the Bernstein-von Mises (BvM) Theorem (Walker, 1969),
(v) for all $\theta, \int_{\mathcal{Y}}(-\log p(y \mid \theta)) p(y \mid \theta) d y<\infty$.

Remarks.

- There are alternatives or relaxations to (i) that also work. One is to assume that there is an $\alpha>0$ and C with $\mathbb{E}_{y}\left[C(y)^{2}\right]<\infty$ such that $\mid p\left(y \mid \theta_{1}\right)-$ $p\left(y \mid \theta_{2}\right) \mid \leq C(y) p\left(y \mid \theta_{2}\right)\left\|\theta_{1}-\theta_{2}\right\|^{\alpha}$. There are many examples when (i) holds, e.g. when y is normal, Laplace distributed or Cauchy distributed with θ as a one-dimensional location parameter.
- The assumption that Θ is bounded will be used solely to draw the conclusion that $\mathbb{E}_{y, \theta}\left\|\theta-\theta_{0}\right\| \rightarrow 0$ as $n \rightarrow$

[^0]
Abstract

∞, where y is the sample and θ is either distributed according to the true posterior (which is consistent by BvM) or according to a consistent approximate posterior. The conclusion is valid by the definition of consistency and the fact that the boundedness of Θ makes $\left\|\theta-\theta_{0}\right\|$ a bounded function of θ. If it can be shown by other means for special cases that $\mathbb{E}_{y, \theta} \| \theta$ $\theta_{0} \| \rightarrow 0$ despite Θ being unbounded, then our results also hold.

- We can (and will) without loss of generality assume that $M=1 / 2$ is sufficient in (iii), for if not then simply transform data and consider $z_{i}=2 M y_{i}$ instead of y_{i}.

The main quantity of interest is the mean expected log pointwise predictive density, which we want to use for model evaluation and comparison.
Definition $1(\overline{\mathrm{elpd}})$. The mean expected log pointwise predictive density for a model p is defined as

$$
\overline{e l p d}=\int p_{t}(x) \log p(x) d x
$$

where $p_{t}(x)=p\left(x \mid \theta_{0}\right)$ is the true density at a new unseen observation x and $\log p(x)$ is the \log predictive density for observation x.

We estimate $\overline{\text { elpd }}$ using leave-one-out cross-validation (loo).
Definition 2 (Leave-one-out cross-validation). The loo estimator $\overline{\text { elpd }}_{\text {loo }}$ is given by

$$
\begin{equation*}
\overline{\operatorname{elpd}}_{l o o}=\frac{1}{n} \sum_{i=1}^{n} \log p\left(y_{i} \mid y_{-i}\right) \tag{1}
\end{equation*}
$$

where $p\left(y_{i} \mid y_{-i}\right)=\int p\left(y_{i} \mid \theta\right) p\left(\theta \mid y_{-i}\right) d \theta$.
To estimate $\overline{\mathrm{elpd}}_{l o o}$ in turn, we use importance sampling and the Hansen-Hurwitz estimator. Definitions follow.

Definition 3. The Hansen-Hurwitz estimator is given by

$$
\widehat{\operatorname{elpd}}_{\text {loo }}(m, q)=\frac{1}{m} \frac{1}{n} \sum_{j=1}^{m} \frac{1}{\tilde{\pi}_{j}} \log \hat{p}\left(y_{j} \mid y_{-j}\right)
$$

where $\tilde{\pi}_{i}$ is the probability of subsampling observation i, $\log \hat{p}\left(y_{i} \mid y_{-i}\right)$ is the (self-normalized) importance sampling estimate of $\log p\left(y_{i} \mid y_{-i}\right)$ defined as

$$
\log \hat{p}\left(y_{i} \mid y_{-i}\right)=\log \left(\frac{\frac{1}{S} \sum_{s=1}^{S} p\left(y_{i} \mid \theta_{s}\right) r\left(\theta_{s}\right)}{\frac{1}{S} \sum_{s=1}^{S} r\left(\theta_{s}\right)}\right)
$$

where

$$
\begin{aligned}
r\left(\theta_{s}\right) & =\frac{p\left(\theta_{s} \mid y_{-i}\right)}{p\left(\theta_{s} \mid y\right)} \frac{p\left(\theta_{s} \mid y\right)}{q\left(\theta_{s} \mid y\right)} \\
& \propto \frac{1}{p\left(y_{i} \mid \theta_{s}\right)} \frac{p\left(\theta_{s} \mid y\right)}{q\left(\theta_{s} \mid y\right)}
\end{aligned}
$$

and where $q(\theta \mid y)$ is an approximation of the posterior distribution, θ_{s} is a sample from the approximate posterior distribution $q(\theta \mid y)$ and S is the total posterior sample size.
Proposition 1. Let the subsampling size m and the number of posterior draws S be fixed at arbitrary integer numbers, let the sample size n grow, assume that (i)-(vi) hold and let $q=q_{n}(\cdot \mid y)$ be any consistent approximate posterior. Write $\hat{\theta}_{q}=\arg \max \{q(\theta): \theta \in \Theta\}$ and assume further that $\hat{\theta}_{q}$ is a consistent estimator of θ_{0}. Then

$$
\left|\widehat{\overline{e l p d}}_{\text {loo }}(m, q)-\overline{\text { elpd }}_{\text {loo }}\right| \rightarrow 0
$$

in probability as $n \rightarrow \infty$ for any of the following choices of $\pi_{i}, i=1, \ldots, n$.
(a) $\pi_{i}=-\log p\left(y_{i} \mid y\right)$,
(b) $\pi_{i}=-\mathbb{E}_{y}\left[\log p\left(y_{i} \mid y\right)\right]$,
(c) $\pi_{i}=-\mathbb{E}_{\theta \sim q}\left[\log p\left(y_{i} \mid \theta\right)\right]$,
(d) $\pi_{i}=-\log p\left(y_{i} \mid \mathbb{E}_{\theta \sim q}[\theta]\right)$,
(e) $\pi_{i}=-\log p\left(y_{i} \mid \hat{\theta}_{q}\right)$.

Remark. By the variational BvM Theorems of Wang and Blei, (Wang \& Blei, 2018), q can be taken to be either $q_{L a p}$, $q_{M F}$ or $q_{F R}$, i.e. the approximate posteriors of the Laplace, mean-field or full-rank variational families respectively in Proposition 1, provided that one adopts the mild conditions in their paper.
The proof of Proposition 1 will be focused on proving (a) and then (b)-(e) will follow easily. We begin with the following key lemma.
Lemma 2. With all quantities as defined above,

$$
\begin{equation*}
\mathbb{E}_{y \sim p_{t}}\left|\pi_{i}-\log p\left(y_{i} \mid \theta_{0}\right)\right| \rightarrow 0 \tag{2}
\end{equation*}
$$

with any of the definitions (a)-(e) of π_{i} of Proposition 1. Furthermore,

$$
\begin{equation*}
\mathbb{E}_{y \sim p_{t}}\left|\log p\left(y_{i} \mid y_{-i}\right)-\log p\left(y_{i} \mid \theta_{0}\right)\right| \rightarrow 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{y \sim p_{t}}\left|\log \hat{p}\left(y_{i} \mid y\right)-\log p\left(y_{i} \mid \theta_{0}\right)\right| \rightarrow 0 \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$.

Proof. To avoid burdening the notation unnecessarily, we write throughout the proof \mathbb{E}_{y} for $\mathbb{E}_{y \sim p_{t}}$. For now, we also write \mathbb{E}_{θ} as shorthand for $\mathbb{E}_{\theta \sim p\left(\cdot \mid y_{-i}\right)}$. Recall that $x_{+}=$ $\max (x, 0)=\operatorname{ReLU}(x)$.

Hence

$$
\begin{aligned}
& \mathbb{E}_{y}\left[\left(\log \frac{p\left(y_{i} \mid y_{-i}\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& =\mathbb{E}_{y}\left[\left(\log \frac{\mathbb{E}_{\theta}\left[p\left(y_{i} \mid \theta\right)\right]}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& \leq \mathbb{E}_{y}\left[\log \left(1+\frac{\mathbb{E}_{\theta}\left[C\left(y_{i}\right) p\left(y_{i} \mid \theta_{0}\right)\left\|\theta-\theta_{0}\right\|\right]}{p\left(y_{i} \mid \theta_{0}\right)}\right)\right] \\
& \leq \mathbb{E}_{y, \theta}\left[C\left(y_{i}\right)\left\|\theta-\theta_{0}\right\|\right] \\
& \leq\left(\mathbb{E}_{y_{i}}\left[C\left(y_{i}\right)^{2}\right] \mathbb{E}_{y, \theta}\left[\left\|\theta-\theta_{0}\right\|^{2}\right]\right)^{1 / 2} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Here the first inequality follows from condition (i) and the second inequality from the fact that $\log (1+x)<x$ for $x \geq 0$. The third inequality is Schwarz inequality. The limit conclusion follows from the consistency of the posterior $p\left(\cdot \mid y_{-i}\right)$ and the definition of weak convergence, since $\| \theta-$ $\theta_{0} \|^{2}$ is a continuous bounded function of θ (recall that Θ is bounded) and that the first factor is finite by condition (i).

For the reverse inequality,

$$
\begin{aligned}
& \mathbb{E}_{y}\left[\left(\log \frac{p\left(y_{i} \mid \theta_{0}\right)}{p\left(y_{i} \mid y_{-i}\right)}\right)_{+}\right] \\
& =\mathbb{E}_{y}\left[\left(\log \mathbb{E}_{\theta}\left[\frac{\left.p\left(y_{i} \mid \theta_{0}\right)\right]}{p\left(y_{i} \mid \theta\right)}\right]\right)_{+}\right] \\
& \leq \mathbb{E}_{y}\left[\log \left(1+\mathbb{E}_{\theta}\left[\frac{C\left(y_{i}\right) p\left(y_{i} \mid \theta\right)\left\|\theta-\theta_{0}\right\|}{p\left(y_{i} \mid \theta\right)}\right]\right)\right] \\
& \left.\leq\left(\mathbb{E}_{y_{i}}\left[C\left(y_{i}\right)^{2}\right] \mathbb{E}_{y, \theta}\left[\left\|\theta-\theta_{0}\right\|^{2}\right]\right)^{1 / 2}\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

This proves (3) and an identical argument proves (2) for $\pi_{i}=p\left(y_{i} \mid y\right)$.

For $\pi_{i}=-\mathbb{E}_{y}\left[\log p\left(y_{i} \mid y\right)\right]$, note first that

$$
\begin{aligned}
& \mathbb{E}_{y}\left|\mathbb{E}_{y}\left[\log p\left(y_{i} \mid y\right)\right]-\mathbb{E}_{y}\left[\log p\left(y_{i} \mid y_{-i}\right)\right]\right| \\
& =\left|\mathbb{E}_{y}\left[\log p\left(y_{i} \mid y\right)-\log p\left(y_{i} \mid y_{-i}\right)\right]\right| \\
& \left.\leq \mathbb{E}_{y} \mid \log p\left(y_{i} \mid y\right)-\log p\left(y_{i} \mid y_{-i}\right)\right] \mid
\end{aligned}
$$

which goes to 0 by (3) and (a). Hence we can replace $\pi_{i}=-\mathbb{E}\left[\log p\left(y_{i} \mid y\right)\right]$ with $\pi_{i}=-\mathbb{E}\left[\log p\left(y_{i} \mid y_{-i}\right)\right]$ when proving (b). To that end, observe that

$$
\begin{aligned}
& \left(\mathbb{E}_{y}\left[\log p\left(y_{i} \mid y_{-i}\right)\right]-\log p\left(y_{i} \mid \theta_{0}\right)\right)_{+} \\
& =\left(\mathbb{E}_{y_{i}}\left[\mathbb{E}_{y_{-i}}\left[\log \frac{p\left(y_{i} \mid y_{-i}\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right]\right]\right)_{+} \\
& \leq \mathbb{E}_{y}\left[\left(\log \frac{p\left(y_{i} \mid y_{-i}\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right]
\end{aligned}
$$

where the inequality is Jensen's inequality used twice on the convex function $x \rightarrow x_{+}$. Now everything is identical to the proof of (3) and the reverse inequality is analogous.
The other choices of π_{i} follow along very similar lines. For $\pi_{i}=-\log p\left(y_{i} \mid \hat{\theta}_{q}\right)$, we have on mimicking the above that

$$
\begin{aligned}
& \mathbb{E}_{y}\left[\left(\log \frac{p\left(y_{i} \mid \hat{\theta}_{q}\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& \leq\left(\mathbb{E}_{y_{i}}\left[C\left(y_{i}\right)^{2}\right] \mathbb{E}_{y}\left[\left\|\hat{\theta}_{q}-\theta_{0}\right\|^{2}\right]\right)^{1 / 2}
\end{aligned}
$$

and $\mathbb{E}_{y}\left[\left\|\hat{\theta}_{q}-\theta_{0}\right\|^{2}\right] \rightarrow 0$ as $n \rightarrow \infty$ by the assumed consistency of $\hat{\theta}_{q}$. The reverse inequality is analogous and (2) for $\pi_{i}=p\left(y_{i} \mid \hat{\theta}_{q}\right)$ is established.
For the case $\pi_{i}=-\log p\left(y_{i} \mid \mathbb{E}_{\theta \sim q} \theta\right)$, the analogous analysis gives

$$
\begin{aligned}
& \mathbb{E}_{y}\left[\left(\log \frac{p\left(y_{i} \mid \mathbb{E}_{\theta \sim q} \theta\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& \leq \mathbb{E}_{y_{i}}\left[C\left(y_{i}\right)^{2}\right] \mathbb{E}_{y}\left[\left\|\mathbb{E}_{\theta \sim q} \theta-\theta_{0}\right\|^{2}\right]
\end{aligned}
$$

Since $x \rightarrow\left\|x-\theta_{0}\right\|^{2}$ is convex, the second factor on the right hand side is bounded by $\mathbb{E}_{y, \theta \sim q}\left[\left\|\theta-\theta_{0}\right\|^{2}\right]$ which goes to 0 by the consistency of q and the boundedness of Θ. The reverse inequality is again analogous.
Finally for $\pi_{i}=-\mathbb{E}_{\theta \sim q}\left[\log p\left(y_{i} \mid \theta\right)\right]$,

$$
\begin{aligned}
& \mathbb{E}_{y}\left[\left(\mathbb{E}_{\theta \sim q}\left[\log p\left(y_{i} \mid \theta\right)\right]-\log p\left(y_{i} \mid \theta_{0}\right)\right)_{+}\right] \\
& =\mathbb{E}_{y}\left[\left(\mathbb{E}_{\theta \sim q}\left[\log \frac{p\left(y_{i} \mid \theta\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right]\right)_{+}\right] \\
& \leq \mathbb{E}_{y, \theta \sim q}\left[\left(\log \frac{p\left(y_{i} \mid \theta\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& \leq\left(\mathbb{E}_{y_{i}}\left[C\left(y_{i}\right)^{2}\right] \mathbb{E}_{y, \theta \sim q}\left[\left\|\theta-\theta_{0}\right\|^{2}\right]\right)^{1 / 2} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ by the consistency of q. Here the first inequality is Jensen's inequality applied to $x \rightarrow x_{+}$and the second inequality follows along the same lines as before.
For (4), write $r^{\prime}\left(\theta_{s}\right)=r\left(\theta_{s}\right) / \sum_{j=1}^{S} r\left(\theta_{j}\right)$ for the random weights given to the individual $\theta_{s}: s$ in the expression for $\hat{p}\left(y_{i} \mid y_{-i}\right)$. Then we have, with $\theta=\left(\theta_{1}, \ldots, \theta_{S}\right)$ chosen according to q,

$$
\begin{aligned}
& \mathbb{E}_{y}\left[\left(\log \frac{\hat{p}\left(y_{i} \mid y_{-i}\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& =\mathbb{E}_{y, \theta}\left[\left(\log \frac{\sum_{s=1}^{S} r^{\prime}\left(\theta_{s}\right) p\left(y_{i} \mid \theta_{s}\right)}{p\left(y_{i} \mid \theta_{0}\right)}\right)_{+}\right] \\
& \leq \mathbb{E}_{y, \theta}\left[\log \left(1+\frac{\sum_{s=1}^{S} r^{\prime}\left(\theta_{s}\right)\left|p\left(y_{i} \mid \theta_{s}\right)-p\left(y_{i} \mid \theta_{0}\right)\right|}{p\left(y_{i} \mid \theta_{0}\right)}\right)\right] \\
& \leq \mathbb{E}_{y, \theta}\left[\log \left(1+C\left(y_{i}\right) \sum_{s=1}^{S} r^{\prime}\left(\theta_{s}\right)\left\|\theta_{s}-\theta_{0}\right\|\right)\right] \\
& \leq \mathbb{E}_{y, \theta}\left[\log \left(1+C\left(y_{i}\right) \sum_{s=1}^{S}\left\|\theta_{s}-\theta_{0}\right\|\right)\right] \\
& \leq \mathbb{E}_{y, \theta}\left[C\left(y_{i}\right) \sum_{s=1}^{S}\left\|\theta_{s}-\theta_{0}\right\|\right] \\
& \leq\left(\mathbb{E}_{y_{i}}\left[C\left(y_{i}\right)^{2}\right] \mathbb{E}_{y, \theta}\left[\left(\sum_{s=1}^{S}\left\|\theta_{s}-\theta_{0}\right\|\right)^{2}\right]\right)^{1 / 2}
\end{aligned}
$$

where the second inequality is condition (i) and the limit conclusion follows from the consistency of q. For the reverse inequality to go through analogously, observe that

$$
\begin{aligned}
& \frac{\left|p\left(y_{i} \mid \theta_{0}\right)-\sum_{s} r^{\prime}\left(\theta_{s}\right) p\left(y_{i} \mid \theta_{s}\right)\right|}{\sum_{s} r^{\prime}\left(\theta_{s}\right) p\left(y_{i} \mid \theta_{s}\right)} \\
& \leq \frac{\sum_{s} r^{\prime}\left(\theta_{s}\right)\left|p\left(y_{i} \mid \theta_{s}\right)-p\left(y_{i} \mid \theta_{0}\right)\right|}{\sum_{s} r^{\prime}\left(\theta_{s}\right) p\left(y_{i} \mid \theta_{s}\right)} \\
& \leq \frac{\sum_{s} r^{\prime}\left(\theta_{s}\right) p\left(y_{i} \mid \theta_{s}\right)\left\|\theta_{s}-\theta_{0}\right\|}{\sum_{s} r^{\prime}\left(\theta_{s}\right) p\left(y_{i} \mid \theta_{s}\right)} \\
& \leq \max _{s}\left\|\theta_{s}-\theta_{0}\right\| \\
& \leq \sum_{s}\left\|\theta_{s}-\theta_{0}\right\| .
\end{aligned}
$$

Equipped with this observation, mimic the above.

For convenience we will write $\hat{e}:=\hat{e}_{m, q}=\widehat{\operatorname{elpd}}_{l o o}$, which for our purposes is more usefully expressed as

$$
\hat{e}=\frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m} I_{i j} \frac{1}{\bar{\pi}_{i}} \log \hat{p}\left(y_{i} \mid y_{-i}\right)
$$

where $I_{i j}$ is the indicator that sample point y_{i} is chosen in draw j for the subsample used in \hat{e}. Write also

$$
e=\frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m} I_{i j} \frac{1}{\bar{\pi}_{i}} \log p\left(y_{i} \mid y_{-i}\right)
$$

In other words, e is the HH estimator with \hat{p} replaced with p.
Lemma 3. With the notation as just defined and $\pi_{i}=$ $-\log p\left(y_{i} \mid y\right)$,

$$
\mathbb{E}|\hat{e}-e| \rightarrow 0
$$

as $n \rightarrow \infty$.
Proof. We have, with expectations with respect to all sources of randomness involved in \hat{e} and e

$$
\begin{aligned}
& \mathbb{E}|\hat{e}-e| \\
\leq & \frac{1}{m} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E}\left[\mathbb{E}\left[\left.I_{i j} \frac{1}{\pi_{i}}\left|\log \hat{p}\left(y_{i} \mid y_{-i}\right)-\log p\left(y_{i} \mid y_{-i}\right)\right| \right\rvert\, y\right]\right. \\
= & \mathbb{E}\left[\frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m}\left|\log \hat{p}\left(y_{i} \mid y_{-i}\right)-\log p\left(y_{i} \mid y_{-i}\right)\right|\right] \\
= & \mathbb{E}\left|\log \hat{p}\left(y_{i} \mid y_{-i}\right)-\log p\left(y_{i} \mid y_{-i}\right)\right| .
\end{aligned}
$$

The result now follows from (3), (4) and the triangle inequality.

Proof of Proposition 1. As stated before, we start with a focus on (a), which means that for now we have $\pi_{i}=$ $-\log p\left(y_{i} \mid y\right)$ By Lemma 3, it suffices to prove that $\mid e-$ $\overline{\operatorname{elpd}}_{l o o} \mid \rightarrow 0$ in probability with π_{i} chosen according to any of (a)-(e). The variance of a HH estimator is well known and some easy manipulation then tells us that the conditional variance of e given y is given by

$$
V(e)=\mathbb{V} \operatorname{ar}(e \mid y)=\frac{1}{n^{2}} \frac{1}{m}\left(S_{\pi} S_{2}-S_{p}^{2}\right)
$$

where $S_{p}=\sum_{i=1}^{n} p_{i}, S_{\pi}=\sum_{i=1}^{n} \pi_{i}$ and $S_{2}=$ $\sum_{i=1}^{n}\left(p_{i}^{2} / \pi_{i}\right)$. We claim that for any $\delta>0$, for n sufficiently large, $\mathbb{P}_{y}(V(e)<\delta)>1-\delta$. To this end, observe first that

$$
\begin{aligned}
& \mathbb{E}_{y}\left[-\log p\left(y_{i} \mid y\right)\right] \\
\leq & \mathbb{E}_{y}\left[-\log p\left(y_{i} \mid \theta_{0}\right)\right]+\mathbb{E}_{y}\left|\log p\left(y_{i} \mid y\right)-\log p\left(y_{i} \mid \theta_{0}\right)\right| \\
\leq & \mathbb{E}_{y}\left[-\log p\left(y_{i} \mid \theta_{0}\right)\right]+\delta<\infty
\end{aligned}
$$

for sufficiently large n, since the first term is finite by condition (v). Let $A=A_{n}=\mathbb{E}_{y}\left[-\log p\left(y_{i} \mid y\right)\right]$.
Now,

$$
\mathbb{E}_{y}\left[\frac{1}{n}\left|S_{p}-S_{\pi}\right|\right]=\mathbb{E}_{y}\left[\frac{1}{n}\left|\sum_{i=1}^{n} \pi_{i}-\sum_{i=1}^{n} p_{i}\right|\right] \rightarrow 0
$$

as $n \rightarrow \infty$ by (2) and (3). Hence for arbitrary $\alpha>0$, $\mathbb{P}_{y}\left(\left|S_{p}-S_{\pi}\right|<\alpha^{2} n\right)>1-\alpha$ for n large enough. Also

$$
\frac{p_{i}^{2}}{\pi_{i}} \leq \frac{\left(\pi_{i}+\left|p_{i}-\pi_{i}\right|\right)^{2}}{\pi_{i}}<\pi_{i}+4\left|\pi_{i}-p_{i}\right|
$$

(the last inequality using condition (iii): $\pi_{i} \geq-\log (1 / 2)>$ $1 / 2)$, so $n^{-1} \mathbb{E}_{y}\left|S_{\pi}-S_{2}\right| \rightarrow 0$ and so $\mathbb{P}_{y}\left(\left|S_{p}-S_{2}\right|<\right.$ $\left.\alpha^{2} n\right)>1-\alpha$ for sufficiently large n. Hence with probability exceeding $1-2 \alpha$, y will be such that for sufficiently large n,

$$
\begin{aligned}
V(e) & \leq \frac{1}{n^{2}} \frac{1}{m}\left(\left(S_{p}+\alpha^{2} n\right)^{2}-S_{p}^{2}\right) \\
& =\frac{1}{n^{2}} \frac{1}{m}\left(2 \alpha^{2} n S_{p}+\alpha^{4} n^{2}\right)
\end{aligned}
$$

We had $\mathbb{E}_{y}\left[S_{p}\right]=A n$ and Markov's inequality thus entails that $\mathbb{P}_{y}\left(S_{p}<A n / \alpha\right)>1-\alpha$. Adding this piece of Information to the above, we get that with probability larger fhan $1-3 \alpha$, y will for sufficiently large n be such that

$$
V(e) \leq\left(2 \alpha+\alpha^{4}\right) n^{2}<3 \alpha
$$

For such y, Chebyshev's inequality gives

$$
\mathbb{P}\left(|e-\mathbb{E}[e \mid y]|>\alpha^{1 / 2} \mid y\right)<3 \alpha^{1 / 2}
$$

The HH estimator is unbiased, so $\mathbb{E}[e \mid y]=\overline{\operatorname{elpd}}_{l o o}$. We get for arbitrary $\epsilon>0$ on taking α sufficiently small and n correspondingly large, taking all randomness into account

$$
\mathbb{P}\left(\left|e-\overline{\operatorname{elpd}}_{l o o}\right|>\epsilon\right)<1-\epsilon
$$

which entails that $\left|e-\overline{\operatorname{elpd}}_{l o o}\right| \rightarrow 0$ in probability. As observed above, this proves (a).

For the remaining parts, write e_{p} when taking π_{i} in e according to statement (p) in the proposition. By (2), $\mathbb{E}\left|e_{p}-e_{a}\right| \rightarrow 0$ for $p=b, c, d, e$ and we are done.

References

Walker, A. M. On the asymptotic behaviour of posterior distributions. Journal of the Royal Statistical Society. Series B (Methodological), pp. 80-88, 1969.

Wang, Y. and Blei, D. M. Frequentist consistency of variational Bayes. Journal of the American Statistical Association, (just-accepted):1-85, 2018.

2. Unbiasness of Using the Hansen-Hurwitz Estimator

2.1. On the Hansen-Hurwitz Estimator

Let $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ be a set of non-negative observations, $y_{i}>0$ and let $\pi=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right\}$ be a probability vector s.t. $\sum \pi_{j}=1$. Furthermore, let $a_{k} \in\{1,2, \ldots, N\}$ be i.i.d. samples from a multinomial distribution with probabilities π, i.e. $a_{k} \stackrel{i i d}{\sim} \operatorname{Multinomial}(\pi)$.

We want to estimate the total

$$
\begin{equation*}
\tau=\sum_{n=1}^{N} y_{i} \tag{5}
\end{equation*}
$$

using the Hansen-Hurwitz estimator given by

$$
\begin{equation*}
\hat{\tau}=\frac{1}{M} \sum_{m=1}^{M} \frac{x_{m}}{p_{m}} \tag{6}
\end{equation*}
$$

where $x_{m} \equiv y_{a_{m}}, p_{m} \equiv \pi_{a_{m}}$, and $a_{m} \sim \operatorname{Multinomial}(\pi)$. We can decompose x_{m} and p_{m} as follows

$$
\begin{align*}
& x_{m} \equiv y_{a_{m}}=\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] y_{j} \tag{7}\\
& p_{m} \equiv p_{a_{m}}=\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] \pi_{j} \tag{8}
\end{align*}
$$

2.2. The Hansen-Hurwitz Estimator is Unbiased

First, we will show that the HH estimator, $\hat{\tau}$, is unbiased. We have,

$$
\begin{equation*}
\mathbb{E}[\hat{\tau}]=\mathbb{E}\left[\frac{1}{M} \sum_{m=1}^{M} \frac{x_{m}}{p_{m}}\right]=\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\frac{x_{m}}{p_{m}}\right] \tag{9}
\end{equation*}
$$

Using the definitions in eq. (7) and (8) yields

$$
\begin{align*}
\mathbb{E}[\hat{\tau}] & =\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\frac{\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] y_{j}}{\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] \pi_{j}}\right] \\
& =\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\sum_{j=1}^{N} \frac{y_{j}}{\pi_{j}} \mathbb{I}\left[a_{m}=j\right]\right] \\
& =\frac{1}{M} \sum_{m=1}^{M} \sum_{j=1}^{N} \frac{y_{j}}{\pi_{j}} \mathbb{E}\left[\mathbb{I}\left[a_{m}=j\right]\right] \\
& =\frac{1}{M} \sum_{m=1}^{M} \sum_{j=1}^{N} \frac{y_{j}}{\pi_{j}} \pi_{j} \tag{10}
\end{align*}
$$

Now it follows that

$$
\begin{equation*}
\mathbb{E}[\hat{\tau}]=\frac{1}{M} \sum_{m=1}^{M} \sum_{j=1}^{N} y_{j}=\sum_{j=1}^{N} y_{j}=\tau . \tag{11}
\end{equation*}
$$

2.3. An Unbiased Estimator of $\sigma_{\text {loo }}^{2}$

We also want to estimate the variance of the population \mathcal{Y}, i.e.

$$
\begin{equation*}
\sigma_{y}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\bar{y}\right)^{2}, \tag{12}
\end{equation*}
$$

where $\bar{y}=\frac{1}{N} \sum y_{n}$.
First, we decompose the above as follows

$$
\begin{equation*}
\sigma_{y}^{2}=\frac{1}{N} \sum_{n=1}^{N} y_{n}^{2}-\bar{y}^{2} . \tag{13}
\end{equation*}
$$

We will consider estimators for the two terms, $\frac{1}{N} \sum_{n=1}^{N} y_{n}^{2}$ (1) and \bar{y}^{2} (2), separately. First, we will show that the following is an unbiased estimate of the first term,

$$
\begin{equation*}
T_{1}=\frac{1}{N M} \sum_{m=1}^{M} \frac{x_{m}^{2}}{p_{m}} \tag{14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathbb{E}\left[T_{1}\right]=\mathbb{E}\left[\frac{1}{N M} \sum_{m=1}^{M} \frac{x_{m}^{2}}{p_{m}}\right]=\frac{1}{N M} \sum_{m=1}^{M} \mathbb{E}\left[\frac{x_{m}^{2}}{p_{m}}\right] \tag{15}
\end{equation*}
$$

Again, we use the representations in eq. (7) and (8) to get

$$
\begin{align*}
\mathbb{E}\left[\frac{1}{N M} \sum_{m=1}^{M} \frac{x_{m}^{2}}{p_{m}}\right] & =\frac{1}{N M} \sum_{m=1}^{M} \mathbb{E}\left[\frac{\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] y_{j}^{2}}{\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] \pi_{j}}\right] \\
& =\frac{1}{N M} \sum_{m=1}^{M} \mathbb{E}\left[\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] \frac{y_{j}^{2}}{\pi_{j}}\right] \\
& =\frac{1}{N M} \sum_{m=1}^{M} \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}} \mathbb{E}\left[\mathbb{I}\left[a_{m}=j\right]\right] \\
& =\frac{1}{N M} \sum_{m=1}^{M} \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}} \pi_{j} \\
& =\frac{1}{N} \sum_{j=1}^{N} y_{j}^{2} . \tag{16}
\end{align*}
$$

This completes the proof of for the first term.

For the second term, we use the estimator T_{2} given by

$$
\begin{align*}
T_{2}= & \frac{1}{M(M-1)} \sum_{m=1}^{M}\left[\frac{x_{m}}{N p_{m}}-\frac{1}{N} \sum_{k=1}^{M} \frac{x_{k}}{M p_{k}}\right]^{2} \\
& -\left[\frac{1}{N} \sum_{k=1}^{M} \frac{x_{k}}{M p_{k}}\right]^{2} . \tag{17}
\end{align*}
$$

We have

$$
\begin{align*}
& \frac{1}{M(M-1)} \sum_{m=1}^{M}\left[\frac{x_{m}}{N p_{m}}-\sum_{k=1}^{M} \frac{x_{k}}{N M p_{k}}\right]^{2}-\left[\sum_{k=1}^{M} \frac{x_{k}}{N M p_{k}}\right]^{2} \\
& =\frac{1}{N^{2} M(M-1)} \sum_{m=1}^{M} \frac{x_{m}^{2}}{p_{m}^{2}}-\frac{1}{N^{2} M(M-1)}\left[\sum_{k=1}^{M} \frac{x_{k}}{p_{k}}\right]^{2} \tag{18}
\end{align*}
$$

We consider now the expectation of the first term in the equation above

$$
\begin{align*}
\mathbb{E}\left[\sum_{m=1}^{M} \frac{x_{m}^{2}}{p_{m}^{2}}\right] & =\sum_{m=1}^{M} \mathbb{E}\left[\frac{x_{m}^{2}}{p_{m}^{2}}\right] \\
& =\sum_{m=1}^{M} \mathbb{E}\left[\frac{\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] y_{j}^{2}}{\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] \pi_{j}^{2}}\right] \\
& =\sum_{m=1}^{M} \mathbb{E}\left[\sum_{j=1}^{N} \mathbb{I}\left[a_{m}=j\right] \frac{y_{j}^{2}}{\pi_{j}^{2}}\right] \\
& =\sum_{m=1}^{M} \sum_{j=1}^{N} \mathbb{E}\left[\mathbb{I}\left[a_{m}=j\right]\right] \frac{y_{j}^{2}}{\pi_{j}^{2}} \\
& =M \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}} \tag{19}
\end{align*}
$$

and the second term

$$
\begin{align*}
\mathbb{E}\left[\left[\sum_{k=1}^{M} \frac{x_{k}}{p_{k}}\right]^{2}\right] & =\mathbb{E}\left[\sum_{k=1}^{M} \sum_{j=1}^{M} \frac{x_{k}}{p_{k}} \frac{x_{j}}{p_{j}}\right] \\
& =\sum_{k=1}^{M} \sum_{j=1}^{M} \mathbb{E}\left[\frac{x_{k}}{p_{k}} \frac{x_{j}}{p_{j}}\right] \\
& =\sum_{j \neq k}^{M} \mathbb{E}\left[\frac{x_{k}}{p_{k}} \frac{x_{j}}{p_{j}}\right]+\sum_{k=1}^{M} \mathbb{E}\left[\frac{x_{k}^{2}}{p_{k}^{2}}\right] \\
& =\sum_{j \neq k}^{M} \mathbb{E}\left[\frac{x_{k}}{p_{k}}\right] \mathbb{E}\left[\frac{x_{j}}{p_{j}}\right]+\sum_{k=1}^{M} \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}} \\
& =\sum_{j \neq k}^{M} \mathbb{E}\left[\frac{x_{k}}{p_{k}}\right] \mathbb{E}\left[\frac{x_{j}}{p_{j}}\right]+M \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}} \\
& =M(M-1) \tau^{2}+M \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}} \tag{20}
\end{align*}
$$

Substituting back, we get

$$
\begin{align*}
& \frac{1}{M(M-1)} \sum_{m=1}^{M}\left[\frac{x_{m}}{N p_{m}}-\frac{1}{N} \sum_{k=1}^{M} \frac{x_{k}}{M p_{k}}\right]^{2}-\left[\frac{1}{N} \sum_{k=1}^{M} \frac{x_{k}}{M p_{k}}\right]^{2} \\
= & \frac{1}{N^{2} M(M-1)} M \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}}- \\
& \frac{1}{N^{2} M(M-1)}\left[M(M-1) \tau^{2}+M \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}}\right] \\
= & \frac{1}{N^{2}(M-1)} \sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}}- \\
& \frac{1}{N^{2}(M-1)}\left[(M-1) \tau^{2}+\sum_{j=1}^{N} \frac{y_{j}^{2}}{\pi_{j}}\right] \\
= & -\frac{1}{N^{2}(M-1)}(M-1) \tau^{2} \\
= & -\frac{\tau^{2}}{N^{2}} \\
= & -\bar{y}^{2} . \tag{21}
\end{align*}
$$

Combining the two estimators T_{1} and T_{2} we have:

$$
\begin{aligned}
\mathbb{E}\left(T_{1}+T_{2}\right) & =\frac{1}{N} \sum_{j=1}^{N} y_{j}^{2}-\bar{y}^{2} \\
& =\sigma_{y}^{2}
\end{aligned}
$$

Hence, we have shown that the estimator of σ_{y}^{2} is unbiased using the sum of the estimators T_{1} in Eq. 14 and T_{2} in Eq. 18.

3. Hierarchical Models for the Radon Dataset

We compare seven different models of predicting the radon levels in individual houses (indexed by i) by county (indexed by j). First we fit a pooled model (model 1)

$$
\begin{aligned}
y_{i j} & =\alpha+x_{i j} \beta+\epsilon_{i j} \\
\epsilon_{i j} & \sim N\left(0, \sigma_{y}\right) \\
\alpha, \beta & \sim N(0,10) \\
\sigma_{y} & \sim N^{+}(0,1),
\end{aligned}
$$

where $y_{i j}$ is the log radon level in house i in county $j, x_{i j}$ is the floor measurement and $\epsilon_{i j}$ is $N^{+}(0,1)$ is a truncated Normal distribution at the positive real line. We compare this to a non-pooled model (model 2),

$$
\begin{aligned}
y_{i j} & =\alpha_{j}+x_{i j} \beta+\epsilon_{i j} \\
\epsilon_{i j} & \sim N\left(0, \sigma_{y}\right) \\
\alpha_{j}, \beta & \sim N(0,10) \\
\sigma_{y} & \sim N^{+}(0,1)
\end{aligned}
$$

a partially pooled model (model 3),

$$
\begin{aligned}
y_{i j} & =\alpha_{j}+\epsilon_{i j} \\
\epsilon_{i j} & \sim N\left(0, \sigma_{y}\right) \\
\alpha_{j} & \sim N\left(\mu_{\alpha}, \sigma_{\alpha}\right) \\
\mu_{\alpha} & \sim N(0,10) \\
\sigma_{y}, \sigma_{\alpha} & \sim N^{+}(0,1),
\end{aligned}
$$

a variable intercept model (model 4),

$$
\begin{aligned}
y_{i j} & =\alpha_{j}+x_{i j} \beta+\epsilon_{i j} \\
\epsilon_{i j} & \sim N\left(0, \sigma_{y}\right) \\
\alpha_{j} & \sim N\left(\mu_{\alpha}, \sigma_{\alpha}\right) \\
\mu_{\alpha}, \beta & \sim N(0,10) \\
\sigma_{y}, \sigma_{\alpha} & \sim N^{+}(0,1),
\end{aligned}
$$

a variable slope model (model 5),

$$
\begin{aligned}
y_{i j} & =\alpha+x_{i j} \beta_{j}+\epsilon_{i j} \\
\epsilon_{i j} & \sim N\left(0, \sigma_{y}\right) \\
\beta_{j} & \sim N\left(\mu_{\beta}, \sigma_{\beta}\right) \\
\mu_{\beta}, \alpha & \sim N(0,10) \\
\sigma_{y}, \sigma_{\beta} & \sim N^{+}(0,1),
\end{aligned}
$$

a variable intercept and slope model (model 6),

$$
\begin{aligned}
y_{i j} & =\alpha_{j}+x_{i j} \beta_{j}+\epsilon_{i j} \\
\alpha_{j} & \sim N\left(\mu_{\alpha}, \sigma_{\alpha}\right) \\
\beta_{j} & \sim N\left(\mu_{\beta}, \sigma_{\beta}\right) \\
\mu_{\alpha}, \mu_{\beta} & \sim N(0,10) \\
\sigma_{y}, \sigma_{\alpha}, \sigma_{\beta} & \sim N^{+}(0,1),
\end{aligned}
$$

and finally a model with county level covariates and county level intercepts

$$
\begin{aligned}
y_{i j} & =\alpha_{j}+x_{i j} \beta_{1}+u_{j} \beta_{2}+\epsilon_{i j} \\
\alpha_{j} & \sim N\left(\mu_{\alpha}, \sigma_{\alpha}\right) \\
\beta, \mu_{\alpha} & \sim N(0,10) \\
\sigma_{y}, \sigma_{\alpha} & \sim N^{+}(0,1),
\end{aligned}
$$

where u_{j} is the log uranium level in the county. The Stan code used can be found below.

4. Stan models

4.1. Linear Regression Model

```
data {
    int <lower=0> N;
    int <lower=0> D;
    matrix [N,D] x ;
    vector [N] y;
}
parameters {
    vector [D] b;
    real <lower=0> sigma;
}
model {
    target += normal_lpdf(y | x * b, sigma);
    target += normal_lpdf(b | 0, 1);
}
generated quantities{
    real log_joint_density_unconstrained;
    vector[N] log_lik;
    // Compute the log likelihoods for loo
    for (n in 1:N) {
        log_lik[n] =
            normal_lpdf(y[n] | x[n,] * b, sigma);
    }
}
```


4.2. Radon pooled model (1)

```
data {
    int<lower=0> N;
    vector[N] x;
    vector[N] y;
    int<lower=0,upper=1> holdout [N];
}
parameters {
    vector[2] beta;
    real<lower=0> sigma_y;
}
model {
    vector[N] mu;
    // priors
    sigma_y ~ normal(0,1);
    beta ~ normal(0,10);
    // likelihood
    mu = beta[1] + beta[2] * x;
    for(n in 1:N){
        if(holdout[n] == 0){
            target +=
                normal_lpdf(y[n]|mu[n],sigma_y);
        }
    }
}
```


4.4. Radon partially pooled model (3)

```
data {
    int<lower=0> N;
    int<lower=0> J;
    int<lower=1,upper=J> county[N];
    vector[N] y;
    int<lower=0,upper=1> holdout[N];
}
parameters {
    vector[J] a;
    real mu_a;
    real<lower=0> sigma_a;
    real<lower=0> sigma_y;
}
model {
    vector[N] mu;
    // priors
    sigma_y ~ normal(0,1);
    sigma_a ~ normal(0,1);
    mu_a ~ normal(0,10);
    // likelihood
    a ~ normal (mu_a, sigma_a);
    for(n in 1:N) {
        mu[n] = a[county[n]];
        if(holdout[n] == 0){
            target +=
                normal_lpdf(y[n]|mu[n],sigma_y);
        }
    }
}
```


4.6. Variable slope model (5)

```
data {
    int<lower=0> J;
    int<lower=0> N;
    int<lower=1,upper=J> county[N];
    vector[N] x;
    vector[N] y;
    int<lower=0,upper=1> holdout [N];
}
parameters {
    real a;
    vector[J] beta;
    real mu_beta;
    real<lower=0> sigma_beta;
    real<lower=0> sigma_y;
}
model {
    vector[N] mu;
    // Prior
    a ~ normal (0,10);
    sigma_y ~ normal(0,1);
    sigma_beta ~ normal (0,1);
    mu_beta ~ normal(0,10);
    beta ~ normal(mu_beta,sigma_beta);
    for(n in 1:N) {
        mu[n] = a + x[n] * beta[county[n]];
        if(holdout[n] == 0) {
            target +=
                normal_lpdf(y[n]|mu[n],sigma_y);
        }
    }
}
```


4.7. Variable intercept and slope model (6)

```
data {
    int<lower=0> N;
    int<lower=0> J;
    vector[N] y;
    vector[N] x;
    int county[N];
    int<lower=0,upper=1> holdout[N];
}
parameters {
    real<lower=0> sigma_y;
    real<lower=0> sigma_a;
    real<lower=0> sigma_beta;
    vector[J] a;
    vector[J] beta;
    real mu_a;
    real mu_beta;
}
model {
    vector[N] mu;
    // Prior
    sigma_y ~ normal(0,1);
    sigma_beta ~ normal(0,1);
    sigma_a ~ normal(0,1);
    mu_a ~ normal (0,10);
    mu__beta ~ normal(0,10);
    a ~ normal(mu_a, sigma_a);
    beta ~ normal(mu_beta, sigma_beta);
    for(n in 1:N) {
        mu[n] = a[county[n]] + x[n]*beta[county[n]];
        if(holdout[n] == 0){
            target +=
                    normal_lpdf(y[n]|mu[n],sigma_y);
        }
    }
}
```


4.8. Hierarchical intercept model (7)

```
data {
    int<lower=0> J;
    int<lower=0> N;
    int<lower=1,upper=J> county[N];
    vector[N] u;
    vector[N] x;
    vector[N] y;
    int<lower=0,upper=1> holdout[N];
}
parameters {
    vector[J] a;
    vector[2] beta;
    real mu_a;
    real<lower=0> sigma_a;
    real<lower=0> sigma_y;
}
transformed parameters {
}
model {
    vector[N] mu;
    vector[N] m;
    sigma_a ~ normal(0, 1);
    sigma_y ~ normal(0, 1);
    mu_a }\mp@subsup{~}{~}{~}\operatorname{normal}(0,10)
    beta ~ normal(0, 10);
    a ~ normal(mu_a, sigma_a);
    for(n in 1:N) {
        m[n] = a[county[n]] + u[n] * beta[1];
        mu[n] = m[n] + x[n] * beta[2];
        if(holdout[n] == 0){
            target += normal_lpdf(y[n] | mu[n], sigma_y);
        }
    }
}
```


5. R package

| The functions are implemented based upon | |
| :--- | :---: | :---: | :---: |
| the loo package structure as the | func- |
| tions quick_loo(), approx_psis() and | | psis_approximate_posterior(). An example how to run the code can be found in the documentation for quick_loo (). No changes to author lists, versions or date has been changed to preserve anonymity. If accepted, the code will be published open source.

[^0]: ${ }^{*}$ Equal contribution ${ }^{1}$ Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Sweden ${ }^{2}$ Department of Computer Science, Aalto University, Finland. Correspondence to: Måns Magnusson mans.magnusson@aalto.fi.

 Proceedings of the $36^{\text {th }}$ International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

