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Abstract
We address the problem of algorithmic fairness:
ensuring that the outcome of a classifier is not
biased towards certain values of sensitive vari-
ables such as age, race or gender. As common
fairness metrics can be expressed as measures of
(conditional) independence between variables, we
propose to use the Rényi maximum correlation
coefficient to generalize fairness measurement to
continuous variables. We exploit Witsenhausen’s
characterization of the Rényi correlation coeffi-
cient to propose a differentiable implementation
linked to f -divergences. This allows us to gener-
alize fairness-aware learning to continuous vari-
ables by using a penalty that upper bounds this
coefficient. Theses allows fairness to be extented
to variables such as mixed ethnic groups or finan-
cial status without thresholds effects. This penalty
can be estimated on mini-batches allowing to use
deep nets. Experiments show favorable compar-
isons to state of the art on binary variables and
prove the ability to protect continuous ones 1.

1. Introduction
Ensuring that sensitive information (e.g. knowledge about
the ethnic group of an individual) does not ”unfairly” in-
fluence the outcome of a learning algorithm is receiving
increasing attention with the spread of AI tools in soci-
ety. To achieve this goal, as discussed with more details
in the related work section 3.1, there are three families of
approaches: first modify a pretrained classifier while mini-
mizing the impact on performance (Hardt et al., 2016; Pleiss
et al., 2017), second enforce fairness during the training
possibly at the cost of convexity (Zafar et al., 2017) and
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third modify data representation and use classical algorithms
(Zemel et al., 2013; Donini et al., 2018). As formulated by
(Hardt et al., 2016), the core ingredient of algorithmic fair-
ness is the ability to estimate and guarantee (conditional)
independence between two well chosen random variables
– typically involving the decision made by the algorithm
and the variables to protect and the “positive” outcome. We
will call U and V these two random variables in the rest of
this introduction. While in all generality U and V can be
continuous variables – as an example a predicted probability
or a variable such as time – most of the work in fairness has
so far focused on protecting categorical variables. In this
work we relax this assumption.

From an applied perspective this is desirable since it avoids
to consider continuous values as predetermined ”categorical
bins” which are going to present thresholds effects in the
learnt model. Theses thresholds make no real sense when
considering age, ethnic proportions or a gender fluidity mea-
sure. Moreover, a smooth and continuous way to describe
fairness constraints - a way that considers also the order of
the elements (e.g. 10 yo < 11 yo) - is important. As an
example from the real world, (Daniels et al., 2000) pointed
the financial status to be a sensitive variable for health care.

From a statistical point of view, given that the dependence
between U and V can be arbitrarily complex, the measure
of dependence is challenging. On one side of the spec-
trum – the empirical one – simple and tractable correlation
coefficients have been introduced, such as Pearson’s rho,
Spearman’s rank or Kendall’s tau. Sadly, while such correla-
tion coefficients are able to disprove independence, they are
not able to prove it. They only express necessary conditions
for independence. On the opposite side – the theoretical
one – Gebelein (Gebelein, 1941) introduced the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (HGR),
which has the desirable property to prove independence
when evaluated to zero (Rényi, 1959) but is computationally
intractable in the general case. However, HGR is a measure
of dependence which takes value in [0,1] and is independent
of the marginals of U and V , which allows a regulator to
use it with an absolute threshold as a fairness criterion.

Many authors have proposed principled ways to estimate
this coefficient. Early approaches includes Witsenhausen’s
characterization (Witsenhausen, 1975) which provides a
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characterization by the second singular value of a well cho-
sen matrix as discussed in Subsection 2.3. Later, (Breiman &
Friedman, 1985a) used non-parametric estimates and effec-
tively used the power method on the operator U = PUPV
– with PV (resp. PU ) denotes the operator conditional ex-
pectation wrt V (resp. U ). More recently (Lopez-Paz et al.,
2013) exploited the largest canonical correlation between
random non-linear projections of the respective empirical
copula-transformations of U and V and showed excellent
empirical behavior even for multi-dimensional variables,
extending the work of (Bach & Jordan, 2003; Gretton et al.,
2005; Reshef et al., 2011).

We first aim to take advantage of advances on measure
of independence for algorithmic fairness. Simultaneously
the rise of deep learning and the mood for differentiable
programming advocates the usage of differentiable approxi-
mations with a nice first order behavior and a limited com-
putational cost in order to be usable to penalize neural nets.
In this work we derive a differentiable non parametric es-
timation based on Witsenhausen’s characterization mixed
with a Kernel Density Estimation (KDE). We demonstrate
the empirical performance of this estimation and we tightly
upper bound it by a quantity which is a f -divergence. The
proposed bound is attained as soon as one of the two random
variables (U or V ) is binary valued. Note that f -divergences
between a joint distribution and the product of its marginals
are invariant under the action of invertible maps (Nelsen,
2010)) and can be used as measures of dependence.

As a second contribution we demonstrate that our upper
bound on the HGR coefficient can used to penalize the learn-
ing of a model. It even empirically proves to perform well
when estimated on mini-batches, allowing its use in conjunc-
tion with neural networks trained by stochastic gradient. An-
other key difference is that we are able to deal with sensitive
variables which are continuous. Our approach also extends
the work of Kamishima et al. (2011), who proposed to use
an estimate of the Mutual Information (MI) as a penalty, but
their estimation method is restricted to categorical variables.
Moreover, even when extending the MI to the continuous
case, we show that our regularizer yields both better models
and less sensitivity to the value of hyper-parameters.

The rest of the paper is organized as follows: first we make
explicit the link between measure of independence and dif-
ferent fairness criteria such as Disparate Impact and Equal-
ized Odds. Secondly, we introduce our approximation of
HGR which is able to deal with continuous variables and
then use it to regularize losses for algorithmic fairness. We
follow with an experimental section where we empirically
demonstrate that our approximation is competitive with state
of the art for dependency estimation and algorithmic fair-
ness when the sensible attribute is categorical and that the
minimization can be done using mini-batches of data if the

dataset is large enough. Finally, we show that our approache
generalizes to continuous sensitive attributes.

2. HGR as a Fairness Criterion
2.1. Overview of Fairness Criteria

Many notions of fairness are currently being investigated
an there is not yet a consensus on which ones are the most
appropriate (Hardt et al., 2016; Zafar et al., 2017; Dwork
et al., 2012). Indeed, it is a choice that requires not only
statistical and causal arguments, but also ethical ones. A
common thread between these metrics is to rely on statistical
independence. Fairness meets machine learning when one
tries to build a prediction Ŷ of some variable Y (ex: default
of payment) based on some available information X (ex:
credit card history); prediction that may be biased or unfair
with respect to some sensitive attribute Z (ex: gender).

An initial notion proposed to measure fairness was the de-
mographic parity of the prediction – i.e. whether P(Ŷ =
1|Z= 1) = P(Ŷ = 1|Z= 0) – which is often measured by
the disparate impact criterion (Feldman et al., 2015):

DI =
P(Ŷ =1|Z=0)

P(Ŷ =1|Z=1)

This criterion is even part of the US Equal Employment
Opportunity Commission recommendation (EEOC., 1979)
which advocates that it should not be below 0.8 – also known
as the 80% rule. While initially defined for binary variables,
the demographic parity can be easily generalized to the
requirement Ŷ ⊥⊥ Z, even when Z is non binary.

Demographic parity was criticized for ignoring confounding
variables that may explain an already existing correlation in
the data between Y and Z. For instance, a model selecting
randomly 10% of men and choosing the best 10% women
would be perfectly fair w.r.t. DI. To partially overcome
these limitations, Equalized Odds was introduced by (Zafar
et al., 2017; Hardt et al., 2016) as a measurement of whether
P(Ŷ = 1|Z = 1, Y = y) = P(Ŷ = 1|Z = 0, Y = y) for
any y. The particular case of y = 1 only is referred to as
Equal Opportunity (EO) and commonly measured by the
difference of EO:

DEO = P(Ŷ =1|Z=1, Y =1)− P(Ŷ =1|Z=0, Y =1)

Again, similarly to Demographic Parity, Equal Opportunity
can be represented equivalently by a notion of independence,
namely Ŷ ⊥⊥ Z|Y . Some other notions of fairness have
been developed, such as the notion of Calibration that tries
to ensure that the prediction Ŷ is not more accurate for a
protected group than for another – namely that Y ⊥⊥ Z|Ŷ
– but we refer the interested reader to (Hardt et al., 2016;
Zafar et al., 2017; Kilbertus et al., 2017) for more insights
on the notions of fairness that have been proposed over time.
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While much effort has been invested in finding new defini-
tions of fairness to cover different possible social biases, the
associated statistical measures have remained restricted to
binary values of Y and Z. The prediction Ŷ is often also
considered binary, but most definitions extend to continu-
ous values for Ŷ by using divergences between conditional
distributions as suggested in Dwork et al. (2012). In the
following, we first use the interpretation of the different no-
tions of fairness as (potentially conditional) independence
measures to generalize their measurement to multi-variate
and continuous cases.

2.2. Measuring Independence: the HGR coefficient

Measuring dependence and testing for independence has
a long history in statistical learning and we turn to this
literature to propose new ways of measuring fairness and
proposing methods for fair machine learning. The central
question is therefore how to measure that two random vari-
ables, not necessarily of the same dimension, discrete or
continuous are independent. A natural object is the so-called
maximum correlation coefficient (a.k.a. Rényi correlation).
See (Gebelein, 1941; Rényi, 1959)

Definition 2.1 (Hirschfeld-Gebelein-Rényi Maximum Cor-
relation Coefficient). Given two random variables U ∈ U
and V ∈ V , the Hirschfeld-Gebelein-Rényi Maximum Cor-
relation Coefficient is defined as follow,

HGR(U, V ) = sup
f,g

ρ(f(U), g(V )) (1)

where ρ is the Pearson’s correlation coefficient and f , g are
(measurable) functions with E

[
f2(U)

]
,E
[
g2(V )

]
<∞.

As a measure of (in)dependence, HGR has several desirable
properties: it is in [0, 1], is 0 if and only if V and U are
independent, is 1 if U and V are deterministically linked by
an equation. It is obviously invariant under invertible trans-
forms of U and/or V . Furthermore, it admits a simple geo-
metric interpretation : it is the cosine of the angle between
the space of square integrable functions of U and those
of V (viewed as Hilbert subspaces in the Hilbert space of
square integrable functions of (U, V )) ((Bickel et al., 1998)
Thm. 2 p. 438, (Breiman & Friedman, 1985b)). It plays a
central role in the analysis of transformations/early repre-
sentation learning through the ACE algorithm (Breiman &
Friedman, 1985b) that tries to find the best non-trivial repre-
sentation/transformation of V and U so as to minimize their
square distance. We refer to (Breiman & Friedman, 1985b)
and (Pregibon & Vardi, 1985) for an early but still relevant
discussion of HGR as a practical tool in data analysis.

In our context, one of its main interest is that it can handle
continuous and discrete variables and allows to generalize
in a principled way many notions of fairness.

Computable Approximation of HGR As we just ex-
plained, HGR is an abstract measure that needs to be approx-
imated to be computed on a dataset. If we limit ourselves
to f and g linear, HGR is of course just the canonical corre-
lation between the two variables. Naturally, this classical
remark makes it natural to approximate HGR by requiring f
and g to belong to Reproducing Kernel Hilbert spaces and
this has been done efficiently (Lopez-Paz et al., 2013) under
the name Randomized Dependency Coefficient (RDC). We
will describe below our own and different approach as well
as links with classical measures in information theory.

Finally, we note that there has been recent interest in new
measures of independence such as Brownian distance co-
variance ((Székely & Rizzo, 2009)), which can be used to
test independence. We refer to (Bell, 1962) for a comparison
of HGR and measures derived from the mutual information.

2.3. On Witsenhausen’s Characterization

HGR has also been of interest in the information theory
literature. (Witsenhausen, 1975) shows the following.
Theorem 2.2 (Witsenhausen). Suppose U and V are dis-
crete random variables and consider the matrix

Q(u, v) =
π(u, v)√

πU (u)
√
πV (v)

, (2)

where π(u, v) is the joint distribution of u and v, and πU
and πV are the corresponding marginals. Then

HGR(U, V ) = σ2(Q) , (3)

where σ2 is the second largest singular value of a matrix.

As noted in his paper, the result extends to the case of
continuous random variables, provided some compactness
assumptions on Q, viewed then as the kernel of a linear
operator on L2(dπUdπV ). To avoid cumbersome notations,
we sometime write π(u) instead of πU (u).
Corollary 2.2.1. Under the assumptions of Theorem 2.2,

HGR2 ≤
∑
u,v

π(u, v)2

πU (u)πV (v)
− 1 = χ2(πU,V , πU ⊗ πV ) .

where χ2 is the f -divergence with f(t) = t2 − 1.

The results extend for continuous variables with sum(s) re-
placed by integral(s), provided

∫ π(u,v)2

πU (u)πV (v)dudv <∞.

If one of the two variables U or V is binary, the inequality
is an equality.

Proof. In the matrix case, if we denote by σi(Q) the de-
creasingly ordered singular values of Q, i.e. σ1(Q) is the
largest singular value, we know that

σ2
1(Q) + σ2

2(Q) ≤
∑
i

σ2
i (Q) =

∑
u,v

Q(u, v)2 ,
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as the sum of squared singular values is the square of the
Hilbert-Schmidt norm of the matrix. (Witsenhausen, 1975)
establish that if πV and πU denote vector of marginal distri-
butions, Q

√
πV =

√
πU andQ′

√
πU =

√
πV . This follows

from the fact that
∑
u π(u, v) = πV (v) and

∑
v π(u, v) =

πU (u). Thus if
√
πV is an eigenvector of Q′Q associated

to the eigenvalue 1. Through operator theoretic arguments,
(Witsenhausen, 1975) shows that the largest singular value
of Q is always 1. The inequality above yields

HGR2(Q) = σ2
2(Q) ≤

∑
u,v

Q(u, v)2 − 1 .

The results extend to the case of compact operators through
standard functional analytic arguments.

Let f(t) = t2 − 1. The associated f -divergence is
Df (π(u, v)||π(u)π(v)) =

∑
u,v([π(u, v)/(π(u)π(v)]2 −

1)π(u)π(v). This is exactly our upper bound, as∑
u,v π(u)π(v) = 1. This divergence is called the χ2

divergence. It is known to be an upper bound of the KL
divergence when both are defined because on R+ we have
t ln(t)− t+ 1 ≤ (t− 1)2.

If U (resp V ) is binary thenQ has two rows (resp. columns),
so when one variable is binary the matrix Q is of rank
at most two. As σ1(Q) = 1 the other (possibly) non-
zero singular value of Q is σ2(Q) = HGR(Q), hence
1 + σ2

2(Q) =
∑
u,v Q(u, v)2 . The inequality is an equality

here. The continuous case is treated in the same way.

Much of our approach below consists in using the Corollary
above to penalize our machine learning algorithms by HGR,
using the exact χ2 divergence representation in the common
case where the sensitive variable is binary. However, the
approach brings flexibility to the problem when the pro-
tected attributes are not binary. In the case of a variable like
ethnic statistics of a district, which is continuous, we could
either use a threshold to make it binary (and use existing
techniques) or simply use its continuous form. It is clear
that the thresholding approach is somewhat undesirable.

Note on invariance : because HGR correlation is invariant
under 1-1 transformation, we can always assume that the
continuous variable has Unif[0,1] marginals. This essen-
tially amounts to working with a copula version of the data.
Calling Ṽ this transformed version of V , we see that if U is
binary, we can rewrite HGR as

HGR2 =
∑
u

1

πU (u)
E
[
π2(u, Ṽ )

]
− 1 .

This formulation gives us a simple way to evaluate HGR2

by subsampling on Ṽ . Figure 1 shows that this formulation
leads to an efficient estimation of the level of dependence
between real variables when joint law is estimated using a
gaussian kernel density estimation described in Sec. 4.1.

2.4. Statistical estimation of HGR

Witsenhausen’s characterization gives the possibility to use
different estimations methods of HGR depending on the
fairness problem we are facing, whether both Ŷ and Z are
binary (or finite), one is continuous and the other is binary or
both are continuous. We present here the two main practical
ways to estimate HGR empirically: for discrete variables and
for continuous variables.

Categorical variables : In this setting the Q̂ matrix is
straightforward and finite. Yet the estimation of the singular
values of a stochastic matrix from a finite sample is known
to be difficult. More precisely, the bootstrap is known to
be problematic for eigenvalues of symmetric matrices that
have multiplicity higher than one (see e.g. (Eaton & Tyler,
1991)). In essence the difficulty comes from the fact that we
cannot do a Taylor expansion in this setting and the statistic
is not smooth. One possible approach is of course to use an
m-out-of-n bootstrap (see e.g. (Bickel et al., 1997) or (Eaton
& Tyler, 1991) in a close but slightly different context). But
in practice the choice of m is known to be difficult while in
our setting, the following Lemma grants us consistency.

Lemma 2.3. Suppose that the two variables U and V
are categorical and hence take only finitely many values.
Then the elements of the empirical Witsenhausen matrix
Q̂(u, v) = π̂(u,v)√

π̂U (u)π̂V (v)
are jointly asymptotically normal

as n→∞.

We have the conservative bound

|HGR(Q̂)− HGR(Q)|2 ≤ 1

n
trace (E′E) ,

where E =
√
n(Q̂ − Q). The bootstrap can be used to

estimate the statistical properties of this upper bound and
give conservative confidence intervals for HGR(Q).

The proof can be found in the Appendix, Note : We show in
the proof of the Lemma that, if the second singular value of
Q has multiplicity 1, then HGR(Q̂) is asymptotically normal
and
√
n consistent for HGR(Q). In that case, the bootstrap

can be used to accurately estimate its statistical variability.
The limit theorem above is needed to assess the statistical
variability of our estimator and e.g. perform hypothesis
tests.

Continuous Variables In the continuous case, keeping in
mind that we want to be able to derive a penalization scheme
for learning, we propose to use a Gaussian KDE to build
an estimate π̂(u, v) of π(u, v). To avoid introducing new
hyper-parameters, we are using the classical Silverman’s
rule (Silverman, 1986) for setting the bandwidth of the
kernel on the normalized data. Numerically in order to
marginalize efficiently we compute the estimation of the
density on a regular square grid.
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A note on conditional independence. We just saw how
to derive estimators of HGR to measure the dependence
between two variables, which allows to extend the measure-
ment of demographic parity to the continuous case. As we
saw in section 2.1, other notions of fairness like equalized
odds and calibration rely on conditional independence. We
can note that Q(u|w, v|w) = π(u,v,w)√

π(u,w)π(v,w)
. It means that

we can simply include the conditioning variable in the es-
timation and apply the same method as before to obtain
Q(u|w, v|w) which allows to compute HGR as a function of
the conditioning. Then, we can use a functional norm ||.|| to
use ||HGR(u|., v|.)|| as a conditional independence criterion
to derive fairness metrics.

3. Fairness Aware Learning
In the previous section, we advocated for the use of HGR
to derive fairness evaluation criteria. It is then natural to
ask whether this method can be used to derive penalization
schemes in order to enforce fairness during the learning
phase. In order to avoid cumbersome notation and discus-
sion, we focus on the equalized odds setting, but similar
learning schemes can be derived for the other fairness set-
tings. In particular, we provide a corresponding set of ex-
periments in the Appendix for the setting of demographic
parity. As a reminder, given some class of hypothesis H,
we wish to learn Ŷ = h(X) with h ∈ H, that regresses Y
over some variables X while providing an equalized odds
guarantee w.r.t. a sensitive attribute Z – i.e. ensuring that we
control HGR|∞ , ||HGR(Ŷ |Y = y, Z|Y = y)||∞. Given
an expected loss L, a class of function H and a fairness
tolerance ε > 0, we want to solve the following problem:

argmin
h∈H

L(h,X, Y ) subject to HGR|∞ ≤ ε (4)

Unfortunately, in the general case, estimating HGR requires
to compute the singular values of Q(u, v). Hence, we
use the upper bound on HGR(u, v) provided in Corollary
2.2.1 by χ2(u, v). Fortunately, all methods proposed in
Section 2.4 to estimate HGR are based on estimating Q
and hence also valid for the χ2-divergence as χ2(u, v) =∫
Q2(u, v)dudv − 1. Then we can relax the constraint

HGR|∞ ≤ ε in (4) in several directions to obtain a tractable
penalty. First, we relax HGR to the χ2-divergence. Then,
we use a density estimate π̂(ŷ, z, y) of the “true” density
π(ŷ, z, y) using the best-suited estimation technique from
Section 2.4. Finally, since z is continuous and we have finite
sample size to optimize, we also relax the infinite norm to a
L1 norm. Then, defining,

χ2|1 =
∥∥χ2 (π̂(ŷ|y, z|y), π̂(ŷ|y)⊗ π̂(z|y))

∥∥
1

(5)

We obtain a penalized learning objective:

argmin
h∈H

L(h,X, Y ) + λχ2|1 (6)

Our method can easily be generalized to any other f -
divergence beside the χ2, leading to different penalties. In
section 4.3.1 additional experiments in appendix, we also
implement a penalty based on the KL-divergence, which
corresponds to penalizing with the MI.

3.1. State of the Art

Learning fair models is a topic of growing interest as ma-
chine learning is becoming a very common tool for insur-
ance companies, health system, law. . . So far, research fo-
cused on the binary case (Ŷ , Y and Z binary).In this setting,
it is possible to calibrate a posteriori the model predicting
Ŷ based on Z and Y in order to satisfy a DEO constraint for
instance, at the expense of losing some accuracy, either by
re-weighting the probabilities output by the model (Calders
& Verwer, 2010) or by adapting the classification threshold
(Hardt et al., 2016). In order to embed fairness in the learn-
ing procedure to potentially find better trade-offs between
accuracy and fairness than what can be achieved a posteriori,
Menon & Williamson (2018) integrated the re-weighting at
learning time and proposed a cost-sensitive classification
approach for fairness. However, such approaches are deeply
linked to the binary nature of the variables of interest.

Another approach is to add a fairness constraint (or equiv-
alently a penalty) to the optimization objective during the
learning. Two types of constraints have been proposed so
far. A first type of methods follows from the seminal paper
of Dwork et al. (2012). A simplified instantiation of their
method for equalized odds is to constrain the conditional
distributions π(Ŷ |Z = z, Y = y) to be close for any y
provided some distance D between distributions (or equiva-
lently close to their marginals). Bechavod & Ligett (2017)
advocates for replacing D by the distance between the first
moments of the conditional distributions. This idea was
generalized (Donini et al., 2018) to the distance between
the expectation of a function of Ŷ which allows the use of
higher moments of the conditional distribution. The second
type of approach corresponds to ideas that are linked to
our approach. Kamishima et al. (2011) is a simplification
of our approach, where the f -divergence used is the KL
but the estimation of the penalty is specific to the binary
case. Lastly, (Zafar et al., 2017) propose a constraint aiming
at minimizing the conditional covariance between Ŷ and
Z, which corresponds to removing linear correlations only,
while HGR can handle more complex cases. This last point
is especially important when aiming at using such penalties
with deep neural networks that definitely have the capacity
to over-fit a penalty only accounting for linear dependencies.

Finally, there have been a line of work aiming to propose
measures of fairness for regression (i.e., the setting in which
the target variable is continuous) (Komiyama et al., 2018;
Speicher et al., 2018). Theses are classically using a covari-
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ance (which is a subcase of Renyi) or another less general
metric such as Gini. Also this relies on properties of linear
systems - possibly in a kernel space - while we regularize a
deep net and are not restricted to demographic parity.

4. Experiments
In order to support empirically the different claims we made
above, we provide several experiments. We first show that
our approximation of HGR is competitive with RDC (Lopez-
Paz et al., 2013) when testing independence on real valued
variables. Second, in the context of training a fair classifier –
i.e. we want the binary outcome of a classifier to be fair w.r.t.
a binary feature Z – we check that our approximation can
be used to regularize a classifier in order to enforce fairness
with results comparable to the state of the art. Here we show
that when the dataset has a few thousand data points, we
can ensure fairness of its estimated probability of positive
classification. Finally, we show that we can protect the
output of a classifier w.r.t. a continuous sensitive attribute.

4.1. Witsenhausen’s characterization with KDE

We first reproduce some of the experiments proposed by
(Lopez-Paz et al., 2013) for RDC. The power of a depen-
dence measure is defined as its ability to discern between de-
pendent and independent samples that share equal marginal
forms and is expressed as a probability. Here we compare
our HGR-KDE estimation against RDC as a measure of non-
linear dependence. We replicated 7 bivariate association
patterns, given in Figure 1. For each of the association
patterns F , 500 repetitions of n = 500 samples were gen-
erated, in which we sample from X ∼ unif[0, 1] getting
(xi, F (xi)) tuples. Next, we regenerated the input variable
independently from Y ∼ unif[0, 1], to generate independent
versions of each sample with equal marginals (Y, F (X)).
Figure 1 shows the power for the discussed non-linear de-
pendence measures as the standard deviation of some zero-
mean Gaussian additive noise increases from 0 to 3. We
observe the power of χ2 to be very similar to the HGR-KDE
estimation while the performance is better than RDC on cir-
cle, linear and sinus associations while for quadratic and
cubic association RDC performs slightly better. Empirically
on one dimensional data, our χ2 estimation is competitive
with RDC while its simple and differentiable form allows us
to compute it at a very reasonable cost. On a recent laptop
computing HGR-KDE with 500 tuples takes 2.0ms using our
pytorch implementation while the published numpy code
for RDC requires 4.6ms (average done on 1000 runs).
Remark: we used the Silverman’s rule (Silverman, 1986)
to set the KDE bandwidth to δ = (nd+2

4 )
−1
d+4 , where n is

the number of samples on which the KDE is estimated and
d is the dimension of the joint distribution to estimate. All
estimations are done on a normalized version of the data.
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Figure 1. Power of dependency identification – higher is better –
w.r.t the noise level Σ for different association given in the sub-
plots. Given two independent random uniform variables X,Y on
[0; 1] and a association F we try to separate data with distribution
(X,F (X) + ε) w.r.t data with distribution (Y, F (X) + ε) using
500 samples and ε ∼ N (0,Σ). Oracle is using knowledge of F .

4.2. Fairness with Y and Z binary valued.

In this experiment we address the use of different inde-
pendence measures to penalize the training of a non linear
neural network in order to train a classifier such that a bi-
nary sensitive information Z (e.g. knowledge about the
ethnic group of an individual or Sex in this experiment)
does not unfairly influence an outcome Ŷ . In order to prove
that this regularization is competitive with the state of the
art on binary variables we reproduce the experiments from
(Donini et al., 2018). They propose to use 5 publicly avail-
able datasets: Arrhythmia, COMPAS, Adult, German, and
Drug. A description of the datasets as well as the variable to
protect is provided in the supplementary material of (Donini
et al., 2018). These datasets are from UCI and the proposed
task yields a DEO higher than 0.1 when the used classifier
is a SVM. Reported results for their method and baselines is
from their work except FERM which has avalaible implen-
tation and were we report the best result between results in
the paper and a rerun with our preprocessing. As a prepro-
cessing step, we one hot encode all categorical variables and
normalize the numeric entries. As the goal is to maintain a
good accuracy while having a smaller DEO we use (6). In
the binary case the penalty term collapses to an estimation
of χ2(Ŷ , Z|Y = 1) where χ2 is equal to HGR2. Here for Ŷ
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Arrhythmia COMPAS2 Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO
Naı̈ve SVM 0.75±0.04 0.11±0.03 0.72±0.01 0.14±0.02 0.80 0.09 0.74±0.05 0.12±0.05 0.81±0.02 0.22±0.04
SVM 0.71±0.05 0.10±0.03 0.73±0.01 0.11±0.02 0.79 0.08 0.74±0.03 0.10±0.06 0.81±0.02 0.22±0.03
FERM 0.75±0.05 0.05±0.02 0.96±0.01 0.09±0.02 0.77 0.01 0.73±0.04 0.05±0.03 0.79±0.03 0.10±0.05
NN 0.74±0.07 0.19±0.14 0.97±0.00 0.01±0.00 0.84 0.14 0.74±0.04 0.47±0.19 0.79±0.03 0.15±0.16

NN + χ2 0.75±0.06 0.15±0.09 0.96±0.00 0.00±0.00 0.83 0.03 0.73±0.03 0.25±0.14 0.78±0.05 0.00±0.00

Table 1. ± standard on 10 runs when protected variable is outside of dataset, more results in appendix. Most of Values in this table are
from (Donini et al., 2018). NN is not using any fairness aware technique while NN + χ2 is using the regularizer described in section 4.2.

we use the probability of Y = 1 estimated by the network
to build the estimate. This is referred as NN + χ2 in Tab. 1.

Structure of the Neural Net and learning. We used a
simple neural net NN for these experiments: two hid-
den layers (first layer is from 30 to 100 neurons depend-
ing on the size of the data set, the second being 20 neu-
rons smaller than the first one). Non linearities are SELU
(Klambauer et al., 2017). Loss is crossentropy, gradient
is Adam (Kingma & Ba, 2014) and learning rate is from
values from 10−2, 10−4, 3 ·10−4. Batch size is chosen from
{8, 16, 32, 64, 128}. To avoid estimation issues for the KDE
– which occurs especially when Y = 1 is rare – we always
estimate the χ2 penalty over a separate batch of size in 128.
λ is set to 4 ∗Rényi batch size/batch size. Also remark that
we use χ2 which is the square of HGR because the values of
the gradient close to 0 are numerically more stable.

Remarks: Performance is bad on the Arrythmia and Ger-
man datasets where we are not able to significantly reduce
the DEO. Arrythmia is made of 451 examples while Ger-
man has 1,000. Theses sizes are probably too small for
our proposal when regularized loss is minimized thought
gradient descent on a neural network. About Arrythmia
and German, the absence of publication of the exact pre-
processing is problematic. E.g. running Domini’s code on
those datasets with minimal pre-processing (one hot + nor-
malization) yields a DEO on test of 0.25 which is higher than
the scores we obtain while accuracies are of resp. of 0.77
and 0.72 (similar to ours). Their paper reports much better
results we are not able to reproduce and we choose to report
their values in the table 1. When the dataset is larger not
knowing the pre-processing method is less important since
the net we use can learn the representation. On datasets
which contains a few thousand of samples, our proposed
regularizer lead to a very competitive ”fair” classifier.

4.3. Fully Continuous Case: Criminality Rates

The last experiment highlights one of the main contributions
of this paper: extending fairness-aware learning to protect-
ing a continuous prediction Ŷ w.r.t. a continuous protected
variable Z given a continuous Y . The task here is to predict
the number of violent crimes per population for US cities,
while protecting race information (ratio of an ethnic group
in the population) to avoid biasing police checks depending

on the ethnic characteristics of the neighborhood 3.

Following Section 3, we consider an equalized odds objec-
tive and we evaluate the different algorithms in terms of
HGR|∞4 All the experiments are a result of a 10-fold cross-
validation for which each fold is averaged over 20 random
initializations (as the objective is non-convex).

As state-of-the-art algorithms are not handling the contin-
uous case, the only way to compare our results to theirs is
to apply them by binarizing the continuous variables. We
choose to use Bechavod & Ligett (2017) as a baseline –
denoted LŶ |Z,Y2 – as it can handle continuous Ŷ and only
require to binarize Z and Y , which makes it more competi-
tive than other methods that would require to discretize all
of them to be applied even optimizing the thresholds.

For our method, we propose to study empirically two penal-
ties derived from our framework: a χ2|1 penalty as de-
scribed in (6) and a variant with the KL replacing the χ2,
denoted KL|1. The KL penalty estimated with KDE is a gen-
eralization of the prejudice removal penalty (Kamishima
et al., 2011) proposed in the binary case. As explained in
Section 2.4, for χ2|1 and KL|1, we use a Gaussian KDE with
bandwidth set following Silverman’s rule with d = 3.

4.3.1. PENALIZED BATCH LINEAR REGRESSION

First, we consider a linear regression (LR) penalized with
the three different fairness penalties. This allows us to ob-
serve how these penalty terms are behaving when estimated
with full batches of data. All the methods are optimized
using L-BFGS. Comparisons are reported on Fig. 2.

We can observe on Figure 2 that the χ2|1 penalty manages
to provide the best trade-off between fairness and MSE,
even though the best runs for the other two penalties are
close. That is another strength of the χ2|1 : in full batch, it
is more robust to the regularization parameter setup than the
other ones. Note that some values of regularization are not
visible on the graph for KL|1 and LŶ |Z,Y2 , the MSE being

very degraded. The case of LŶ |Z,Y2 is even worse as not
only is it sensitive to the regularization parameter but it also
required to tune the discretization.

3The dataset is available here: https://archive.ics.
uci.edu/ml/datasets/Communities+and+Crime

4The same results evaluated in KL|∞ are available in Appendix
and show very similar results.

https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime


Fairness-Aware Learning for Continuous Attributes and Treatments

0.1 1.0
Predictive Error (MSE)

0.4

0.5

0.6

0.7

Fa
irn

es
s (

HG
R ∞

)

LR
LR + L ̂Y|Z, Y

2
LR + KL|1
LR + χ2|1

Figure 2. Equalized odds with Linear Regression: Compromise
between predictive performance (MSE) and fairness (HGR|∞) that
are reached by the different algorithms. The Pareto front for each
algorithm is obtained by varying the hyper-parameter controlling
the level of fairness (regularization parameter) from 2−4 to 26. For
KL|1 and LŶ |Z,Y2 some points are out of the graph on the right.

Sample complexity is a bottleneck for improving fairness.
We can observe on all methods the fairness measure first
decreases with the strength of regularization, then increases
again. This signals over-fitting of the fairness penalty (see
Appendix to compare with the same graph on the training
set). It is not surprising in the equalized odds setting, as
we aim at making independent two continuous variables
conditionally to a third one, and this for any value of this
third one. Given the size of our training set, it is to be
expected that very low values of HGR|∞ can’t be reached
in test. Corroborating this claim, in Demographic Parity –
a statistically easier task as there is no conditioning – the
values of HGR(Ŷ , Z) reached in test are much lower and
the over-fitting of the fairness penalty is smaller.

4.3.2. PENALIZED MINI-BATCH LEARNING WITH DNN

Finally, we emphasize the ability of our method to work
with mini-batch optimization, a crucial need to make it com-
patible with the learning of deep neural networks models.
Now h ∈ H is a DNN and the objective (6) is optimized
with a stochastic optimizer (Adam) with mini-batches of
size n = 200. The bandwidth of the KDE is still set using
the same heuristic, except n is now the size of a mini-batch.

On Fig. 3 we observe that, independently from the penalty,
DNNs are able to improve fairness at a lower price than
linear models in terms of MSE thanks to their larger capac-
ity: even with high regularization values, the MSE only in-
creases to 0.03. This supports the requirement for a fairness
penalty to be compatible with the learning of deep models.
Then, we can observe that the baseline (LŶ |Z,Y2 penalty) suf-
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DNN
DNN + L ̂Y|Z, Y
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Figure 3. Equalized odds with DNN: Compromise between predic-
tive performance (MSE) and fairness (HGR|∞) that are reached by
the different algorithms. The Pareto front for each algorithm is
obtained by varying the hyper-parameter controlling the level of
fairness (regularization parameter) from 2−4 to 26.

fers from the mini-batching due to the binarization of Z and
Y , making it unsuited for deep learning. On the contrary,
the χ2|1 and KL|1 penalties prove to work smoothly with
mini-batched stochastic optimization used for deep learning
and achieve satisfying compromises between fairness and
MSE. Remark in appendix we have variants of Fig 2 and 3
with HGR being replaced with MI.

5. Conclusion
Thanks to HGR, we have unified and extended previous
frameworks to continuous sensitive information for algo-
rithmic fairness from both evaluation and learning point
of views. First, we proposed a principled way to derive
evaluation measures for fairness objectives that can be writ-
ten as conditional independence. Then, we provided the
corresponding derivation for the learning step. Finally we
empirically show the performance of our approach on a se-
ries of problems (continuous or not) and the adaptability to
deep learning models. An interesting question left for future
work is whether the non-parametric density estimation done
with KDE could be replaced by a parametric estimation to
improve the scaling of the method and reduce the variance
in the context of mini-batching.
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A. Asymptotic normality of HGR

We have the following lemma.

Lemma A.1. Suppose that the two variables X and Y
are categorical and hence can take finitely many values.
Then the elements of the empirical Witsenhausen matrix
Q̂(u, v) = π̂(u,v)√

π̂(u)π̂(v)
are jointly asymptotically normal as

n→∞.

Furthermore, if the second singular value of Q has multi-
plicity 1, then HGR(Q̂) is asymptotically normal and

√
n

consistent for HGR(Q). In that case, the bootstrap can be
used to accurately estimate its statistical variability.

Finally, we have

(
HGR(Q̂)− HGR(Q)

)2
≤ 1

n
trace (E′E) ,

with E =
√
n(Q̂−Q) and the statistical properties of this

upper bound can be obtained by bootstrapping. This yields
a conservative asymptotic confidence interval for HGR(Q̂).

Note : as the statistic in our upper bound is a simply modi-
fication of the χ2 statistic for independence, we recall that
the usual rule of thumb for applicability of the χ2 test in
the null case is that we have 5 observations per cell. In
this context, it seems that the simplest choice of bootstrap
to use would be a parametric bootstrap using multinomial
sampling with the observed π̂(x, y) if HGR(Q̂) appears to
be separated from the other singular values of Q̂. We note
that our upper bound on HGR2 is the standard χ2-statistic
for testing independence minus 1. So in case the singular
values of Q̂ are not sufficiently separated, we can use the
upper bound mentioned in the Lemma.

Proof. We note that π̂(u, v) are the realization of a Multi-
nomial random vector with parameters ({π(u, v)}u,v, n). It
is well known (see (Vaart, 1998), Chapter 17) that

√
n

(
π̂(u, v)− π(u, v)√

π(u, v)

)
u,v

⇒ N (0, id−
√
π
√
π
′
) .

In other words, the entries of the matrix π̂(u, v) are asymp-
totically jointly normal with

ncov(π̂(u, v), π̂(u′, v′)) = −π̂(u, v), π̂(u′, v′)

+π(u, v)21[u = u′, v = v′] .

Let us call R(u, v) = π(u, v)/(π(u)π(v)),Wn(u, v) =
π̂(u,v)−π(u,v)√

π(u,v)
, and [π̂U (u)/πU (u)][π̂V (v)/πV (v)] =

Zn(u, v) . We can clearly write

Q̂(u, v) =
π̂(u, v)− π(u, v) + π(u, v)√

πU (u)πV (v)
Z−1/2n

=
π̂(u, v)− π(u, v)√

π(u, v)

√
R(u, v)Z−1/2 +Q(u, v)Z−1/2n

= Wn(u, v)
√
R(u, v)Z−1/2n +Q(u, v)Z−1/2n .

Now the previous result on multinomial distributions guaran-
tees that

√
nWn is asymptoticallyN (0, 1). The same result

implies that π̂U (u) is also asymptotically normal as a finite
sum of asymptotically Gaussian random variable and the
same result applies to π̂V (v). This normality is obviously
joint since we are just looking at various linear transfor-

mations of the vector
(
π̂(u,v)−π(u,v)√

π(u,v)

)
u,v

. The δ-method

((Vaart, 1998), p. 26) guarantees that
√
n(Wn, (Z

−1/2
n − 1)

is jointly asymptotically normal. The same reasoning ap-
plies to

√
n(Wn, (Zn − 1) . We conclude using Slutsky’s

lemma ((Vaart, 1998), p. 11). Finally we note that the
arguments above give that

√
n
(
Q̂(u, v)−Q(u, v)

)
=
√
nWn(u, v)

√
R(u, v)

−Q(u, v)

2

√
n(Zn − 1) +OP (n−1/2) ,

in the standard probabilistic Landau notation of Section 2.2
in (Vaart, 1998). In other words the entries of the empirical
Witsenhausen matrix are

√
n consistent for the population

version. And the matrix of errors

E =
√
n
(
Q̂−Q

)
has all its entries jointly asymptotically Gaussian. The
jointly Gaussian nature of its entries follows the same rea-
soning as above and remarking that its vectorized form,
vec(E) is essentially a linear tranformation of the asymptot-

ically Gaussian vector
√
n

(
π̂(u,v)−π(u,v)√

π(u,v)

)
u,v

Now recall that HGR2 = λ2(Q′Q), where ′ denotes transpo-
sition. It is well known (see (Kato, 1976)) that if λk(M),
the k-th eigenvalue of a symmetric matrix M is simple, and
if M̂ = M + t∆, where ∆ has bounded operator norm and
t goes to zero, we have

λk(M̂) = λk(M) + tφ′k∆φk +O(t2) ,

where φk is an eigenvector associated with λk(M) (of
course φk is unique up to sign). In our case, we see that

Q̂′Q̂ = Q′Q+
1√
n

(Q′E + E′Q) +
1

n
E′E .
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Because of our results on E above, we see that when
λ2(Q′Q) is simple, we have

√
n
[
λ2(Q̂′Q̂)− λ2(Q′Q)

]
= 2φ′2QEφ2 +OP (n−1/2) .

Writing the singular value decomposition of Q as

Q =
∑
i

σi(Q)ψiφ
′
i ,

we have φ′2Q
′ = σ2(Q)ψ′2, so that

√
n(HGR2(Q̂)−HGR2(Q)) = 2

√
nHGR(Q)ψ′2Eφ2+OP (n−1/2) .

Applying the δ-method with f(x) =
√
x, we finally get

√
n(HGR(Q̂)− HGR(Q)) =

√
nψ′2Eφ2 +OP (n−1/2) .

As this last quantity is a linear form in an asymptotically
Gaussian vector, it is asymptotically Gaussian. This shows
the result.

When the eigenvalues are not separated, or to be conser-
vative, we can use the standard bound ((Horn & Johnson,
1986), p. 419)(

σ2(Q̂)− σ2(Q)
)2
≤ 1

n
trace (E′E) ,

and the statistical properties of E to get conservative con-
fidence intervals. We note that in practice the statistical
properties of E could be obtained by using a parametric
bootstrap to estimate E and the statistical properties of
trace (E′E).

B. Additional Experimental Results
We provide here some additional results to complete the
experiments of Section 4.3.

B.1. Penalty Over-Fitting

First, we provide a complement of Figures 2 and 3 but
evaluated on both the training set and the test set to highlight
the over-fitting phenomenon.

B.2. Evaluation in Mutual Information

Then, we provide a complement of Figures 2 and 3 evaluated
in MI|∞ instead of HGR|∞. The observations to make are
quite similar to the one made in the paper. Surprisingly,
χ2|1 stays better than KL|1 at optimizing for the MI|∞.

B.3. Demographic Parity

Finally, we reproduce the same experiment but in demo-
graphic parity, meaning that we are trying to enforce
Ŷ ⊥⊥ Z. Everything simplifies as an independence is easier
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Figure 4. Equal Opportunity with Linear Regression on Test Set:
Compromise between predictive performance (MSE) and fairness
(HGR|∞).

to measure than a conditional one. The penalty becomes
simply the χ2 instead of χ2|1 and the evaluation becomes
HGR instead of HGR|∞. As this task is statistically simpler
than a conditional independence, all the methods manage to
improve the fairness much more as they are not over-fitting
as much.
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Arrhythmia COMPAS5 Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO

Variable to protectZ not inside the features used for prediction

Naı̈ve Lin. SVM 0.75±0.04 0.11±0.03 0.73±0.01 0.13±0.02 0.78 0.10 0.71±0.06 0.16±0.04 0.79±0.02 0.25±0.03
Lin. SVM 0.71±0.05 0.10±0.03 0.72±0.01 0.12±0.02 0.78 0.09 0.69±0.04 0.11±0.10 0.79±0.02 0.25±0.04
Zafar 0.67±0.03 0.05±0.02 0.69±0.01 0.10±0.08 0.76 0.05 0.62±0.09 0.13±0.10 0.66±0.03 0.06±0.06
Lin. FERM 0.75±0.05 0.05±0.02 0.73±0.01 0.07±0.02 0.75 0.01 0.69±0.04 0.06±0.03 0.79±0.02 0.10±0.06
Naı̈ve SVM 0.75±0.04 0.11±0.03 0.72±0.01 0.14±0.02 0.80 0.09 0.74±0.05 0.12±0.05 0.81±0.02 0.22±0.04
SVM 0.71±0.05 0.10±0.03 0.73±0.01 0.11±0.02 0.79 0.08 0.74±0.03 0.10±0.06 0.81±0.02 0.22±0.03
FERM 0.75±0.05 0.05±0.02 0.96±0.01 0.09±0.02 0.77 0.01 0.73±0.04 0.05±0.03 0.79±0.03 0.10±0.05
NN 0.74±0.07 0.19±0.14 0.97±0.00 0.01±0.00 0.84 0.14 0.74±0.04 0.47±0.19 0.79±0.03 0.15±0.16

NN + χ2 0.75±0.06 0.15±0.09 0.96±0.00 0.00±0.00 0.83 0.03 0.73±0.03 0.25±0.14 0.78±0.05 0.00±0.00

Variable to protectZ inside the features used for prediction

Naı̈ve Lin. SVM 0.79±0.06 0.14±0.03 0.76±0.01 0.17±0.02 0.81 0.14 0.71±0.06 0.17±0.05 0.81±0.02 0.44±0.03
Lin. SVM 0.78±0.07 0.13±0.04 0.75±0.01 0.15±0.02 0.80 0.13 0.69±0.04 0.11±0.10 0.81±0.02 0.41±0.06
Hardt Lin. 0.74±0.06 0.07±0.04 0.67±0.03 0.21±0.09 0.80 0.10 0.61±0.15 0.15±0.13 0.77±0.02 0.22±0.09
Zafar 0.71±0.03 0.03±0.02 0.69±0.02 0.10±0.06 0.78 0.05 0.62±0.09 0.13±0.11 0.69±0.03 0.02±0.07
Lin. FERM 0.79±0.07 0.04±0.03 0.76±0.01 0.04±0.03 0.77 0.01 0.69±0.04 0.05±0.03 0.79±0.02 0.05±0.03
Naı̈ve SVM 0.79±0.06 0.14±0.04 0.76±0.01 0.18±0.02 0.84 0.18 0.74±0.05 0.12±0.05 0.82±0.02 0.45±0.04
SVM 0.78±0.06 0.13±0.04 0.73±0.01 0.14±0.02 0.82 0.14 0.74±0.03 0.10±0.06 0.81±0.02 0.38±0.03
Hardt 0.74±0.06 0.07±0.04 0.71±0.01 0.08±0.01 0.82 0.11 0.71±0.03 0.11±0.18 0.75±0.11 0.14±0.08
FERM 0.79±0.09 0.03±0.02 0.96±0.01 0.09±0.02 0.81 0.01 0.73±0.04 0.05±0.03 0.80±0.03 0.07±0.05
NN 0.79±0.08 0.15±0.09 0.97±0.00 0.01±0.00 0.84 0.13 0.76±0.03 0.46±0.04 0.78±0.04 0.07±0.04

NN + χ2 0.79±0.08 0.16±0.14 0.96±0.00 0.00±0.00 0.83 0.08 0.72±0.03 0.21±0.15 0.80±0.04 0.00±0.01

Table 2. Results (average ± standard deviation averaged on 10 runs, when a fixed test set is not provided) for all the datasets, concerning
accuracy (ACC) and DEO . Values in this table are from (Donini et al., 2018) except for the values highlighted with a blue background
which are ours. NN is not using any fairness aware technique while NN + χ2 is using the regularizer described in section 4.2.
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Figure 5. Equal Opportunity with Linear Regression on Training
Set: Compromise between predictive performance (MSE) and
fairness (HGR|∞).

0.02 0.03
Predictive Error (MSE)

0.4

0.5

Fa
irn

es
s (

HG
R ∞

)

DNN
DNN + L ̂Y|Z, Y

2
DNN + KL|1
DNN + χ2|1

Figure 6. Equal Opportunity with DNN on Test Set: Compromise
between predictive performance (MSE) and fairness (HGR|∞).
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Figure 7. Equal Opportunity with DNN on Training Set: Com-
promise between predictive performance (MSE) and fairness
(HGR|∞).
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Figure 8. Equal Opportunity with DNN on Test Set: Compromise
between predictive performance (MSE) and fairness (MI|∞).
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Figure 9. Equal Opportunity with DNN on Training Set: Compro-
mise between predictive performance (MSE) and fairness (MI|∞).
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Figure 10. Demographic Parity with Linear Regression on Test Set:
Compromise between predictive performance (MSE) and fairness
(HGR).
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Figure 11. Demographic Parity with DNN on Test Set: Compro-
mise between predictive performance (MSE) and fairness (HGR).


