
Calibrated Model-Based Deep Reinforcement Learning

Appendices

A. Recalibration
Most predictive models are not calibrated out-of-the-box due to modeling bias and computational approximations. However,
given an arbitrary pre-trained forecaster H : X ! (Y ! [0, 1]) that outputs CDFs F , we may train an auxiliary model
R : [0, 1] ! [0, 1] such that the forecasts R�F are calibrated in the limit of enough data. This procedure, called recalibration,
is simple to implement, computationally inexpensive, and can be applied to any probabilistic regression model in a black-box
manner. Furthermore, it does not increase the loss function of the original model if it belongs to a large family of objectives
called proper losses (Kull & Flach, 2015; Kuleshov & Ermon, 2017).

Algorithm 2 CALIBRATE: Recalibration of Transition Dynamics

Input: Uncalibrated transition model bT : S ⇥ A ! P(S) that outputs CDFs Fs,a : S ! [0, 1], and calibration set
Dcal = {(st, at), st+1}}Nt=1

Output: Auxiliary recalibration model R : [0, 1] ! [0, 1].

1. Construct a recalibration dataset

D =
n⇣

Fst,at(st+1), P̂ (Fst,at(st+1))
⌘oN

t=1

where
P̂ (p) =

1

N

NX

t=1

I[Fst,at(st+1) p].

2. Train a model R : [0, 1] ! [0, 1] (e.g. sigmoid or isotonic regression) on D.

When S is discrete, a popular choice of R is Platt scaling (Platt et al., 1999); Kuleshov et al. (2018) extends Platt scaling to
continuous variables. Either of these methods can be used within our framework. Since this paper focuses on continuous
state spaces, we use the method of Kuleshov et al. (2018) described in Algorithm 2, unless otherwise indicated.

B. Calibrated Discrete MDP
We provide a proof in the discrete case that calibrated uncertainties result in correct expectations with respect to the true
probability distribution, and thus using calibrated dynamics allow accurate evaluation of policies.

Consider a discrete state MDP (S,A, T,R) and a policy ⇡ over this MDP. We are interested in evaluating the goodness of
this policy at any state s using the usual value iteration:

V⇡(s) = R(s) + � E
a⇠⇡(·|s)

E
s0⇠T (·|s,a)

[V (s0)]. (5)

For the given policy ⇡, there exists a stationary distribution �⇡ that would be obtained from running this policy for a long
time. We define the value of the entire policy V (⇡) as an expectation with respect to this stationary distribution i.e.

V (⇡) = E
s⇠�⇡

[V (s)]. (6)

We want to show that replacing the true dynamics T with calibrated dynamics bT does not affect our evaluation of the
policy ⇡. To have a well-defined notion of calibration, we need to define a joint distribution over the inputs and outputs
of a predictive model. The inputs are the current state-action pair (s, a) the outputs are distributions over the next state s

0.
To define a joint distribution P over (S,A) and S

0, we use the stationary distribution �⇡, the policy ⇡, and the transition
dynamics T to define the sub-components using the chain rule:

P((s, a), s0) = P(s0|s, a) P(a|s) P(s) (7)
= T (s0|s, a) ⇡(a|s) �⇡(s). (8)

Calibrated Model-Based Deep Reinforcement Learning

Note that defining the joint distribution P this way lets us rewrite V (⇡) more simply as

V (⇡) = E
s⇠�⇡

[V (s)] (9)

= E
s⇠�⇡

[R(s)] + � E
s⇠�⇡

E
a⇠⇡(·|s)

E
s0⇠T (·|s,a)

[V (s0)] (10)

= E
s⇠�⇡

[R(s)] + � E
((s,a),s0)⇠P

[V (s0)] (11)

= E
s⇠�⇡

[R(s)] + � E
s0⇠P(S0)

[V (s0)] (12)

These definitions allow us to state our theorem.
Theorem 2. Let (S,A, T,R) be a discrete MDP and let ⇡ be a stochastic policy over this MDP. Define P to be a joint
distribution over state-action and future state pairs ((s, a), s0) as outlined in Equation 8. Then the value of policy ⇡ under
the true dynamics T is equal to the value of the policy under some other dynamics bT that are calibrated with respect to P.

Proof. Since bT is calibrated with respect to P, we have P(s0 = j | bT (s0 = j|s, a) = p)) = p. Let bV (⇡) be the value of
policy ⇡ under bT . Then we have

bV (⇡) = E
s⇠�⇡

[R(s)] + � E
(s,a)⇠P((s,a))

E
s0⇠bT (s0|s,a)

[V (y)] (13)

= E
s⇠�⇡

[R(s)] + � E
s0⇠P(S0)

[V (y)] (14)

= V (⇡), (15)

where the second line follows immediately from Lemma 2.

⌅
Lemma 2. Consider a pair of jointly distributed variables (X,Y) ⇠ P over X and Y where X = {x1, . . . , xk} and
Y = {y1, . . . , ym} are discrete spaces, and let Q(Y |X) be a distribution that is calibrated with respect to P. In other
words, P(Y = y | Q(Y = y | X) = p) = p. Then, for any arbitrary function g : Y ! S with which we want to take an
expectation, the following equality holds:

E
y⇠P(Y)

[g(y)] = E
x⇠P(X)

y⇠Q(Y |X=x)

[g(y)] . (16)

Proof. We can rewrite the expectation on the LHS of Equation 16 using the law of total probability and the chain rule to get:

E
y⇠P(Y)

[g(y)] =
X

y2Y
g(y)P(Y = y)

=
X

y2Y
g(y)

Z 1

0
P(Y = y,Q(Y = y | X) = p) dp

=
X

y2Y
g(y)

Z 1

0
P(Y = y | Q(Y = y | X) = p) P(Q(Y = y | X) = p) dp.

Note that in the above derivation we perform the following slight abuse of notation:

{Q(Y = y|X) = p} = {X | Q(Y = y|X) = p}.

Calibrated Model-Based Deep Reinforcement Learning

We can apply the calibration assumption to replace the conditional term with p and rewrite P(Q(Y = y | X) = p) as a sum
over elements of X. This gives: p

E
y⇠P(Y)

[g(y)] =
X

y2Y
g(y)

Z 1

0
p · P(Q(Y = y | X) = p) dp

=
X

y2Y
g(y)

Z 1

0
p ·

X

x2X
I[Q(Y = y | X = x) = p] · P(X = x) dp

=
X

y2Y
g(y)

X

x2X
Q(Y = y | X = x) · P(X = x)

=
X

x2X
P(X = x)

X

y2Y
g(y) ·Q(Y = y | X = x)

= E
x⇠P(X)

E
y⇠Q(Y |X=x)

[g(y)] .

⌅

C. Additional Figures

Figure 4. Predicted expected reward for both LinUCB and CalLinUCB algorithms on the covertype dataset. Figures show predictions at
random timesteps where CalLinUCB chose the optimal action but LinUCB did not. Top: Predicted reward of both algorithms for the
optimal action. Bottom: Predicted reward of both algorithms for the action which the algorithm chose to pick instead of the optimal action
at that timestep. We can see LinUCB consistently underestimates reward from optimal action and overestimates reward from other actions.
On the other hand, CalLinUCB is more accurate in its uncertainty predictions.

Calibrated Model-Based Deep Reinforcement Learning

Figure 5. Cartpole future state predictions. The calibrated algorithm has much tighter uncertainties around the true next state in early
training iterations. Later into training, their uncertainties are almost equivalent.

