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Abstract

Constraining linear layers in neural networks to
respect symmetry transformations from a group
G is a common design principle for invariant net-
works that has found many applications in ma-
chine learning. In this paper, we consider a fun-
damental question that has received little atten-
tion to date: Can these networks approximate any
(continuous) invariant function? We tackle the
rather general case where G ≤ Sn (an arbitrary
subgroup of the symmetric group) that acts on
Rn by permuting coordinates. This setting in-
cludes several recent popular invariant networks.
We present two main results: First, G-invariant
networks are universal if high-order tensors are
allowed. Second, there are groups G for which
higher-order tensors are unavoidable for obtaining
universality. G-invariant networks consisting of
only first-order tensors are of special interest due
to their practical value. We conclude the paper by
proving a necessary condition for the universal-
ity of G-invariant networks that incorporate only
first-order tensors.

1. Introduction
The basic paradigm of deep neural networks is repeatedly
composing ”layers” of linear functions with non-linear, en-
trywise activation functions to create effective predictive
models for learning tasks of interest.

When trying to learn a function (task) f that is known to be
invariant to some group of symmetries G (i.e., G-invariant
function) it is common to use linear layers that respect
this symmetry, namely, invariant and/or equivariant linear
layers. Networks with invariant/equivariant linear layers
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with respect to some group G will be referred here as G-
invariant networks.

A fundamental question in learning theory is that of approx-
imation or universality (Cybenko, 1989; Hornik, 1991). In
the invariant case: Can a G-invariant network approximate
an arbitrary continuous G-invariant function?

The goal of this paper is to address this question for all finite
permutation groups G ≤ Sn, where Sn is the symmetric
group acting on [n] = {1, 2, . . . , n}. Note that this is a
fairly general setting that contains many useful examples
(detailed below).

The archetypal example of G-invariant networks is Con-
volutional Neural Networks (CNNs) (LeCun et al., 1989;
Krizhevsky et al., 2012) that restrict their linear layers to
convolutions in order to learn image tasks that are translation
invariant or equivariant 1.

In recent years researchers are considering other types of
data and/or symmetries and consequently new G-invariant
networks have emerged. Tasks involving point clouds or
sets are in general invariant to the order of the input and
therefore permutation invariance/equivariance was devel-
oped (Qi et al., 2017; Zaheer et al., 2017). Learning tasks
involving interaction between different sets, where the input
data is tabular, require dealing with different permutations
acting independently on each set (Hartford et al., 2018).
Tasks involving graphs and hyper-graphs lead to symme-
tries defined by tensor products of permutations (Kondor
et al., 2018; Maron et al., 2019). A general treatment of
invariance/equivariance to finite subgroups of the symmetric
group is discussed in (Ravanbakhsh et al., 2017); infinite
symmetries are discussed in general in (Kondor & Trivedi,
2018) as well as in (Cohen & Welling, 2016a;b; Cohen et al.,
2018; Weiler et al., 2018).

Among these examples, universality is known for point-
clouds networks and sets networks (Qi et al., 2017; Zaheer
et al., 2017), as well as networks invariant to finite trans-
lation groups (e.g., cyclic convolutional neural networks)
(Yarotsky, 2018). However, universality is not known for
tabular and multi-set networks (Hartford et al., 2018), graph

1It is common to use convolutional layers without cyclic
padding which implies that these networks are not precisely trans-
lation invariant.
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and hyper-graph networks (Kondor et al., 2018; Maron et al.,
2019); and networks invariant to finite translations with ro-
tations and/or reflections. We cover all these cases in this
paper.

Maybe the most related work to ours is (Yarotsky, 2018)
that considered actions of compact groups and suggested
provably universal architectures that are based on polyno-
mial layers. In contrast, we study the standard and widely
used linear layer model.

The paper is organized as follows: First, we prove that an
arbitrary continuous function f : Rn → R invariant to an
arbitrary permutation group G ≤ Sn can be approximated
using a G-invariant network. The proof is constructive and
makes use of linear equivariant layers between tensors X ∈
Rnk of order k ≤ d, where d depends on the permutation
group G.

Second, we prove a lower bound on the order d of tensors
used in a G-invariant network so to achieve universality.
Specifically, we show that for G = An (the alternating
group) any G-invariant network that uses tensors of order
at-most d = (n − 2)/2 cannot approximate arbitrary G-
invariant functions.

We conclude the paper by considering the question: For
which groups G ≤ Sn, G-invariant networks using only
first order tensors are universal? We prove a necessary con-
dition, and describe families of groups for which universality
cannot be attained using only first order tensors.

2. Preliminaries and main results
The symmetries we consider in this paper are arbitrary sub-
groups of the symmetric group, i.e., G ≤ Sn. The action of
G on x ∈ Rn used in this paper is defined as

g · x = (xg−1(1), . . . , xg−1(n)), g ∈ G. (1)

The action of G on tensors X ∈ Rnk×a (the last index,
denoted j represents feature depth) is defined similarly by

(g · X)i1...ik,j = Xg−1(i1)...g−1(ik),j , g ∈ G. (2)

The inset illustrates
this action on tensors
of order k = 1, 2, 3:
the permutation g is
a transposition of two
numbers and is applied to each dimension of the tensor.

Definition 1. A G-invariant function is a function f :
Rn → R that satisfies f(g · x) = f(x) for all x ∈ Rn
and g ∈ G.

Definition 2. A linear equivariant layer is an affine map
L : Rnk×a → Rnl×b satisfying L(g · X) = g · L(X), for

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear G-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

all g ∈ G, and X ∈ Rnk×a. An invariant linear layer is an
affine map h : Rnk×a → Rb satisfying h(g · X) = h(X),
for all g ∈ G, and X ∈ Rnk×a.

A common way to construct G-invariant networks is:

Definition 3. A G-invariant network is a function F :
Rn×a → R defined as

F = m ◦ h ◦ Ld ◦ σ ◦ · · · ◦ σ ◦ L1,

where Li are linear G-equivariant layers, σ is an activation
function 2, h is a G-invariant layer, and m is a Multi-Layer
Perceptron (MLP).

Figure 1 illustrates the G-invariant network model. By con-
struction, G-invariant networks are G-invariant functions
(note that entrywise activation is equivariant as-well). This
framework has been used, with appropriate group G, in
previous works to build predictive G-invariant models for
learning.

Our goal is to show the approximation power of G-invariant
networks. Namely, that G-invariant networks can approxi-
mate arbitrary continuous G-invariant functions f . Without
loss of generality, we consider only functions of the form
f : Rn → R. Indeed, in case of multiple features, Rn×a,
we rearrange the input as Rn′ , n′ = na, and take the appro-
priate G′ ≤ Sn′ . We prove:

Theorem 1. Let f : Rn → R be a continuous G-invariant
function for some G ≤ Sn, and K ⊂ Rn a compact set.
There exists a G-invariant network that approximates f to
an arbitrary precision.

The proof of Theorem 1 is constructive and builds an f -
approximating G-invariant network with hidden tensors
X ∈ Rnd of order d, where d = d(G) is a natural num-
ber depending on the group G. Unfortunately, we show that
in the worst case d can be as high as n(n−1)

2 . Note that
d = 2 could already be computationally challenging. It is
therefore of interest to ask whether there exist more efficient

2We assume any activation function for which the universal
approximation theorem for MLP holds, e.g., ReLU and sigmoid.
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G-invariant networks that use lower order tensors without
sacrificing approximation power. Surprisingly, the answer is
that in general we can not go lower than order n for general
permutation groups G. Specifically, we prove the following
for G = An, the alternating group:

Theorem 2. If an An-invariant network has the universal
approximation property then it consists of tensors of order
at least n−22 .

Although in general we cannot expect universal approxima-
tion of G-invariant networks with inner tensor order smaller
than n−2

2 , it is still possible that for specific groups of inter-
est we can prove approximation power with more efficient
(i.e., lower order inner tensors) G-invariant networks. Of
specific interest are G-invariant networks that use only first
order tensors. In section 5 we prove the following nec-
essary condition for universality of first-order G-invariant
networks:

Theorem 3. Let G ≤ Sn. If first order G-invariant net-
works are universal, then

∣∣[n]2/H
∣∣ < ∣∣[n]2/G

∣∣ for any
strict super-group G < H ≤ Sn.

|[n]2/G| is the number of equivalence classes of [n]2 defined
by the relation: (i1, i2) ∼ (j1, j2) if j` = g(i`), ` = 1, 2
for some g ∈ G. Intuitively, this condition asks that super-
groups of G have strictly better separation of the double
index space [n]2.

3. G-invariant networks universality
The key to showing theorem 1, namely that G-invariant
networks are universal, is showing they can approximate
a set of functions that are: (i) G-invariant; and (ii) can
approximate arbitrary G-invariant functions to a desired
precision. The G-invariant polynomials are an example of
such a set:

Definition 4. The G-invariant polynomials are all the poly-
nomials in x1, . . . , xn over R that are also G-invariant
functions. They are denoted R[x1, . . . , xn]G, where
R[x1, . . . , xn] is the set of all polynomials over R.

To see that G-invariant polynomials can approximate any
arbitrary (continuous) function f : K ⊂ Rn → R, where
K is a compact set, one can use the Stone-Weiestrass (SW)
theorem, as done in (Yarotsky, 2018): First use SW to
approximate f over a symmetrized domain K ′ = ∪g∈Gg ·
K by some (not necessarily G-invariant) polynomial p ∈
R[x1, . . . , xn]. Second, consider

q(x) =
1

|G|
∑
g∈G

p(g · x).

q is a G-invariant polynomial and hence

q ∈ R[x1, . . . , xn]G,

furthermore for x ∈ K:

|q(x)− f(x)| ≤
1

|G|
∑
g∈G

∣∣p(g · x)− f(g · x)
∣∣ ≤ max

x∈K′
|p(x)− f(x)| .

Our goal in this section is to prove the following proposition
that, together with the comment above, prove theorem 1:

Proposition 1. For any ε > 0,K ⊂ Rn compact set, andG-
invariant polynomial p ∈ R[x1, . . . , xn]G there exists a G-
invariant network F that approximates p to an ε-accuracy,
namely maxx∈K |F (x)− p(x)| < ε.

The proposition will be proved in several steps:

(i) We represent p as p(x) =
∑d
k=0 pk(x), where pk is

a G-invariant homogeneous polynomial of degree k,
i.e., pk ∈ Rk[x1, . . . , xn]G.

(ii) We characterize all homogeneous G-invariant poly-
nomials of a fixed degree k. In particular we find
a basis to all such polynomials, bk1, bk2, . . . , bknk ∈
Rk[x1, . . . , xn]G. Using the bases of homogeneous
G-invariant polynomials of degrees up-to d we write

p(x) =

d∑
k=0

nk∑
j=1

αkjbkj(x). (3)

(iii) We approximate each basis element bkj using a G-
invariant network.

(iv) We construct a G-invariant network F approximating
p to an ε-accuracy using Equation 3 and (iii).

3.1. Proof of proposition 1

Part (i): It is a known fact that a G-invariant polynomial
can be written as a sum of homogeneous G-invariant poly-
nomials (Kraft & Procesi, 2000):

Lemma 1. Let p : Rn → R be a G-invariant polynomial
of degree d. Then p can be written as p(x) =

∑d
k=0 pk(x)

where pk are homogeneous G-invariant polynomials of de-
gree k.

Part (ii): We need to find bases for the linear spaces
of homogeneous G-invariant polynomials of degree k =
0, 1, . . . , d, i.e., Rk[x1, . . . , xn]G. Any homogeneous poly-
nomial of degree k can be written as

p(x) =

n∑
i1,...,ik=1

Wi1...ik xi1 · · ·xik , (4)

where W ∈ Rnk is its coefficient tensor; since xi1 · · ·xik =
xiσ(1) · · ·xiσ(k) for all σ ∈ Sk, a unique choice of W can be
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obtained by taking a symmetric W. That is, W that satisfies
Wi1···ik = Wiσ(1)···iσ(k) , for all σ ∈ Sk. In short, we ask

W ∈ Symk(Rn) ⊂ Rnk . For example, the case k = 2
amounts to representing a quadratic form using a symmetric
matrix, that is W satisfies in this case W = WT . The next
proposition shows that if p is G-invariant, its coefficient
tensor is a fixed point of the action of G on symmetric
tensors W ∈ Rnk :

Proposition 2. Let p ∈ Rk[x1, . . . , xn]G. Then its coeffi-
cient tensor W ∈ Rnk satisfies the fixed point equation:

g ·W = W, ∀g ∈ G. (5)

Proof. From the fact that p is G-invariant we get the follow-
ing set of equations p(x) = p(g · x), for all g ∈ G.

p(x) = p(g · x)

=

n∑
i1,...,ik=1

Wi1...ik xg−1(i1) · · ·xg−1(ik)

=

n∑
i1,...,ik=1

Wg(i1)...g(ik) xi1 · · ·xik .

By equating monomials’ coefficients of p(x) and p(g · x)
and the symmetry of W we get

Wi1...ik = Wg(i1)...g(ik).

This implies that W satisfies g ·W = W for all g ∈ G.

Equation 5 is a linear homogeneous system of equations
and therefore the set of solutions W forms a linear space.
To define a basis for this linear space we first define the
following equivalence relation: (i1, . . . , ik) ∼ (j1, . . . , jk)
if there exists g ∈ G and σ ∈ Sk so that j` = g(iσ(`)),
` = 1, . . . , k. Intuitively, g takes care of the G-invariance
while σ factors out the fact that the monomials xi1 · · ·xik =
xσ(i1) · · ·xσ(ik). For example, let n = 5, k = 3, g =
(23)(45), σ = (23) (we use cycle notation), then we have:
(2, 2, 4) ∼ (3, 5, 3). The equivalence classes are denoted τ
and called the k-classes. We show:

Proposition 3. The set of polynomials

pτ (x) =
∑

(i1,...,ik)∈τ

xi1 · · ·xik , (6)

where τ is a k-class, form a basis to Rk[x1, . . . , xn]G.

Proof. Denote Wτ the symmetric coefficient tensor of pτ ,
Note that

Wτ
i1...ik

=

{
1 (i1, . . . , ik) ∈ τ
0 otherwise

. (7)

Since

pτ (g · x) =
∑

(i1,...,ik)∈τ

xg−1(i1) · · ·xg−1(ik) = pτ (x),

pτ ∈ Rk[x1, . . . , xn]G. The set of polynomials pτ , with
τ a k-classes, is a linearly independent set since each pτ

contains a different collection of monomials. By Propo-
sition 2, the symmetric coefficient tensor W of every
q ∈ Rk[x1, . . . , xn]G satisfies the fixed-point equation,
equation 5. This in particular means that W is constant
on its k-classes. Hence W can be written as linear combina-
tion of Wτ , see also equation 7.

As we later show, the fixed point equation, equation 5, is also
used to characterize and compute a basis for the space of
linear permutation-equivariant and invariant layers (Maron
et al., 2019). These equations are equivalently formulated
using weight sharing scheme in (Ravanbakhsh et al., 2017).
A slight difference in this case, that deals with polynomials,
is the additional constraints that formulate the symmetry of
W which are needed since every polynomial of degree > 1
has several representing tensors W.

Part (iii): Our next step is approximating each pτ with a
G-invariant network. The next proposition introduces the
building blocks of this construction:

Proposition 4. Let τ be a k-class and let Lτ` : Rn → Rnk ,
` = 1, . . . , k, be a linear operator defined as follows:
For x ∈ Rn

Lτ` (x)i1...ik =

{
xi` (i1, . . . , ik) ∈ τ
0 otherwise

.

Then Lτ` is a linear G-equivariant function, that is

Lτ` (g · x) = g · Lτ` (x), ∀x ∈ Rn, g ∈ G.

Proof. We have :

g ·Lτ` (x)i1...ik =

{
xg−1(i`) (g−1(i1), . . . , g−1(ik)) ∈ τ
0 otherwise

On the other hand,

Lτ` (g · x)i1...ik =

{
xg−1(i`) (i1, . . . , ik) ∈ τ
0 otherwise

and both expressions are equal since (i1, . . . , ik) ∈ τ if and
only if (g−1(i1), . . . , g−1(ik)) ∈ τ by definition of τ .

Next, we construct the approximating G-invariant network:

Proposition 5. For any ε > 0, K ⊂ Rn compact set, and τ
k-class there exists a G-invariant network F τ that approxi-
mates pτ from equation 6 to an ε-accuracy.
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Proof. Let c > 0 be sufficiently large so that K ⊂
[−c, c]n ⊂ Rn. Denote mk : Rk → R
an MLP that approximates the multiplication function,
f(y1, . . . , yk) =

∏k
i=1 yi, in [−c, c]k to n−kε-accuracy, i.e.,

max−c≤yi≤c
∣∣f(y)−mk(y)

∣∣ < n−kε.

Consider the following G-invariant network: First, given
an input x ∈ Rn map it to Rnk×k (i.e., k is the number of
channnels) by

Lτ (x)i1...ik,` = Lτ` (x)i1...ik . (8)

Lτ : Rn → Rnk×k is a linear equivariant layer (see equa-
tion 2). Second, apply mk to the feature dimension in
Rnk×k. That is, given y ∈ Rnk×k define

Mk(y)i1,...,ik = mk(yi1...,ik,1, . . . , yi1...,ik,k).

Note that Mk : Rnk×k → Rnk can be interpreted as a
composition of equivariant linear layers 3.

Lastly, denote s : Rnk → R the summation layer: for
z ∈ Rnk , s(z) =

∑n
i1...ik=1 zi1...ik . Note that Mk, s are

equivariant, invariant (respectively) for all G ≤ Sn. This
construction can be visualized using the following diagram:

Rn Lτ−−→ Rn
k×k Mk

−−→ Rn
k s−→ R

This G-invariant network F τ = s ◦Mk ◦ Lτ approximates
pτ to an ε-accuracy over the compact set K ⊂ Rn. Indeed,
let x ∈ K, then

|F τ (x)− pτ (x)|

≤
n∑

i1...ik=1

∣∣Mk(Lτ (x))i1...ik −Wτ
i1...ik

xi1 · · ·xik
∣∣

≤
n∑

i1...ik=1

{∣∣mk(xi1 , . . . , xik)− xi1 · · ·xik
∣∣ (i1,...,ik)∈τ

0 otherwise

≤ ε,

where in the last inequality we used the n−kε-accuracy of
mk to the product operator in [−c, c]k ⊂ Rk.

Part (iv): In the final stage, we would like to approximate
an arbitrary p ∈ R[x1, . . . , xn]G with aG-invariant network
to ε-accuracy over a compact set K ⊂ Rn.

3In fact, any application of an MLP to the feature dimension
is G-equivariant for any G ≤ Sn since it can be realized by
scaling of the identity operator, possibly with a constant and non-
linear point-wise activations (see e.g.(Qi et al., 2017; Zaheer et al.,
2017)).

Proof. (proposition 1) Let us denote by bk1, . . . , bknk the
polynomials pτ , with τ the k-classes. Let F kj denote the
G-invariant network approximating bkj , k = 0, 1, . . . d,
j ∈ [nk], to an ε-accuracy over the set K, the existence
of which is guaranteed by proposition 5. We now utilize the
decomposition of p shown in equation 3 and get∣∣∣∣∣∣p(x)−

d∑
k=0

nk∑
j=1

αkjF
kj(x)

∣∣∣∣∣∣
≤

d∑
k=0

nk∑
j=1

|αkj |
∣∣bkj(x)− F kj(x)

∣∣
≤ ε ‖α‖1 ,

where ‖α‖1 =
∑
k,j |αkj | depends only upon p, where

ε is arbitrary. To finish the proof we need to show that
F =

∑d
k=0

∑nk
j=1 αkjF

kj can indeed be realized as a sin-
gle, unified G-invariant network. This is a simple yet tech-
nical construction and we defer the proof of this fact to the
supplementary material:

Lemma 2. There exists a G-invariant network in the sense
of definition 3 that realizes the sum of G-invariant networks
F =

∑d
k=0

∑nk
j=1 αkjF

kj .

3.2. Bounded order construction

We have constructed a G-invariant network F that ap-
proximates an arbitrary G-invariant polynomial p ∈
R[x1, . . . , xn]G of degree d. The network F uses d-
dimensional tensors, where d matches the degree of p. In
this subsection we construct a G-invariant network F that
approximates p with maximal tensor order that depends
only on the group G ≤ Sn. Therefore, the tensor order is
independent of the degree of the polynomial p. We use the
following theorem by Noether (Kraft & Procesi, 2000):

Theorem 4. (Noether) Let G be a finite group acting lin-
early on Rn. There exist finitely many G-invariant polyno-
mials f1, ..., fm ∈ R[x1, . . . , xn]G such that any invariant
polynomial p ∈ R[x1, . . . , xn]G can be expressed as

p(x) = h(f1(x), ..., fm(x)),

where h ∈ R[x1, . . . , xm] is a polynomial and deg(fi) ≤
|G|, i = 1, . . . ,m.

The idea of using a set of generating invariant polynomials
in the context of universality was introduced in (Yarotsky,
2018).

For the case of interest in this paper, namely G ≤ Sn, there
exists a generating set of G-invariant polynomials of degree
bounded by n(n−1)

2 , for n ≥ 3, see (Göbel, 1995). We can
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now repeat the construction above, building a G-invariant
network Fi approximating fi to a ε1-accuracy, i = 1, . . . ,m.
The maximal order of these networks is bounded by d ≤
n(n−1)

2 . These networks can be combined, as above, to a
single G-invariant network F : Rn → Rm with the final
output approximating f(x) = (f1(x), . . . , fm(x)) to a ε1-
accuracy. Now we compose the output of F with an MLP
H : Rm → R approximating the polynomial h over the
compact set f(K)+Bε ⊂ Rm to an ε-accuracy, whereBε is
a closed ball centered at the origin of radius ε and the sum is
the Minkowski sum. Since H is continuous and f(K) +Bε
is compact, there exists δ > 0 so that |H(y)−H(y′)| ≤ ε if
‖y − y′‖2 ≤ δ. We use ε1 = min {δ, ε} for the construction
of F above. We have:

|H(F (x))− h(f(x))| ≤ |H(F (x))−H(f(x))|
+ |H(f(x))− h(f(x))| ≤ 2ε,

for all x ∈ K. We have constructed H ◦ F that is a G-
invariant network with maximal tensor order bounded by
n(n−1)

2 approximating p to an arbitrary precision.

3.3. Examples

Universality of (hyper-) graph networks. Graph, or
hyper-graph data can be described using tensors X ∈
Rnk×a, where n is the number of vertices of the graph
and xi1,i2,...,ik,: ∈ Ra is a feature vector attached to a
(generalized-)edge defined by the ordered set of vertices
(i1, i2, . . . , ik). For example, an adjacency matrix of an
n-vertex graph is described by X ∈ Rn2

. The graph sym-
metries are reordering the vertices by a permutation, namely
g · X, where g ∈ Sn. Typically, any function we would
like to learn on graphs would be invariant to this action.
Recently, (Maron et al., 2019) characterized the spaces of
equivariant and invariant linear layers with this symmetry,
provided a formula for their basis and employed the corre-
sponding G-invariant networks for learning graph-related
tasks. A corollary of Theorem 1 is that this construction
yields a universal approximator of continuous functions de-
fined on graphs. This is in contrast to the popular message
passing neural network model (Gilmer et al., 2017) that was
recently shown to be non-universal (Xu et al., 2019).

Universality of rotation invariant convolutional net-
works. For learning tasks involving m ×m images one
might require invariance to periodic translations and 90 de-
gree rotations. Note that periodic translations and 90 degree
rotations can be seen as permutations in Sn, n = m2, act-
ing on the pixels of the image. Constructing a suitable
G-invariant network would lead, according to Theorem 1,
to a universal approximator.

Figure 2. Illustration of the (n− 2)-transitivity of An, the main
property we use in this section. Any subset of distinct n − 2
elements can be mapped to any other subset of distinct n − 2
elements (gray). If needed, a transposition can be applied to the
remaining 2 elements (blue) to assure an even permutation.

4. A lower bound on equivariant layer order
In the previous section we showed how an arbitrary
G-invariant polynomial can be approximated with a G-
invariant network with tensor order d = d(G) ≤ n(n−1)

2 .
This upper-bound would be prohibitive in practice. In this
section we prove a lower bound: We show that there exists a
group for which the tensor order cannot be less than n−2

2 if
we wish to maintain the universal approximation property.

We consider the alternating group, G = An ≤ Sn. Remem-
ber that g ∈ An if g has an even number of transpositions.

Definition 5. A group G ≤ Sn is k-transitive if for every
two sequences (i1, i2, . . . , ik), (j1, j2, . . . , jk) of distinct
elements in [n] there exists g ∈ G so that j` = g(i`), for
` = 1, . . . , k.

The alternating group is (n− 2)-transitive (see figure 2 and
(Dixon & Mortimer, 1996)). Our goal is to prove:

Theorem 2. If an An-invariant network has the universal
approximation property, then it consists of tensors of order
at least n−22 .

For the proof we first need a characterization of the linear
equivariant layers L : Rnk×a → Rnl×b, where l = 0
represents the invariant case. By definition L(g · X) =

g · L(X) for all X ∈ Rnk×a. In particular this means that

g−1 · L(g · X) = L(X)

Recall that L is an affine map (see definition 2) and therefore
can be represented as a sum of a purely linear part and a
constant part. Representing the linear part of L as a tensor
L ∈ Rnk+l×a×b these equations become the fixed-point
equation for linear equivariant layers (see supplementary
material for derivation):

g · L = L, g ∈ G. (9)

The constant part of L can be encoded using a tensor B ∈
Rnl×b that satisfies equation 9 as-well. Note the that this
fixed point equation is similar to the fixed point equation
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of homogeneous G-invariant polynomials, equation 5. We
denote by LG the collection of L : Rnk×a → Rnl×b linear
G-equivariant (l > 0) or G-invariant (l = 0) layers.
Proposition 6. If k + l ≤ n− 2, then LAn = LSn .

Proof. In view of the fixed point equation for equivari-
ant/invariant layers (9) we need to show the solution set
to this equation is identical for G = An and G = Sn,
as long as k + l ≤ n − 2. The solution set of the fixed
point equation consists of tensors L that are constant on
each equivalence class defined by the equivalence rela-
tion: (i1, . . . , ik+l) ∼ (j1, . . . , jk+l) if j` = g(i`) for
` = 1, . . . , k + l.

BothAn and Sn are (n−2)-transitive4. Therefore, the equiv-
alence relations defined above for An and Sn reduce to the
same equivalence relation (i1, . . . , ik+l) ∼ (j1, . . . , jk+l)
if iα = iβ if and only if jα = jβ , for all α, β ∈ [k + l] (see
(Maron et al., 2019) where these classes are called equality
patterns). Since this equivalence relation is the same for
An, Sn, we get that the solution set of the fixed point equa-
tion (9) is the same for both groups. Since the constant part
tensor B is of smaller order than k + l ≤ n− 2, the same
argumentation applies to the constant part, as-well.

Proposition 6 implies that any An-invariant network with
tensor order≤ (n−2)/2 will be in fact Sn-invariant. There-
fore, one approach to show that such networks have limited
approximation power is to come up with an An-invariant
continuous function that is not Sn-invariant, as follows:

Proof. (Theorem 2) Consider the Vandermonde polynomial
V (x) =

∏
1≤i<j≤n(xi − xj). It is not hard to check that

V is An-invariant but not Sn-invariant (consider, e.g., g =
(12) ∈ Sn). Pick x ∈ Rn with distinct coordinates. Then
it holds that V (x) 6= 0. Let ε > 0 and K ⊂ Rn a compact
set containing both x, g · x for g = (12). Assume by way of
contradiction that there exists an An-invariant network F ,
which is Sn-invariant due to the above, such that |V (x)−
F (x)| ≤ ε as well as:

|V (g · x)− F (g · x)| = |(−1)V (x)− F (x)|
= |V (x) + F (x)|
≤ ε

These last equations imply that |V (x)| ≤ ε and since ε is
arbitrary we get V (x) = 0, a contradiction.

5. Universality of first order networks
We have seen that G-invariant networks with tensor order
n(n−1)

2 are universal. On the other hand for general per-

4Sn is in-fact n-transitive and is therefore also k-transitive for
all k ≤ n.

mutation groups G the tensor order is at least (n− 2)/2 if
universality is required. A particularly important question
for applications, where higher order tensors are computa-
tionally prohibitive, is which permutation groups G give
rise to first order G-invariant networks that are universal.

Definition 6. A first order G-invariant network is a G-
invariant network where the maximal tensor order is 1.

In this section we discuss this (mostly) open question. First,
we note that there are a few cases for which first order G-
invariant networks are known to be universal: for instance,
whenG = {e} (i.e., the trivial group), G-invariant networks
are composed of fully connected layers, a case which is
covered by the original universal approximation theorems
(Cybenko, 1989; Hornik, 1991). First order universality is
also known whenG is (possibly high dimensional) grid (e.g.,
G = Zn1×· · ·×Znk ) (Yarotsky, 2018), a case that includes
periodic convolutional neural networks. Universality of first
order networks is also known when G = Sn (Zaheer et al.,
2017; Qi et al., 2017; Yarotsky, 2018) in the context of
invariant networks that operate on sets or point clouds.

Our goal in this section is to derive a necessary condition
on G for the universality of first order G-invariant networks.
To this end, we first find a function, playing the role of the
Vandermonde polynomial in the previous section, that is
G-invariant but not H-invariant, where G < H ≤ Sn.

Lemma 3. Let G < H ≤ Sn. Then there exists a contin-
uous function f : Rn → R which is G-invariant but not
H-invariant.

Proof. Pick a point x0 ∈ Rn with distinct coordinates.
Since the stabilizer (Sn)x0 is trivial (i.e., no permutation
fixes x0 excluding the identity), the size of the orbits of x0
equals the size of the acting group. Namely, |G · x0| = |G|
and |H · x0| = |H|. Furthermore, since |G| < |H| and
G · x0 ⊂ H · x0, we get that the H orbit strictly includes
the G orbit. That is, G · x ( H · x. Since H · x0
is a finite set of points, there exists a continuous func-
tion f̂ such that f̂ |G·x0 = 1, and f̂ |H·x0\G·x0

= 0. De-
fine f(x) = 1

|G|
∑
g∈G f̂(g · x). Now, f is G-invariant

by construction but f(x0) = 1 and f(h · x0) = 0 for
h ·x0 ∈ H ·x0 \G ·x0. Therefore, f is notH-invariant.

In case of first order G-invariant networks the equivari-
ant/invariant layers have the form L : Rn×a → Rn×b
and satisfy the fixed point equations (9). The solution set
of the purely linear equivariant layers consists of tensors
L ∈ Rn2×a×b that are constant on equivalence classes of in-
dices defined by the equivalence relation (i1, i2) ∼ (j1, j2)
if there exists g ∈ G so that j` = g(i`), ` = 1, 2. We
denote the number of equivalence classes by |[n]2/G|. The
solution set of constant equivariant operators are tensors
B ∈ Rn×b that are constant on equivalence classes defined
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by the equivalence relation i ∼ j if there exists g ∈ G so
that j = g(i). We denote the number of these classes by
|[n]/G|. We prove:

Theorem 3. Let G ≤ Sn. If first order G-invariant net-
works are universal, then

∣∣[n]2/H
∣∣ < ∣∣[n]2/G

∣∣ for any
strict super-group G < H ≤ Sn.

Proof. Assume by contradiction that there exists a strict
super-group G < H ≤ Sn so that

∣∣[n]2/G
∣∣ =

∣∣[n]2/H
∣∣.

This in particular means that |[n]/G| = |[n]/H|. Therefore
LG = LH . That is, the spaces of equivariant and invari-
ant linear layers coincide for G and H . This implies, as
before, that every first order G-invariant network is also
H-invariant.

We proceed similarly to the proof of theorem 2: By lemma
3, there exists a continuous function f : Rn → R that is G-
invariant but not H-invariant. Let x0 be a point with distinct
coordinates where f(x0) = 1 (it exists by construction, see
proof of theorem 2). Furthermore, by construction f(h ·
x0) = 0 if h · x0 ∈ H · x0 \G · x0.

Let ε > 0 and K ⊂ Rn a compact set containing both
x0, h·x0. Assume by way of contradiction that there exists a
first orderG-invariant network F (which is alsoH-invariant
in view of the above) such that |f(x0)−F (x0)| ≤ ε as well
as:

|f(h · x0)− F (h · x0)| = |f(h · x0)− F (x0)| ≤ ε.

These last equations imply that 1 = |f(x0)− f(h · x0)| ≤
|f(x0)−F (x0)|+ |F (x0)− f(h · x0)| ≤ 2ε and since ε is
arbitrary we get a contradiction.

Using theorem 3 we can show that there exist a few infinite
families of permutation groups (excluding the alternating
group An) for which first order invariant networks are not
universal. For example, any strict subgroup G < Sn that
is 2-transitive is such a group since in this case

∣∣[n]2/G
∣∣ =∣∣[n]2/Sn

∣∣ and consequently G-invariant/equivariant layers
are also Sn-invariant/equivariant. Examples of 2-transitive
permutation groups include projective linear groups over
finite fields PSLd(Fq) (for q = pn where p, n ∈ N, p is
prime) that act on the finite projective space, and can be seen
as a subgroup of Sn for n = (qd − 1)/(q − 1) (the number
of elements in this space ). Similarly affine subgroups over
finite fields AΓLd(Fq) that act on F dq can be shown to be
2-transitive as a subgroup of Sn for n = qd. See (Dixon
& Mortimer, 1996) for a full classification of 2-transitive
subgroups of Sn.

Relation to (Ravanbakhsh et al., 2017). Groups for
which the condition in theorem 3 holds are called 2-closed
and were first introduced by (Wielandt, 1969) (see (Babai,
1995) for further study). Theorem 3 reveals an interesting

connection between our work and the work of (Ravanbakhsh
et al., 2017) that studies parameter sharing schemes. One
of the basic notions defined in their paper is the notion of
uniquely G-equivariant functions, which describes func-
tions that are G-equivariant but not equivariant to any super-
group of G. For example, a consequence of proposition 6
is that An ≤ Sn (with the representation used in this paper)
has no uniquely equivariant linear functions between tensors
of total order ≤ n− 2. It was shown in (Ravanbakhsh et al.,
2017) that 2-closed groups are exactly the groups for which
one can find a uniquely equivariant function. In this section
we proved that the existence of a uniquely G-equivariant
linear function is a necessary condition for first order uni-
versality. As stated in (Ravanbakhsh et al., 2017) some
examples for 2-closed groups are fixed-point free groups
(e.g., the cyclic group Cn) and Sn itself.

6. Conclusion
In this paper we have considered the universal approxima-
tion property of a popular invariant neural network model.
We have shown that these networks are universal with a con-
struction that uses tensors of order ≤ n(n−1)

2 , which makes
this architecture impractical. On the other hand, there ex-
ists a permutation group for which we have proved a lower
bound of n−2

2 on the tensor order required to achieve uni-
versality. We then addressed the more practical question of
which groups G allow first order G-invariant networks to be
universal. We have proved that 2-closedness of G is a nec-
essary condition, and gave examples of infinite permutation
group families that do not satisfy this condition.

Our work is a first step in advancing the understanding of
approximation power of a large class of invariant neural
networks that becomes increasingly popular in applications.
Several questions remain open: First, a classification of
2-closed groups will give us a complete answer to which
networks are first-order universal. As far as we know this
is an open question in group theory. Still, mapping the 2-
closed landscape for specific groups G that are interesting
for machine learning applications is a worthy challenge.
Second, In case one wishes to construct a G-invariant net-
work for a group G that is not 2-closed, developing fast
and efficient implementations of higher order layers seems
like a potentially useful direction. Lastly, another interest-
ing venue for future work might be to come up with new,
possibly non-linear, models for invariant networks.
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