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Johan Jonasson 1 Måns Magnusson 2 Michael Riis Andersen 2 Aki Vehtari 2

1. Proof of Proposition 1
A generic Bayesian model is considered; a sample
(y1, y2, . . . , yn), yi ∈ Y ⊆ R, is drawn from a true den-
sity pt = p(·|θ0) for some true parameter θ0. The parameter
θ0 is assumed to be drawn from a prior p(θ) on the parame-
ter space Θ, which we assume to be an open and bounded
subset of Rd.

A number of conditions are used. They are as follows.

(i) the likelihood p(y|θ) satisfies that there is a function
C : Y → R+, such that Ey∼pt [C(y)2] < ∞ and
such that for all θ1 and θ2, |p(y|θ1) − p(y|θ2)| ≤
C(y)p(y|θ2)‖θ1 − θ2‖.

(ii) p(y|θ) > 0 for all (y, θ) ∈ Y ×Θ,

(iii) There is a constant M <∞ such that p(y|θ) < M for
all (y, θ),

(iv) all assumptions needed in the Bernstein-von Mises
(BvM) Theorem (Walker, 1969),

(v) for all θ,
∫
Y(− log p(y|θ))p(y|θ)dy <∞.

Remarks.

• There are alternatives or relaxations to (i) that also
work. One is to assume that there is an α > 0
and C with Ey[C(y)2] < ∞ such that |p(y|θ1) −
p(y|θ2)| ≤ C(y)p(y|θ2)‖θ1 − θ2‖α. There are many
examples when (i) holds, e.g. when y is normal,
Laplace distributed or Cauchy distributed with θ as
a one-dimensional location parameter.

• The assumption that Θ is bounded will be used solely
to draw the conclusion that Ey,θ‖θ − θ0‖ → 0 as n→
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∞, where y is the sample and θ is either distributed
according to the true posterior (which is consistent
by BvM) or according to a consistent approximate
posterior. The conclusion is valid by the definition
of consistency and the fact that the boundedness of Θ
makes ‖θ − θ0‖ a bounded function of θ. If it can be
shown by other means for special cases that Ey,θ‖θ −
θ0‖ → 0 despite Θ being unbounded, then our results
also hold.

• We can (and will) without loss of generality assume
thatM = 1/2 is sufficient in (iii), for if not then simply
transform data and consider zi = 2Myi instead of yi.

The main quantity of interest is the mean expected log point-
wise predictive density, which we want to use for model
evaluation and comparison.

Definition 1 (elpd). The mean expected log pointwise pre-
dictive density for a model p is defined as

elpd =

∫
pt(x) log p(x) dx

where pt(x) = p(x|θ0) is the true density at a new unseen
observation x and log p(x) is the log predictive density for
observation x.

We estimate elpd using leave-one-out cross-validation (loo).

Definition 2 (Leave-one-out cross-validation). The loo esti-
mator elpdloo is given by

elpdloo =
1

n

n∑
i=1

log p(yi|y−i), (1)

where p(yi|y−i) =
∫
p(yi|θ)p(θ|y−i)dθ.

To estimate elpdloo in turn, we use importance sampling and
the Hansen-Hurwitz estimator. Definitions follow.

Definition 3. The Hansen-Hurwitz estimator is given by

êlpdloo(m, q) =
1

m

1

n

m∑
j=1

1

π̃j
log p̂(yj |y−j)
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where π̃i is the probability of subsampling observation i,
log p̂(yi|y−i) is the (self-normalized) importance sampling
estimate of log p(yi|y−i) defined as

log p̂(yi|y−i) = log

(
1
S

∑S
s=1 p(yi|θs)r(θs)
1
S

∑S
s=1 r(θs)

)
,

where

r(θs) =
p(θs|y−i)
p(θs|y)

p(θs|y)

q(θs|y)

∝ 1

p(yi|θs)
p(θs|y)

q(θs|y)

and where q(θ|y) is an approximation of the posterior dis-
tribution, θs is a sample from the approximate posterior
distribution q(θ|y) and S is the total posterior sample size.

Proposition 1. Let the subsampling size m and the number
of posterior draws S be fixed at arbitrary integer numbers,
let the sample size n grow, assume that (i)-(vi) hold and let
q = qn(·|y) be any consistent approximate posterior. Write
θ̂q = arg max{q(θ) : θ ∈ Θ} and assume further that θ̂q is
a consistent estimator of θ0. Then

|êlpdloo(m, q)− elpdloo| → 0

in probability as n→∞ for any of the following choices of
πi, i = 1, . . . , n.

(a) πi = − log p(yi|y),

(b) πi = −Ey[log p(yi|y)],

(c) πi = −Eθ∼q[log p(yi|θ)],

(d) πi = − log p(yi|Eθ∼q[θ]),

(e) πi = − log p(yi|θ̂q).

Remark. By the variational BvM Theorems of Wang and
Blei, (Wang & Blei, 2018), q can be taken to be either qLap,
qMF or qFR, i.e. the approximate posteriors of the Laplace,
mean-field or full-rank variational families respectively in
Proposition 1, provided that one adopts the mild conditions
in their paper.

The proof of Proposition 1 will be focused on proving (a)
and then (b)-(e) will follow easily. We begin with the fol-
lowing key lemma.

Lemma 2. With all quantities as defined above,

Ey∼pt |πi − log p(yi|θ0)| → 0, (2)

with any of the definitions (a)-(e) of πi of Proposition 1.
Furthermore,

Ey∼pt | log p(yi|y−i)− log p(yi|θ0)| → 0, (3)

and

Ey∼pt | log p̂(yi|y)− log p(yi|θ0)| → 0. (4)

as n→∞.

Proof. To avoid burdening the notation unnecessarily, we
write throughout the proof Ey for Ey∼pt . For now, we also
write Eθ as shorthand for Eθ∼p(·|y−i). Recall that x+ =
max(x, 0) = ReLU(x).

Hence

Ey

[(
log

p(yi|y−i)
p(yi|θ0)

)
+

]

= Ey

[(
log

Eθ[p(yi|θ)]
p(yi|θ0)

)
+

]

≤ Ey
[
log

(
1 +

Eθ [C(yi)p(yi|θ0)‖θ − θ0‖]
p(yi|θ0)

)]
≤ Ey,θ[C(yi)‖θ − θ0‖]

≤
(
Eyi [C(yi)

2]Ey,θ
[
‖θ − θ0‖2

])1/2
→ 0 as n→∞.

Here the first inequality follows from condition (i) and the
second inequality from the fact that log(1 + x) < x for
x ≥ 0. The third inequality is Schwarz inequality. The limit
conclusion follows from the consistency of the posterior
p(·|y−i) and the definition of weak convergence, since ‖θ−
θ0‖2 is a continuous bounded function of θ (recall that Θ is
bounded) and that the first factor is finite by condition (i).

For the reverse inequality,

Ey

[(
log

p(yi|θ0)

p(yi|y−i)

)
+

]

= Ey

[(
logEθ

[
p(yi|θ0)]

p(yi|θ)

])
+

]

≤ Ey
[
log

(
1 + Eθ

[
C(yi)p(yi|θ)‖θ − θ0‖

p(yi|θ)

])]
≤
(
Eyi [C(yi)

2]Ey,θ
[
‖θ − θ0‖2

])1/2
→ 0 as n→∞.

This proves (3) and an identical argument proves (2) for
πi = p(yi|y).
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For πi = −Ey[log p(yi|y)], note first that

Ey |Ey[log p(yi|y)]− Ey[log p(yi|y−i)]|
= |Ey[log p(yi|y)− log p(yi|y−i)]|
≤ Ey |log p(yi|y)− log p(yi|y−i)]|

which goes to 0 by (3) and (a). Hence we can replace
πi = −E[log p(yi|y)] with πi = −E[log p(yi|y−i)] when
proving (b). To that end, observe that

(Ey[log p(yi|y−i)]− log p(yi|θ0))+

=

(
Eyi

[
Ey−i

[
log

p(yi|y−i)
p(yi|θ0)

]])
+

≤ Ey

[(
log

p(yi|y−i)
p(yi|θ0)

)
+

]
.

where the inequality is Jensen’s inequality used twice on the
convex function x → x+. Now everything is identical to
the proof of (3) and the reverse inequality is analogous.

The other choices of πi follow along very similar lines. For
πi = − log p(yi|θ̂q), we have on mimicking the above that

Ey

(log
p(yi|θ̂q)
p(yi|θ0)

)
+


≤
(
Eyi [C(yi)

2]Ey
[
‖θ̂q − θ0‖2

])1/2
and Ey[‖θ̂q − θ0‖2]→ 0 as n→∞ by the assumed consis-
tency of θ̂q . The reverse inequality is analogous and (2) for
πi = p(yi|θ̂q) is established.

For the case πi = − log p(yi|Eθ∼qθ), the analogous analy-
sis gives

Ey

[(
log

p(yi|Eθ∼qθ)
p(yi|θ0)

)
+

]
≤ Eyi [C(yi)

2]Ey[‖Eθ∼qθ − θ0‖2].

Since x → ‖x − θ0‖2 is convex, the second factor on the
right hand side is bounded by Ey,θ∼q[‖θ−θ0‖2] which goes
to 0 by the consistency of q and the boundedness of Θ. The
reverse inequality is again analogous.

Finally for πi = −Eθ∼q[log p(yi|θ)],

Ey
[
(Eθ∼q[log p(yi|θ)]− log p(yi|θ0))+

]
= Ey

[(
Eθ∼q

[
log

p(yi|θ)
p(yi|θ0)

])
+

]

≤ Ey,θ∼q

[(
log

p(yi|θ)
p(yi|θ0)

)
+

]
≤
(
Eyi [C(yi)

2]Ey,θ∼q[‖θ − θ0‖2]
)1/2 → 0

as n→∞ by the consistency of q. Here the first inequality
is Jensen’s inequality applied to x → x+ and the second
inequality follows along the same lines as before.

For (4), write r′(θs) = r(θs)/
∑S
j=1 r(θj) for the random

weights given to the individual θs:s in the expression for
p̂(yi|y−i). Then we have, with θ = (θ1, . . . , θS) chosen
according to q,

Ey

[(
log

p̂(yi|y−i)
p(yi|θ0)

)
+

]

= Ey,θ

(log

∑S
s=1 r

′(θs)p(yi|θs)
p(yi|θ0)

)
+


≤ Ey,θ

[
log

(
1 +

∑S
s=1 r

′(θs)|p(yi|θs)− p(yi|θ0)|
p(yi|θ0)

)]

≤ Ey,θ

[
log

(
1 + C(yi)

S∑
s=1

r′(θs)‖θs − θ0‖

)]

≤ Ey,θ

[
log

(
1 + C(yi)

S∑
s=1

‖θs − θ0‖

)]

≤ Ey,θ

[
C(yi)

S∑
s=1

‖θs − θ0‖

]

≤

Eyi [C(yi)
2]Ey,θ

( S∑
s=1

‖θs − θ0‖

)2
1/2

,

where the second inequality is condition (i) and the limit
conclusion follows from the consistency of q. For the re-
verse inequality to go through analogously, observe that

|p(yi|θ0)−
∑
s r
′(θs)p(yi|θs)|∑

s r
′(θs)p(yi|θs)

≤
∑
s r
′(θs)|p(yi|θs)− p(yi|θ0)|∑

s r
′(θs)p(yi|θs)

≤
∑
s r
′(θs)p(yi|θs)‖θs − θ0‖∑
s r
′(θs)p(yi|θs)

≤ max
s
‖θs − θ0‖

≤
∑
s

‖θs − θ0‖.

Equipped with this observation, mimic the above.

For convenience we will write ê := êm,q = êlpdloo, which
for our purposes is more usefully expressed as

ê =
1

n

1

m

n∑
i=1

m∑
j=1

Iij
1

π̄i
log p̂(yi|y−i),
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where Iij is the indicator that sample point yi is chosen in
draw j for the subsample used in ê. Write also

e =
1

n

1

m

n∑
i=1

m∑
j=1

Iij
1

π̄i
log p(yi|y−i).

In other words, e is the HH estimator with p̂ replaced with
p.

Lemma 3. With the notation as just defined and πi =
− log p(yi|y),

E|ê− e| → 0

as n→∞.

Proof. We have, with expectations with respect to all
sources of randomness involved in ê and e

E|ê− e|

≤ 1

m

1

n

n∑
i=1

m∑
j=1

E
[
E
[
Iij

1

π̄i
| log p̂(yi|y−i)− log p(yi|y−i)|

∣∣∣y]]

=E

 1

n

1

m

n∑
i=1

m∑
j=1

| log p̂(yi|y−i)− log p(yi|y−i)|


=E| log p̂(yi|y−i)− log p(yi|y−i)|.

The result now follows from (3), (4) and the triangle inequal-
ity.

Proof of Proposition 1. As stated before, we start with
a focus on (a), which means that for now we have πi =
− log p(yi|y) By Lemma 3, it suffices to prove that |e −
elpdloo| → 0 in probability with πi chosen according to any
of (a)-(e). The variance of a HH estimator is well known and
some easy manipulation then tells us that the conditional
variance of e given y is given by

V (e) = Var(e|y) =
1

n2
1

m
(SπS2 − S2

p),

where Sp =
∑n
i=1 pi, Sπ =

∑n
i=1 πi and S2 =∑n

i=1(p2i /πi). We claim that for any δ > 0, for n suffi-
ciently large, Py(V (e) < δ) > 1− δ. To this end, observe
first that

Ey[− log p(yi|y)]

≤Ey[− log p(yi|θ0)] + Ey| log p(yi|y)− log p(yi|θ0)|
≤Ey[− log p(yi|θ0)] + δ <∞

for sufficiently large n, since the first term is finite by condi-
tion (v). Let A = An = Ey[− log p(yi|y)].

Now,

Ey
[

1

n
|Sp − Sπ|

]
= Ey

[
1

n

∣∣∣∣∣
n∑
i=1

πi −
n∑
i=1

pi

∣∣∣∣∣
]
→ 0

as n → ∞ by (2) and (3). Hence for arbitrary α > 0,
Py(|Sp − Sπ| < α2n) > 1− α for n large enough. Also

p2i
πi
≤ (πi + |pi − πi|)2

πi
< πi + 4|πi − pi|

(the last inequality using condition (iii): πi ≥ − log(1/2) >
1/2), so n−1Ey|Sπ − S2| → 0 and so Py(|Sp − S2| <
α2n) > 1 − α for sufficiently large n. Hence with proba-
bility exceeding 1− 2α, y will be such that for sufficiently
large n,

V (e) ≤ 1

n2
1

m

(
(Sp + α2n)2 − S2

p

)
=

1

n2
1

m
(2α2nSp + α4n2).

We had Ey[Sp] = An and Markov’s inequality thus entails
that Py(Sp < An/α) > 1 − α. Adding this piece of
information to the above, we get that with probability larger
than 1− 3α, y will for sufficiently large n be such that

V (e) ≤ (2α+ α4)n2 < 3α.

For such y, Chebyshev’s inequality gives

P(|e− E[e|y]| > α1/2|y) < 3α1/2.

The HH estimator is unbiased, so E[e|y] = elpdloo. We
get for arbitrary ε > 0 on taking α sufficiently small and n
correspondingly large, taking all randomness into account

P(|e− elpdloo| > ε) < 1− ε

which entails that |e − elpdloo| → 0 in probability. As
observed above, this proves (a).

For the remaining parts, write ep when taking πi in e
according to statement (p) in the proposition. By (2),
E|ep − ea| → 0 for p = b, c, d, e and we are done.

�
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2. Unbiasness of Using the Hansen-Hurwitz
Estimator

2.1. On the Hansen-Hurwitz Estimator

Let Y = {y1, y2, . . . , yN} be a set of non-negative observa-
tions, yi > 0 and let π = {π1, π2, . . . , πN} be a probability
vector s.t.

∑
πj = 1. Furthermore, let ak ∈ {1, 2, . . . , N}

be i.i.d. samples from a multinomial distribution with prob-
abilities π, i.e. ak

iid∼ Multinomial (π).

We want to estimate the total

τ =

N∑
n=1

yi (5)

using the Hansen-Hurwitz estimator given by

τ̂ =
1

M

M∑
m=1

xm
pm

, (6)

where xm ≡ yam , pm ≡ πam , and am ∼ Multinomial (π).

We can decompose xm and pm as follows

xm ≡ yam =

N∑
j=1

I [am = j] yj (7)

pm ≡ pam =

N∑
j=1

I [am = j]πj (8)

2.2. The Hansen-Hurwitz Estimator is Unbiased

First, we will show that the HH estimator, τ̂ , is unbiased.
We have,

E [τ̂ ] = E

[
1

M

M∑
m=1

xm
pm

]
=

1

M

M∑
m=1

E
[
xm
pm

]
(9)

Using the definitions in eq. (7) and (8) yields

E [τ̂ ] =
1

M

M∑
m=1

E

[∑N
j=1 I [am = j] yj∑N
j=1 I [am = j]πj

]

=
1

M

M∑
m=1

E

 N∑
j=1

yj
πj

I [am = j]


=

1

M

M∑
m=1

N∑
j=1

yj
πj

E [I [am = j]]

=
1

M

M∑
m=1

N∑
j=1

yj
πj
πj (10)

since πj = P [am = j] = E [I [am = j]].

Now it follows that

E [τ̂ ] =
1

M

M∑
m=1

N∑
j=1

yj =

N∑
j=1

yj = τ. (11)

2.3. An Unbiased Estimator of σ2
loo

We also want to estimate the variance of the population Y ,
i.e.

σ2
y =

1

N

N∑
n=1

(yn − ȳ)
2
, (12)

where ȳ = 1
N

∑
yn.

First, we decompose the above as follows

σ2
y =

1

N

N∑
n=1

y2n − ȳ2. (13)

We will consider estimators for the two terms, 1
N

∑N
n=1 y

2
n

(1) and ȳ2 (2), separately. First, we will show that the
following is an unbiased estimate of the first term,

T1 =
1

NM

M∑
m=1

x2m
pm

. (14)

We have

E [T1] = E

[
1

NM

M∑
m=1

x2m
pm

]
=

1

NM

M∑
m=1

E
[
x2m
pm

]
(15)

Again, we use the representations in eq. (7) and (8) to get

E

[
1

NM

M∑
m=1

x2m
pm

]
=

1

NM

M∑
m=1

E

[∑N
j=1 I [am = j] y2j∑N
j=1 I [am = j]πj

]

=
1

NM

M∑
m=1

E

 N∑
j=1

I [am = j]
y2j
πj


=

1

NM

M∑
m=1

N∑
j=1

y2j
πj

E [I [am = j]]

=
1

NM

M∑
m=1

N∑
j=1

y2j
πj
πj

=
1

N

N∑
j=1

y2j . (16)

This completes the proof of for the first term.
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For the second term, we use the estimator T2 given by

T2 =
1

M(M − 1)

M∑
m=1

[
xm
Npm

− 1

N

M∑
k=1

xk
Mpk

]2

−

[
1

N

M∑
k=1

xk
Mpk

]2
. (17)

We have

1

M(M − 1)

M∑
m=1

[
xm
Npm

−
M∑
k=1

xk
NMpk

]2

−

[
M∑
k=1

xk
NMpk

]2

=
1

N2M(M − 1)

M∑
m=1

x2m
p2m

− 1

N2M(M − 1)

[
M∑
k=1

xk
pk

]2

(18)

We consider now the expectation of the first term in the
equation above

E

[
M∑
m=1

x2m
p2m

]
=

M∑
m=1

E
[
x2m
p2m

]

=

M∑
m=1

E

[∑N
j=1 I [am = j] y2j∑N
j=1 I [am = j]π2

j

]

=

M∑
m=1

E

 N∑
j=1

I [am = j]
y2j
π2
j


=

M∑
m=1

N∑
j=1

E [I [am = j]]
y2j
π2
j

= M

N∑
j=1

y2j
πj

(19)

and the second term

E

[ M∑
k=1

xk
pk

]2 = E

 M∑
k=1

M∑
j=1

xk
pk

xj
pj


=

M∑
k=1

M∑
j=1

E
[
xk
pk

xj
pj

]

=

M∑
j 6=k

E
[
xk
pk

xj
pj

]
+

M∑
k=1

E
[
x2k
p2k

]

=

M∑
j 6=k

E
[
xk
pk

]
E
[
xj
pj

]
+

M∑
k=1

N∑
j=1

y2j
πj

=

M∑
j 6=k

E
[
xk
pk

]
E
[
xj
pj

]
+M

N∑
j=1

y2j
πj

= M(M − 1)τ2 +M

N∑
j=1

y2j
πj
. (20)

Substituting back, we get

1

M(M − 1)

M∑
m=1

[
xm
Npm

− 1

N

M∑
k=1

xk
Mpk

]2

−

[
1

N

M∑
k=1

xk
Mpk

]2

=
1

N2M(M − 1)
M

N∑
j=1

y2j
πj

−

1

N2M(M − 1)

[
M(M − 1)τ2 +M

N∑
j=1

y2j
πj

]

=
1

N2(M − 1)

N∑
j=1

y2j
πj

−

1

N2(M − 1)

[
(M − 1)τ2 +

N∑
j=1

y2j
πj

]

= − 1

N2(M − 1)
(M − 1)τ2

= − τ2

N2

= − ȳ2. (21)

Combining the two estimators T1 and T2 we have:

E(T1 + T2) =
1

N

N∑
j=1

y2j − ȳ2

= σ2
y

Hence, we have shown that the estimator of σ2
y is unbiased

using the sum of the estimators T1 in Eq. 14 and T2 in Eq.
18.
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3. Hierarchical Models for the Radon Dataset
We compare seven different models of predicting the radon
levels in individual houses (indexed by i) by county (indexed
by j). First we fit a pooled model (model 1)

yij = α+ xijβ + εij

εij ∼ N(0, σy)

α, β ∼ N(0, 10)

σy ∼ N+(0, 1) ,

where yij is the log radon level in house i in county j, xij
is the floor measurement and εij is N+(0, 1) is a truncated
Normal distribution at the positive real line. We compare
this to a non-pooled model (model 2),

yij = αj + xijβ + εij

εij ∼ N(0, σy)

αj , β ∼ N(0, 10)

σy ∼ N+(0, 1) ,

a partially pooled model (model 3),

yij = αj + εij

εij ∼ N(0, σy)

αj ∼ N(µα, σα)

µα ∼ N(0, 10)

σy, σα ∼ N+(0, 1) ,

a variable intercept model (model 4),

yij = αj + xijβ + εij

εij ∼ N(0, σy)

αj ∼ N(µα, σα)

µα, β ∼ N(0, 10)

σy, σα ∼ N+(0, 1) ,

a variable slope model (model 5),

yij = α+ xijβj + εij

εij ∼ N(0, σy)

βj ∼ N(µβ , σβ)

µβ , α ∼ N(0, 10)

σy, σβ ∼ N+(0, 1) ,

a variable intercept and slope model (model 6),

yij = αj + xijβj + εij

αj ∼ N(µα, σα)

βj ∼ N(µβ , σβ)

µα, µβ ∼ N(0, 10)

σy, σα, σβ ∼ N+(0, 1) ,

and finally a model with county level covariates and county
level intercepts

yij = αj + xijβ1 + ujβ2 + εij

αj ∼ N(µα, σα)

β, µα ∼ N(0, 10)

σy, σα ∼ N+(0, 1) ,

where uj is the log uranium level in the county. The Stan
code used can be found below.

4. Stan models
4.1. Linear Regression Model

data {
int <lower=0> N;
int <lower=0> D;
matrix [N,D] x ;
vector [N] y;

}
parameters {

vector [D] b;
real <lower=0> sigma;

}
model {

target += normal_lpdf(y | x * b, sigma);
target += normal_lpdf(b | 0, 1);

}

generated quantities{
real log_joint_density_unconstrained;
vector[N] log_lik;
// Compute the log likelihoods for loo
for (n in 1:N) {

log_lik[n] =
normal_lpdf(y[n] | x[n,] * b, sigma);

}
}



Bayesian LOO for Large Data - Supplementary material

4.2. Radon pooled model (1)

data {
int<lower=0> N;
vector[N] x;
vector[N] y;
int<lower=0,upper=1> holdout[N];

}

parameters {
vector[2] beta;
real<lower=0> sigma_y;

}

model {
vector[N] mu;

// priors
sigma_y ˜ normal(0,1);
beta ˜ normal(0,10);

// likelihood
mu = beta[1] + beta[2] * x;
for(n in 1:N){
if(holdout[n] == 0){
target +=
normal_lpdf(y[n]|mu[n],sigma_y);

}
}

}

4.3. Radon pooled model (2)

data {
int<lower=0> N;
int<lower=0> J;
int<lower=1,upper=J> county[N];
vector[N] x;
vector[N] y;
int<lower=0,upper=1> holdout[N];

}

parameters {
vector[J] a;
real beta;
real<lower=0> sigma_y;

}

model {
vector[N] mu;
// Prior
sigma_y ˜ normal(0,1);
a ˜ normal(0,10);

// Likelihood
for(n in 1:N){
mu[n] = beta*x[n] + a[county[n]];
if(holdout[n] == 0){

target +=
normal_lpdf(y[n]|mu[n],sigma_y);

}
}

}
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4.4. Radon partially pooled model (3)

data {
int<lower=0> N;
int<lower=0> J;
int<lower=1,upper=J> county[N];
vector[N] y;
int<lower=0,upper=1> holdout[N];

}
parameters {

vector[J] a;
real mu_a;
real<lower=0> sigma_a;
real<lower=0> sigma_y;

}

model {
vector[N] mu;

// priors
sigma_y ˜ normal(0,1);
sigma_a ˜ normal(0,1);
mu_a ˜ normal(0,10);

// likelihood
a ˜ normal (mu_a, sigma_a);
for(n in 1:N){
mu[n] = a[county[n]];
if(holdout[n] == 0){
target +=

normal_lpdf(y[n]|mu[n],sigma_y);
}

}
}

4.5. Variable intercept model (4)

data {
int<lower=0> J;
int<lower=0> N;
int<lower=1,upper=J> county[N];
vector[N] x;
vector[N] y;
int<lower=0,upper=1> holdout[N];

}
parameters {
vector[J] a;
real beta;
real mu_a;
real<lower=0> sigma_a;
real<lower=0> sigma_y;

}

model {
vector[N] mu;
// Prior
sigma_y ˜ normal(0,1);
sigma_a ˜ normal(0,1);
mu_a ˜ normal(0,10);
beta ˜ normal(0,10);

a ˜ normal (mu_a, sigma_a);
for(n in 1:N){
mu[n] = a[county[n]] + x[n]*beta;
if(holdout[n] == 0){

target +=
normal_lpdf(y[n]|mu[n],sigma_y);

}
}

}
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4.6. Variable slope model (5)

data {
int<lower=0> J;
int<lower=0> N;
int<lower=1,upper=J> county[N];
vector[N] x;
vector[N] y;
int<lower=0,upper=1> holdout[N];

}
parameters {

real a;
vector[J] beta;
real mu_beta;
real<lower=0> sigma_beta;
real<lower=0> sigma_y;

}

model {
vector[N] mu;
// Prior
a ˜ normal(0,10);
sigma_y ˜ normal(0,1);
sigma_beta ˜ normal(0,1);
mu_beta ˜ normal(0,10);

beta ˜ normal(mu_beta,sigma_beta);
for(n in 1:N){
mu[n] = a + x[n] * beta[county[n]];
if(holdout[n] == 0){
target +=

normal_lpdf(y[n]|mu[n],sigma_y);
}

}
}

4.7. Variable intercept and slope model (6)

data {
int<lower=0> N;
int<lower=0> J;
vector[N] y;
vector[N] x;
int county[N];
int<lower=0,upper=1> holdout[N];

}
parameters {
real<lower=0> sigma_y;
real<lower=0> sigma_a;
real<lower=0> sigma_beta;
vector[J] a;
vector[J] beta;
real mu_a;
real mu_beta;

}

model {
vector[N] mu;
// Prior
sigma_y ˜ normal(0,1);
sigma_beta ˜ normal(0,1);
sigma_a ˜ normal(0,1);
mu_a ˜ normal(0,10);
mu_beta ˜ normal(0,10);

a ˜ normal(mu_a, sigma_a);
beta ˜ normal(mu_beta, sigma_beta);
for(n in 1:N){

mu[n] = a[county[n]] + x[n]*beta[county[n]];
if(holdout[n] == 0){

target +=
normal_lpdf(y[n]|mu[n],sigma_y);

}
}

}
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4.8. Hierarchical intercept model (7)

data {
int<lower=0> J;
int<lower=0> N;
int<lower=1,upper=J> county[N];
vector[N] u;
vector[N] x;
vector[N] y;
int<lower=0,upper=1> holdout[N];

}
parameters {

vector[J] a;
vector[2] beta;
real mu_a;
real<lower=0> sigma_a;
real<lower=0> sigma_y;

}
transformed parameters {
}

model {
vector[N] mu;
vector[N] m;

sigma_a ˜ normal(0, 1);
sigma_y ˜ normal(0, 1);
mu_a ˜ normal(0, 10);
beta ˜ normal(0, 10);

a ˜ normal(mu_a, sigma_a);
for(n in 1:N){
m[n] = a[county[n]] + u[n] * beta[1];
mu[n] = m[n] + x[n] * beta[2];
if(holdout[n] == 0){

target += normal_lpdf(y[n] | mu[n], sigma_y);
}

}
}

5. R package
The functions are implemented based upon
the loo package structure as the func-
tions quick loo(), approx psis() and
psis approximate posterior(). An exam-
ple how to run the code can be found in the documentation
for quick loo(). No changes to author lists, versions or
date has been changed to preserve anonymity. If accepted,
the code will be published open source.


