Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm

Piotr Indyk^{*1} Sepideh Mahabadi^{*2} Shayan Oveis Gharan^{*3} Alireza Rezaei^{*3}

A. Missing Proofs

Proof of Claim 5.5 of the paper. We prove the claim by induction on t, and show that for any j s.t. j > t, the point $\Pi(\mathcal{G}'_t)(q'_j)$ can be written as the sum $\sum_{i \leq t} \alpha_i q'_i$ such that $|\alpha_i| \leq 3^t$.

Base Case. First, we prove the base case of induction, i.e., t = 1. Recall that by our assumption, $||q_1|| > 3^k x$, and thus by triangle inequality, we have that $||q'_1|| \ge ||q_1|| - x/k \ge 3^k x - x/k \ge 2x$. Therefore, since q_1 is the vector with largest norm in P, using triangle inequality again, we have that for any j > 1,

$$||q_j'|| \le ||q_j|| \le ||q_1|| \le ||q_1'|| + x/k \le (1 + \frac{1}{2k})||q_1'||$$

Therefore we can write $\Pi(\mathcal{G}'_1)(q'_j) = \alpha_1 q'_1$ where $|\alpha_1| \leq 2$.

Inductive step. Now, lets assume that the hypothesis holds for \mathcal{G}'_t . In particular this means that we can write $\Pi(\mathcal{G}'_t)(q'_{t+1}) = \sum_{i \leq t} \beta_i q'_i$ where $|\beta_i| \leq 3^t$, and that for a given j > t + 1, we can write $\Pi(\mathcal{G}'_t)(q'_j) = \sum_{i \leq t} \gamma_i q'_i$ where $|\gamma_i|$'s are at most 3^t . Now let $\ell = \operatorname{dist}(q'_{t+1}, \mathcal{G}'_t)$. By

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

triangle inequality, we get that

$$\operatorname{dist}(q_{t+1}, \mathcal{G}_t) \leq \operatorname{dist}(q_{t+1}, q'_{t+1}) \tag{1}$$
$$+ \operatorname{dist}(q'_{t+1}, \Pi(\mathcal{G}')(q'_{t+1}) + (2))$$

$$dist(\Pi(\mathcal{G}'_t)(q'_{t+1}), \mathcal{G}_t)$$

$$\leq x/k + \ell + dist(\sum_{i \leq t} \beta_i q'_i, \sum_{i \leq t} \beta_i q_i)$$

$$\leq x/k + \ell + \sum_{i \leq t} |\beta_i| x/k$$

$$\leq \ell + 3^t x. \tag{3}$$

Now we consider two case. If $\ell \leq 3^t x$ then using the above

$$\operatorname{dist}(q_{t+1}, \mathcal{G}_t) \le 2 \cdot 3^t x \le 3^k x,$$

which contradicts our assumption of $dist(q_{t+1}, \mathcal{G}_t) > 3^k x$. Otherwise,

$$dist(\Pi(\mathcal{G}'_{t+1})(q'_j), \mathcal{G}'_t) \leq dist(q'_j, \mathcal{G}'_t) \leq dist(q_j, \mathcal{G}_t)$$
$$\leq dist(q_{t+1}, \mathcal{G}_t) \leq 2\ell,$$

where the last inequality follows from Equation 1. Therefore, we can write $\Pi(\mathcal{G}'_{t+1})(q'_j) = \alpha_{t+1}q'_{t+1} - \alpha_{t+1}\Pi(\mathcal{G}'_t)(q'_{t+1}) + \Pi(\mathcal{G}_t)(q'_j)$ where $\alpha_{t+1} \leq 2$.

By the hypothesis, we can write $\Pi(\mathcal{G}'_t)(q'_j) = \sum_{i \leq t} \gamma_i q'_i$, where $|\gamma_i| \leq 3^t$. Since $|\alpha_{t+1}| \leq 2$, we can write

$$\begin{split} \Pi(\mathcal{G}'_{t+1})(q'_j) &= \alpha_{t+1}q'_{t+1} + \sum_{i \leq t} (\gamma_i - \alpha_{t+1}\beta_i)q'_i \\ &= \sum_{i \leq t+1} \alpha_i q'_i \quad \text{where } |\alpha_i| \leq 3^{t+1}. \end{split}$$

This completes the proof of the claim.

B. Details of Experiments on Local Search vs. Greedy as offline algorithms

Here, we compare the quality of Greedy and Local Search as centralized algorithms on the whole data sets. Figure 1 shows the improvement ratio of the determinant of the solution returned by the Local Search algorithm over the determinant of the solution returned by the Greedy algorithm.

^{*}Equal contribution ¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ²Toyota Technological Institute at Chicago, Chicago, Illinois, USA ³Department of Computer Science, University of Washington, Seattle, USA. Correspondence to: Piotr Indyk <indyk@mit.edu>, Sepideh Mahabadi <mahabadi@ttic.edu>, Shayan Oveis Gharan <shayan@cs.washington.edu>, Alireza Rezaei <arezaei@cs.washington.edu>.

On average over all values of k, Local Search improves over Greedy by 13% for GENES data set and 5% for MNIST data set. Figure 2 shows the ratio of the time it takes to run the Local Search and Greedy algorithms as a function of kfor both data sets. On average, it takes about 6.5 times more to run the Local Search algorithm.

Figure 1. Average improvement of Local Search over Greedy as a function of k.

Figure 2. Average ratio of the run time of Local Search over Greedy as a function of k.

C. Details of Experiments for Comparing Local Search vs. the LP-based Algorithm

In this section, we compare the performance of the Local Search algorithm and the LP-based algorithm of (Indyk et al., 2018) for constructing core-sets, i.e., we compare GD/LS with GD/LP. Figure 3 shows how much Local Search improves over the LP-based algorithm. On average this improvement is 7.3%, 1.8% and 1.4% for GENES, MNIST10 and MNIST50 respectively. Moreover, in 78% of all runs, Local Search performed better than Lp-based algorithm, and this improvement can go upto 63%. Figure 4 shows the average ratio of the time to construct core-sets using the LP-based algorithm vs. Local Search.

As it is clear from the graphs, our proposed Local Search algorithm performs better than even the LP-based algorithm which has almost tight approximation guarantees: while picking fewer points in the core-set, in most cases it finds a better solution and runs faster.

Figure 3. Average improvement of Local Search over LP-based algorithm for constructing core-sets as a function of k.

Figure 4. Average ratio of the run time of the optimal algorithm over local search as a function of k.

References

Indyk, P., Mahabadi, S., Gharan, S. O., and Rezaei, A. Composable core-sets for determinant maximization problems via spectral spanners. *arXiv preprint arXiv:1807.11648*, 2018.