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Figure 2. Implicit fairness of auctions. The x-axis depicts the
fairness of the algorithm, measured by (`, u)-fairness constraints.
We report number of auctions which satisfy each fairness level.

A. Figures
Figure 2 represents the implicit fairness of the auctions
derived from the real-world data sets. In particular we find
that 3282 out of 14380 auctions have a selection lift slift <
0.3.

Figure 3 shows the correlation between keywords. Where
each group can be thought of as a category of keyword.

Figure 4 plots the loss L as a function of shifts α, we can
observe that it is a non-convex function of the shift.

Figure 5 plots the coverage q as a function of shifts α, we
can observe that it is a non-convex function of the shift.

Figure 6 shows that the reparameterization of the revenue is
a concave function of the coverage q.

• Figure 6(a) plots revenue as a function of the shift, and
shows its non-concavity.

• Figure 6(b) plots reparameterization of revenue as a
function of the coverage, and illustrates that it is a
concave function of the coverage.

B. Background and Notation
In this section, we provide some key definitions. For a
detailed discussion, we refer the reader to the excellent
treatises (Hartline, 2017; Nisan et al., 2007) on Mechanism
design.

Definition 1. (Truthful mechanism). Given the valuation
vi ∈ R of a bidder i ∈ [n], and the bid bk ∈ R of all other
bidders k ∈ [n]\{i}, a mechanismM is said to be truthful
iff vi ∈ argmaxbi∈R

(
xi(b1, . . . , bn)bi − pi(b1, . . . , bn)

)
.

The above definition implies that for any truthful mecha-
nism, an advertiser’s optimal strategy is to bid their true
valuation. Further, the can be shown that the allocation
rule x(b1, b2, . . . , bn), of any truthful mechanism must be
monotone in bi for all i ∈ [n].

(Myerson, 1979) proved for any mechanismM there exists
a truthful mechanism τ(M) such that τ(M) offers the same

revenue to the seller and the same utility to each bidder as
M. As such, we restrict ourselves to truthful mechanisms.
Furthermore, it is a well known fact (Nisan et al., 2007) that
for any truthful mechanism its payment rule p, is uniquely
defined by its allocation rule x. Hence, for any truthful
mechanism our only concern is the allocation rule x.

B.1. Myerson’s Optimal Mechanism

Let P be the distribution of valuation of a bidder, pdf : R→
R>0 be its probability density function, and cdf : R →
[0, 1] be its cumulative density function, then we define the
virtual valuation φ : supp(P) → R, as φ(v) := v − (1 −
cdf(v))(pdf(v))−1. We say P is regular if φ(v) is non-
decreasing in v. Likewise, we say P is strictly regular if
φ(v) is strictly increasing in v.

Myerson’s mechanism is defined as the VCG mecha-
nism (Clarke, 1971; Groves, 1973; Vickrey, 1961) where
the virtual valuation φi, is submitted as the bid vi for each
bidder i. If the valuations vi, and therefore, the virtual valu-
ations φi are independent, then for any truthful mechanism
the virtual surplus

∑
i∈[n] φixi(φi), is equal to the revenue

in expectation over the bids. Since VCG is surplus maximiz-
ing, if Myerson’s mechanism is truthful then it maximizes
the revenue. It can be shown that if the bids have a regu-
lar distribution, then Myerson’s mechanism is truthful, and
therefore, revenue maximizing.

C. Why Is the TV-Distance Small?
To calculate the TV-distance we consider the distribution
of winners selected by the auction mechanism, i.e., the
distribution of the number of users an advertiser reaches.
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Figure 3. Correlation between keywords. The axes depict key-
words, reordered to emphasize their correlation. A pair of key-
words is colored white if the keywords share at least 2 advertisers.
Each block can be interpreted as category of keyword (e.g., Sci-
ence, Sports or Travel).
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This distribution is different from coverage which separates
the audience by their types. We report the total variation
distance

dTV (M,F) := 1/2

n∑
i=1

|
m∑
j=1

qij(M)− qij(F)| ∈ [0, 1]

(28)

between the two distributions, as a measure of how much the
winning distribution changes due to the fairness constraints.

Consider the distribution of advertiser i’s coverage as the
vector {qij(M)}j∈[m] ∈ [0, 1]m. Its projection on the
perfectly-fair polytope is

1

m

( m∑
j=1

qij(M)

)
· (1, 1, · · · , 1) ∈ [0, 1]n. (29)

Since the coverage is uniform, it satisfies the perfect fairness
constraints. Further, we can observe that this projection has
a 0 total variation distance dTV to {qij(M)}j∈[m] using
Eq. 28.

If the solution qij(F) of the optimal fair mechanism is close
to this projection, then the resulting dTV (M,F) is small.
Moving the coverage qij(F) away from the projection in-
volves a trade-off between increasing the total change in
coverage, and decreasing the change for some types the
advertiser values more.

Therefore, if the average bid of an advertiser does not vary
significantly between the types, then qij(F) is close to the
projection. Importantly, this does not imply that the cover-
ages qij(M) of the unconstrained mechanism are balanced.
To gain some intuition, consider two advertisers with similar
budgets, but one advertiser places a bid of 1 + ε for men
and 1− ε for women, while the other places a bid of 1 for
men and women. Even though the first advertiser’s for men
is only 2ε higher than their bid for women, they would be
able to reach men, i.e., q1 = (1, 0). Whereas, the platform
only loses ε fraction of its revenue by changing q1 to its
projection (1/2, 1/2).

D. Supplementary Proofs
D.1. Theorem 1

Proof of Theorem 1. Let us introduce three Lagrangian mul-
tipliers, a vector αj ∈ Rn≥0, a vector βj ∈ Rn≥0 and a con-
tinuous function γj(·) : supp(φj) → R≥0 ∀ j ∈ [m], for
the lower bound, upper bound, and single item constraints
respectively. Then calculating the Lagrangian function we

have

L :=
∑
j∈[m]

Pr
U
[j]
∑
i∈[n]

∫
supp(φj)

φijxij(φj)dfj(φj)

+
∑
j∈[m]

∫
supp(φj)

γj(φj)
(
1−

∑
i∈[n]

xij(φij)
)
dfj(φj)

+
∑
i∈[n]
j∈[m]

αij

(∫
supp(φj)

xij(φij)dfj(φj)− `ij
∑
t∈[m]

∫
supp(φt)

xit(φt)dft(φt)

)

−
∑
i∈[n]
j∈[m]

βij

(∫
supp(φj)

xij(φij)dfj(φj)− uij
∑
t∈[m]

∫
supp(φt)

xit(φit)dft(φt)

)

The second integral is well defined by from the continuity
of γj(·) and monotonic nature of xj(·). In order for the
supremum of the Lagrangian over xij(·) ≥ 0 to be bounded,
the coefficient of xij(·) must be non-positive. Therefore we
require that for all g ⊆ supp(φj), i ∈ [n], and j ∈ [m]∫
g

αij−βij + Pr
U
[j]φij−

∑
t∈[m]

(αit`it − βituit)− γj(φj)dfj(φj)

≤ 0.

Since xij(·) and γj(·) are continuous, we can equivalently
require for all φj , i ∈ [n], and j ∈ [m]

αij − βij + Pr
U
[j]φij −

∑
t∈[m]

(αit`it − βituit)− γj(φj) ≤ 0.

If this holds we can express the supremum of L as

sup
xij(·)≥0

L =
∑
j∈[m]

∫
supp(φj)

γj(φj)dfj(φj)

Now we can express the dual optimization problem as:
Find a optimal αj ∈ Rn≥0, βj ∈ Rn≥0 and
γj(·) : supp(φj)→ R≥0

Dual of the infinite-dimensional fair advertising problem

min
αj≥0
βj≥0

γj(·)≥0

∑
j∈[m]

∫
supp(φj)

γj(φj)dfj(φj) (30)

s.t. αij − βij + Pr
U
[j]φij −

∑
t∈[m]

(αit`it − βituit)

≤ γj(φj) ∀ i ∈ [n], j ∈ [m], φj . (31)

Since the primal is linear in xij(·), and the constraints are
feasible strong duality holds. Therefore, the dual optimal is
primal optimal.

For any feasible constraints we have for all i ∈ [n]∑
j∈[m] `ij ≤ 1 and

∑
j∈[m] uij ≥ 1. Therefore the co-

efficient of αij , 1 −
∑
j∈[m] `ij ≥ 0, and that of βij ,∑

j∈[m] uij − 1 ≥ 0. Since α and β are non-negative, a
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optimal solution to the dual is finite. Let α?, β? be a optimal
solutions to the dual, and x?ij(·) be a optimal solution to the
primal. Fixing α and β to their optimal values α? and β?

in the dual, let us define new virtual valuations φ′ij , for all
i ∈ [n] and j ∈ [m]

φ′ij := φij +
1

PrU [j]

(
α?ij − β?ij −

∑
t∈[m]

(α?it`it − β?ituit)
)

Then the leftover problem has only one Lagrangian mul-
tiplier, γj(·). Let γ′j(·) be the affine transformation of γj
defined on virtual valuations, i.e., γ′j(φ

′
j) := γj(φj), then

the problem can be expressed as follows.

Dual with shifted virtual valuations

min
γj(·)≥0

∑
j∈[m]

∫
supp(φj)

γj(φ
′
j)dfj(φ

′
j) (32)

s.t. Pr
U
[j]φ′ij ≤ γj(φ′j) ∀ i ∈ [n], j ∈ [m], φ′. (33)

This is the dual of the following unconstrained revenue
maximizing problem. Myerson’s mechanism is the rev-
enue maximizing solution to the unconstrained optimization
problem. Further, by linearity and feasibility of constraints
strong duality holds. Therefore the α′-shifted mechanism,
for α′ = 1/PrU [j] ·

(
α?ij − β?ij +

∑
t∈[m](α

?
it`it − β?ituit)

)
is a optimal fair mechanism.

Unconstrained Primal

max
xij(·)≥0

revM(x1, x2, . . . , xm)

s.t.
∑
i∈[n]

xij(φj) ≤ 1 ∀ j ∈ [m], φj ∈ supp(φj).

Further, Myerson’s mechanism is truthful if the distribution
of valuations are regular and independent. Since α-shifted
mechanism applies a constant shift to all valuation, it follows
under the same assumptions that any α-shifted mechanism
is also truthful, and therefore has a unique payment rule
defined by its allocation rule.

D.2. Revenue Is Non-Concave in α

Consider two advertisers and one user type with f11(x) =
e−x and f21(x) = e−x. We fix the shift of advertiser 2 to 0,
and consider a positive shift α ≥ 0 of advertiser 1. Then

revshift(α)

=
∫

supp(f11)

yf11(y)F21(y + α)dy +

∫
supp(f21)

yf21(y)F11(y − α)dy

=
∫ ∞
0

ye−y(1− e−(y+α))dy +

∫ ∞
α

ye−y(1− e−(y−α))dy

= 1 + 1/2 · (α+ 1)e−α.
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Figure 4. Loss as a function of shifts. (Non-convex) The loss
L(α), for two advertisers with exponential valuations, and δ =
[0.5, 0.5].

Differentiating revshift we can observe it is not a concave
function of the shift α (see Figure 6(a)). Indeed if we con-
sider d

2revshift

dα2 = 1/2·(α+1)e−α, it is positive for all α > 1.
Consider the coverage q(α) of advertiser 1

q(α) =

∫
supp(f11)

yf11(y)F21(y + α)dy

=

∫ ∞
0

e−y(1− e−(y+α))dy

= 1− 1/2 · e−α.

Similarly we can observe that q is not a convex function
of α (see Figure 5). Using q(α) to formulate the loss L(α)
we can easily observe that it is non-convex as well (see
Figure 4). Let us re-parameterize the revenue revshift in
terms of q as rev(·). Then we have

rev(1− q) = 1 + (1− q)(1− log(2− 2q))) (34)

d2rev(q)

dq2
=
−1
1− q

≤ 0. (Using q < 1)

We can observe that revenue is a concave function of the
coverage (see Figure 6(b)).

−4 −2 0 2 4
Shift α

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 q
(α
)

Figure 5. Coverage as a function of shift. (Non-convex) Coverage
for one of the two advertisers with exponentially distributed bids,
on two user types. We vary the shift of one of the advertisers from
−5 to 5, and report its coverage as a function of the shift.
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(a) We plot the total revenue as a function of the shift.
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(b) We plot the total revenue as a function of the coverage.

Figure 6. Revenue as a function of coverage and shift. Total revenue for two advertisers with exponentially distributed bids, on two user
types. We vary the shift of one of the advertisers.

D.3. Omitted Details of Linear System in Equation (16)

Let Jq(α) be the Jacobian of the vectorized coverage,
vec(q(α)) ∈ R(n−1)m, with respect to the vectorized shift,
vec(α) ∈ R(n−1)m. Here, we fix the shift of one advertiser
i ∈ [n] for each user type j ∈ [m]. Therefore, Jq(α) is a
(n− 1)m× (n− 1)m matrix



∂q11(α)

α11
. . .

∂q11(α)

α(n−1)1

. . .
∂q11(α)

α(n−1)m

∂q21(α)

α11
. . .

∂q21(α)

α(n−1)1

. . .
∂q21(α)

α(n−1)m

...
...

. . .
...

...
∂q(n−1)1(α)

α11
. . .

∂q(n−1)1(α)

α(n−1)1

. . .
∂q(n−1)1(α)

α(n−1)m


.

To obtain ∇rev(q), we use the fact that Jq(α) is always
invertible (Lemma 1). Then, if we know α = q−1(δ) for
some δ ∈ [0, 1]n×m, we can express∇rev(q) as follows,

∀ i ∈ [n], j ∈ [m],
∂revshift(α)

∂αij
=
∑
k∈[n]

∂rev(α)

∂qkj

∂qkj
αij

.

Equivalently, we can write the above as the following linear
system

(Jq(α))
>∇rev(δ) = ∇revshift(α). (Gradient oracle, 35)

D.4. Proof of Lemma 1

Proof. The coverage remains invariant if the bids of all
advertisers are uniformly shifted for any given user type j.
Therefore for all j ∈ [m] we have

∑
t∈[n]

∂qij
∂αtj

= 0. (36)

Since, increasing the shift αij , does not increase the cover-
age qkj for any k 6= i, we have that

∂qkj
∂αij

≤ 0 and
∂qij
∂αij

≥ 0. (37)

Now, from Eq. (36) we have

∀ i ∈ [n], j ∈ [m],
∂qij
∂αij

=
∑

t∈[n]\{i}

∣∣∣∣ ∂qij∂αtj

∣∣∣∣. (38)

Further since the n-th advertiser has non-zero coverage, i.e.,
there is non-zero probability that advertiser n bids higher
than all other advertisers, changing αnj must affect all other
advertisers. In other words, for all i ∈ [n − 1]

∂qij
∂αnj

6= 0.
Using this we have,

∀ i ∈ [n], j ∈ [m],
∂qij
∂αij

>
∑

t∈[n−1]\{i}

∣∣∣∣ ∂qij∂αtj

∣∣∣∣. (39)

By observing the coverage on user type j is independent of
the shift of user type t for all t 6= j, i.e.,

∀ i, s ∈ [n], j, t ∈ [m], s.t., j 6= t,
∂qij
∂αst

= 0, (40)

and using Equation (38), we get that the Jacobian, Jq(α)
is strictly diagonally dominant. Now, by the properties of
strictly dominant matrices it is invertible.

Remark 8. Since for any i ∈ [n], qij is independent of αst
for any s ∈ [n] (40). We claim that the Jacobian is sparse,
and consists of only n2m non-zero elements, which form m
diagonal matrices of size n× n, along the main diagonal
of the Jacobian. This allows us to solve the linear system
in Eq. (16) in O(nωm) steps, where ω is the fast matrix
multiplication coefficient.
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D.5. Proof of Lemma 2

We use Lemma 4 and Lemma 5 in the proof of Lemma 2.
The two lemmas split the Lipschitz continuity of rev(·) into
the Lipschitz continuity of revshift(·) and αij = q−1ij (·)
respectively. Their proofs are follow in Section D.7 and
Section D.9 respectively.

Lemma 4. (Revenue is Lipschitz continuous in shifts).
For all α ∈ R(n−1)×m, if pdf , fij(φ) of the virtual valua-
tions is bounded above by µmax, and φij is bounded above
by ρ ∀ i ∈ [n], j ∈ [m], then revshift(α) is (µmaxρn

3
2 )-

Lipschitz continuous.

Lemma 5. (Shifts is Lipschitz continuous in coverage).
For all α, β ∈ R(n−1)×m, such that qij(β+t(α−β)) > η, if
the probability density function, fij(·), of virtual valuations
is bounded by µmin and µmax ∀ t ∈ [0, 1], i ∈ [n], j ∈ [m],
then

‖α− β‖F <
√
n

ηµmin
‖q(α)− q(β)‖2.

Proof of Lemma 2. Let α, β ∈ R(n−1)×m be the shifts
achieving q1 and q2 respectively. Then by Lemma 4 and
Lemma 5 we have,

|rev(q(α))− rev(q(β))|
Lemma 4

≤ µmaxρn
3
2 ‖α− β‖F (41)

‖α− β‖F
Lemma 5
<

√
n

ηµmin
‖q(α)− q(β)‖2. (42)

By combining Eq. (41) and Eq. (42) we get the required
result

|rev(q1)− rev(q2)|
(41),(42)
≤ µmaxρ

µminη
n2‖q1 − q2‖2. (43)

D.6. Proof of Lemma 3

To get an efficient complexity with a gradient-based al-
gorithm we want to avoid small gradients “far” from the
optimal. Lemma 6 shows that if L(α) greater than ε, then
the Frobenius norm ‖L(α)‖F of L(α) is greater than

√
ε.

The proof of Lemma 6 is provided in Section D.10.

Lemma 6. (Lower bounding ∇Lj(·)). Given αj ∈ Rn−1,
such that Lj(αj) > ε and qij(αj) > η, if the probability
density function, fij(·), of virtual valuations is bounded
below by µmin ∀ i ∈ [n], j ∈ [m], then ‖∇Lj(αj)‖2 >
2

n−1
√
εηµmin.

Next, in Lemma 7 we show that the gradient, ∇L(α), is
O(n(L + n2µ2

max))-Lipschitz continuous. Therefore, at
each step where L(α) ≥ ξ, we improve the loss by a factor
of 1− βξ, where β does not depend on ξ. This gives us a
complexity bound of O(log 1/ε). The proof of Lemma 7 is
presented in Section D.11.

Lemma 7. (Gradient of L(·) is Lipschitz). If the probabil-
ity density function, fij(φ), of the virtual valuations, φij is
L-Lipschitz continuous and bounded above by µmax, then
∇Lj(αj) is O(n(L+ n2µ2

max))-Lipschitz.

Proof of Lemma 3. At each iteration of the algorithm we
calculate ∇Lj(α) for all j ∈ [m], i.e., we calculate ∇L(α).
We note that this bounds the arithmetic calculations at one
iteration.

We recall from Eq. (40) that the shift for one user type do
not affect the coverage for the other. Therefore we can
independently find a optimal shift αj for all each user type
j ∈ [m].
From Lemma 2 we have that Lj is O(n(L + n2µ2

max))-
Lipschitz continuous. Let L′ := O(n(L + n2µ2

max)), for
brevity. We can get an upper bound to Lj(αk) from the first
order approximation of Lj at αk, further using the update
rule αk+1 = αk − 1

L′∇Lj(αk) we have

Lj(αk+1) ≤ Lj(αk)−
1

2L′
‖∇Lj(αk)‖22.

Let λ := 2
n−1ηµmin, then from Lemma 6 we have that

∇Lj(α) is lower bounded by
√
Lj(αk)λ. Using this to

lower bound the gradient we get

Lj(αk)− Lj(αk+1) ≥
1

2L′
‖∇Lj(αk)‖22

Lj(αk+1) ≤ Lj(αk)−
Lj(αk)λ2

2L′
.

By the above recurrence we get

Lj(αk) ≤ Lj(α0)

(
1− λ2

2L′

)k
.

Setting k := log mL(α0)
ε

−1
log
(
1− λ2

2L′

) we get that for all j ∈

[m], Lj(αk) < ε/m. Therefore

L(α) =
m∑
j=1

Lj(αj) < ε.

Substituting L′ = O(n(L+ n2µ2
max)) we get that the algo-

rithm outputs α, such that L(α) < ε in

log

(
mL(α1)

ε

)
n3(L+ n2µ2

max)

(ηµmin)2
steps.

D.7. Proof of Lemma 4

Proof. We first consider the revenue for one user type j,
revshift, j(α), and then combine the result across all user
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type to show that revshift(α) is Lipschitz continuous. For-
mally, we define revshift, j(α) as

revshift, j(α) :=∑
i∈[n]

Pr
U
[j]

∫
supp(fij)

yfij(y)
∏

k∈[n]\{i}

Fkj(y + αij − αkj)dy.

(Revenue from type j, 44)

Then the total revenue revshift(α) is just a sum of
revshift, j(α) for all user types.

revshift(α) =

m∑
j=1

revshift, j(α)

We can express∇revshift, j(α) as shown in Figure D.7.

We can observe that every term in the gradient (Eq. (45),
Eq. (46)) is a linear function of fij(·) and Fij(·) for some
i ∈ [n] and j ∈ [m]. Since, each term in the gradient
(Eq. (45)) involves at most 2n terms from Eq. (47) for some
i, k, ` ∈ [n] and j ∈ [m],∫
supp(fij)

yfij(y)fkj(y + αij − αkj)
∏
` 6=i,k

F`j(y + αij − α`j)dy.

(47)

Bounding this term, for all i, k, ` ∈ [n] and j ∈ [m] by
µmaxρ would give us a bound on ∇revshift(α). To this end,
consider∣∣∣∣∫
supp(fij)

yfij(y)fkj(y + αij − αkj)
∏
` 6=i,k

F`j(y + αij − α`j)dy
∣∣∣∣

(18)

≤ µmax

∣∣∣∣∫
supp(fij)

yfij(y)dy

∣∣∣∣ (Using Fij(·) ≤ 1)

(20)

≤ µmaxρ. (48)

Consider,∫
supp(fij)

yfij(y)fkj(y + αij − αkj)
∏
` 6=i,k

F`j(y + αij − α`j)dy (49)

∫
supp(fkj)

yfkj(y)fij(y+αkj−αij)
∏
` 6=i,k

F`j(y+αkj−α`j)dy (50)

Then rewriting the gradient, from Figure 7, we have∣∣∣∣∂revshift, j(α)∂αij

∣∣∣∣ = Pr
U
[j]

∑
k∈[n−1]\{i}

(
(49)− (50)

)
(48)
≤ Pr
U
[j]

∑
k∈[n−1]\{i}

µmaxρ

≤ (n− 2)Pr
U
[j]ρµmax. (51)

Now calculating the Frobenius norm of revshift, j(α) we get

‖∇revshift, j(α)‖2F =
∑

i∈[n−1]
k∈[m]

∣∣∣∣∂revshift, j(α)∂αik

∣∣∣∣2

(46)
=

∑
i∈[n−1]

∣∣∣∣∂revshift, j(α)∂αij

∣∣∣∣2 (52)

(51)
≤ Pr
U
[j](n−1)((n−2)ρµmax)

2 (53)

Now we proceed to bound ∇revshift(α),

‖∇revshift(α)‖2F =
∑

i∈[n−1]
j∈[m]

∣∣∣∣ ∑
k∈[m]

∂revshift, k(α)

∂αij

∣∣∣∣2

(46)
=

∑
i∈[n−1]
j∈[m]

∣∣∣∣∂revshift, j(α)∂αij

∣∣∣∣2
(52)
=
∑
j∈[m]

‖revshift, j(α)‖2F

(53)
≤
∑
j∈[m]

Pr
U
[j](n−1)((n−2)ρµmax)

2

≤ (n−1)((n−2)ρµmax)
2
∑
j∈[m]

Pr
U
[j]

≤ (n−1)((n−2)ρµmax)
2. (54)

Therefore, it follows that ‖∇revshift(α)‖F ≤ n
3
2 ρµmax.

D.8. Lemma 8

Lemma 8. If for all i ∈ [n], j ∈ [m] the probability density
function, fij(·), of virtual valuations is bounded below by
µmin, and every advertiser has at least η coverage on every
type j ∈ [m], then the absolute value of each gradient∣∣∂qij(α)
∂αsj

∣∣ is lower bounded by ηµmin, i.e.,

∣∣∣∣∂qij(α)∂αsj

∣∣∣∣ ≥ ηµmin ∀ i, s ∈ [n], j ∈ [m], α ∈ Rn×m.

Proof. Each advertiser has at least η coverage on every type,
i.e., we have for all i ∈ [n], j ∈ [m]

qij(α) =

∫
supp(fij)

fij(y)
∏

k∈[n]\{i}

Fkj(y + αij − αkj)dy ≥ η.

(55)
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Now considering ∂qij(α)
∂αsj

we get

∣∣∣∣∂qij(α)∂αsj

∣∣∣∣
=

∣∣∣∣ ∫
supp(fij)

fij(y)fsj(y + αsj − αij)
∏
k 6=i,s

Fkj(y + αij − αkj)dy
∣∣∣∣

≥ µmin

∣∣∣∣ ∫
supp(fij)

fij(y)
∏
k 6=i,s

Fkj(y + αij − αkj)dy
∣∣∣∣

(Using fij(φij) ≥ µmin)

≥ µmin

∣∣∣∣ ∫
supp(fij)

fij(y)
∏
k 6=i

Fkj(y + αij − αkj)dy
∣∣∣∣

(Using Fij(φij) ≤ 1)
(55)
≥ ηµmin. (56)

D.9. Proof of Lemma 5

In the Lemma 9 we extend the lower bound from Lemma 8
to the directional derivative of qij(α).

Lemma 9. (Lower bound of directional derivative of
qij(α)). Given a shift αj ∈ Rn−1, tmax > 0, and a direc-
tion vector u ∈ Rn−1 , s.t. ‖u‖2 = 1, if the probability den-
sity function, fij(·), of virtual valuations is bounded below
by µmin and bounded above by µmax ∀ i ∈ [n], j ∈ [m],
and qij(tu + αj) > η for all t ∈ [0, tmax], then for
i ∈ argmaxk∈[n−1] |uk| and for all t ∈ [0, tmax]

sign(ui)
∂qij(tu+ αj))

∂t
>
ηµmin√

n
. (57)

Proof. Consider i ∈ argmaxk∈[n−1] |uk|. Advertiser i’s
bids are being increased faster than or equal to any other
advertiser’s. Recalling that the shift of advertiser n, αij = 0
for all user types j ∈ [m], using Eq. (10) we can express
qij(tu + α) and its gradient as shown in Figure 8. Since
i ∈ argmaxk∈[n−1] |uk|,

|ui| ≥ |uk|
sign(ui)ui ≥ max(uk,−uk)

(ui − uk)sign(ui) > 0. (60)

Since ‖u‖2 =
∑
i∈[n−1] |ui|2 = 1, we can lower bound

|ui|2, the maximum coordinate of u ∈ Rn−1 by magnitude
by 1

n−1 , i.e., |ui| ≥ 1/
√
n−1. Multiplying Equation (59)

with sign(ui) and using Equation (60) and the fact that the
integrals involved are positive to lower bound the equation

we get

sign(ui)
∂qij(tu+ αj)

∂t

(60)
≥ sign(ui)ui

∂qij
∂αnj

∣∣∣∣
αj+tu

Lemma 8
≥ |ui|ηµmin

≥ ηµmin√
n− 1

(Using |ui| > 1/
√
n−1)

>
ηµmin√

n
.

Proof of Lemma 5. Consider a type j ∈ [m] and the cor-
responding shifts αj , βj ∈ Rn, where αj , βj are the j-th
columns of α and β respectively.
Let u := αj−βj , then from Lemma 9 we have ∃ i ∈ [n−1],
such that

∀ t ∈ [0, 1],

∣∣∣∣∂qij(tu+ βj)

∂t

∣∣∣∣ > ηµmin (61)

Consider this i, then from the fundamental theorem of cal-
culus we have

‖qj(αj)− qj(βj)‖22 =
∑
i∈[n]

∣∣∣∣ ∫ 1

0

∂qij(tu+ βj)

∂t
dt

∣∣∣∣2

≥
∣∣∣∣ ∫ 1

0

∂qij(tu+ βj)

∂t
dt

∣∣∣∣2
(61)
≥ (ηµmin)

2

n

∣∣∣∣ ∫ 1

0

(tu+ βj)dt

∣∣∣∣
≥ (ηµmin)

2

n
‖αj − βj‖22. (62)

Using Equation (62) for every type j ∈ [m] we get that
‖q(α)− q(β)‖F > (ηµmin)

2
/n · ‖α− β‖F .

D.10. Proof of Lemma 6

In the proof of Lemma 6 we use Lemma 10, which shows
that any linear combination of∇qij(α) for all i ∈ [n], with
reasonably “large” weights is lower bounded. We note that
Lemma 10 does not follow from linear independence of
∇qij(α) ∀ i ∈ [n] (Lemma 1), because linear combinations
of linearly independent vectors can be arbitrary small while
having “large” weights. We present the proof of Lemma 10
in Section D.12.

Lemma 10. Given x ∈ Rn−1, such that ‖x‖1 > 1, if
for all i ∈ [n], j ∈ [m] the probability density function,
fij(·), of virtual valuations is bounded below by µmin, and
qij(αj) > η coverage on every user type j ∈ [m], then,∥∥∥∥ ∑

i∈[n−1]

xi∇qij(αj)
∥∥∥∥
2

>
ηµmin

n− 1
∀ αj ∈ Rn−1.
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Proof of Lemma 6. Since Lj(αj) ≥ ε, we have

Lj(αj) =
∑

i∈[n−1]

(δij − qij(αj))2 ≥ ε. (63)

Further, using
(∑

i ai
)2

=
∑
i a

2
i +

∑
i,k 2aiak we get

Lj(αj) =
∑

i∈[n−1]

(δij − qij(αj))2

≤
( ∑
i∈[n−1]

∣∣δij − qij(αj)∣∣)2

. (64)

From these we have that∑
i∈[n−1]

|δij − qij(αj)|
(64),(63)
≥
√
ε. (65)

Considering xi = 1√
ε
(δij − qij(αj)) we have

∑
i∈[n−1]

|xi| =
1√
ε

∑
i∈[n−1]

|δij − qij(α)| > 1.

From Lemma 10 we have∥∥∥∥ ∑
i∈[n−1]

xi∇qij(αj)
∥∥∥∥
2

Lemma 10
≥ ηµmin

n− 1∥∥∥∥ ∑
i∈[n−1]

2(δij − qij(αj))∇qij(αj)
∥∥∥∥
2

≥ 2
√
ε
ηµmin

n− 1
.

D.11. Proof of Lemma 7

In order to show that the loss L(·) is O(n(L + n2µ2
max))-

Lipschitz continuous, we first show that ∇qij is 2n(L +
nµ2

max)-Lipschitz continuous. To this end, we show that the
elements of ∇2qij are bounded (Lemma 11), and then use
Lemma 12 (Corollary 1.2 in (Varga, 2011)) to bound the
magnitudes of the eigen-values.

Lemma 11. Given αj ∈ Rn, if pdf , fij(φ) of the vir-
tual valuations, φij is L-Lipschitz continuous and bounded
above by µmax, then elements in the main diagonal of
the Hessian, ∇2qij(αj) are bounded in absolute value by
n(L+ nµ2

max), and all other elements are bounded in ab-
solute value by L+ nµ2

max, i.e.,

∀ i ∈ [n],
∂2qij

∂αij∂αij
≤ n(L+ nµ2

max)

∀ k, t ∈ [n], k 6= i or t 6= i,
∂2qij

∂αkj∂αtj
≤ L+ nµ2

max.

Proof. Consider the Hessian of qij(αj) in Figure 9, which
follows from differentiating Equation 10 with respect to αj ,

where αj is the j-th column of α. We note that qij
αst

= 0 for
any t 6= j, for all i, s ∈ [n] and j, t ∈ [m], and so we only
need to calculate the gradient with respect to αj . We can
observe that for all i ∈ [n] and j ∈ [m] every term in the
Hessian is linear function of f ′ij(y),fij(y) and Fij(y). In
particular each term in the Hessian is a sum of the following
terms, for some combinations of i, k, ` ∈ [n] and j ∈ [m]

∫
supp(fij)

fij(y)fkj(y+αij−αkj)f`j(y+αij

−α`j)
∏

h6=`,k,i

Fhj(y+αij−αhj)dy (70)∫
supp(fij)

fij(y)f
′
kj(y+αij−αkj)

∏
` 6=k,i

F`j(y+αij−α`j)dy. (71)

Each term along the diagonal of the Hessian (Eq. (66)),
∂2qij

∂αij∂αij
, is a combination of (n − 1) terms of the form

Eq. (70), and n2 terms of the form Eq. (71). All other terms
in the Hessian contain at most n terms of the form Eq. (71)
and 1 term of the form Eq. (70). Bounding these terms for
all i, k, ` ∈ [n] and j ∈ [m] by µ2

max would give us a bound
on terms of the Hessian, which in turn gives bounds on the
eigen-values of the Hessian. To this end, recall that for all
i ∈ [n], j ∈ [m], and y ∈ supp(fij)

0 < fij(y) ≤ µmax, (72)
0 ≤ Fij(y) ≤ 1, (73)
|f ′ij(y)| < L, (74)∫

supp(fij)

fij(z)dz = 1. (75)

We can now bound Equation (70) and Equation (71) as
follows

(70)
(72),(73)
≤ µ2

max

∣∣∣∣ ∫
supp(fij)

fij(y)dy

∣∣∣∣ (75)
≤ µ2

max, (76)

(71)
(74),(73)
≤ L

∣∣∣∣ ∫
supp(fij)

fij(y)dy

∣∣∣∣ (75)
≤ L. (77)
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Now we have for all k, i ∈ [n], s.t., k 6= i

∣∣∣∣ ∂2qij
∂αij∂αij

∣∣∣∣ =

∣∣∣∣∑
k 6=i

(71) +
∑
k 6=i

∑
` 6=i,k

(70)
∣∣∣∣

(76),(77)
≤ (n− 1)

(
L+ (n− 2)µ2

max

)
(Using triangle inequality)

≤ n(L+ nµ2
max) (78)∣∣∣∣ ∂2qij

∂αkj∂αkj

∣∣∣∣ = ∣∣(71)
∣∣ (77)

≤ L (79)∣∣∣∣ ∂2qij
∂αkj∂αtj

∣∣∣∣ = ∣∣(70)
∣∣ (76)

≤ µ2
max (80)∣∣∣∣ ∂2qij

∂αkj∂αij

∣∣∣∣ = ∣∣∣∣ ∂2qij
∂αij∂αkj

∣∣∣∣ = ∣∣∣∣(71) +
∑
` 6=k,i

(70)
∣∣∣∣ .

(76),(77)
≤ L+ (n− 2)µ2

max (81)

Lemma 12. (Corollary 1.2 in (Varga, 2011)) For any matrix
A ∈ Rn×n, and any eigen-value λ ∈ R of A,

λ ≤ max
i∈[n]

∑
j∈[n]

|Aij |.

We refer the reader to (Varga, 2011) for a proof of the above
lemma.

Proof of Lemma 7. To show that ∇Lj(αj) is Lipschitz
continuous, we show that qij(αj) is Lipschitz continuous,
then use the fact that∇qij(αj) is Lipschitz continuous from
Lemma 12, and that δj and qij(·) have bounded sums if the
loss is greater than ε. To this end we recall

Lj(αj) :=
∑

i∈[n−1]

(δij − qij(αj))2

∇Lj(αj) = −2
∑

i∈[n−1]

(δij − qij(αj))∇qij(αj)

Consider the following term for some i, k ∈ [n] and j ∈
[m].

t(k) :=

∫
supp(fij)

fij(y)fkj(y+αij−αkj)
∏
6̀=k,i

F`j(y+αij−α`j)dy.

Now we can express
∣∣ ∂qij
∂αij

∣∣ and
∣∣ ∂qij
∂αkj

∣∣ ∀ i, k ∈ [n] and

k 6= i as follows∣∣∣∣ ∂qij∂αij

∣∣∣∣ = ∣∣ ∑
k∈[n]\{i}

t(k)
∣∣ ≤ (n− 1) ·

∣∣t(i)∣∣
(72),(73)
≤ (n− 1)

∣∣∣∣µmax

∫
supp(fij)

fij(y)dy

∣∣∣∣
(75)
≤ (n− 1)µmax (82)

∣∣∣∣ ∂qij∂αkj

∣∣∣∣ = ∣∣t(k)∣∣
(72),(73)
≤ µmax

∣∣∣∣ ∫
supp(fij)

fij(y)dy

∣∣∣∣
(75)
≤ µmax (83)

Now we can show that the gradient of qij(αj) is bounded,
i.e., qij(αj) is Lipschitz continuous. For this consider
‖∇qij(αj)‖

‖∇qij(αj)‖22 =
∑
k∈[n]

(∣∣∣∣ ∂qij∂αkj

∣∣∣∣2)

≤
∣∣∣∣ ∂qij∂αij

∣∣∣∣2 + ∑
k∈[n]\{i}

(∣∣∣∣ ∂qij∂αkj

∣∣∣∣2)
(82),(83)
≤ (n− 1)2µ2

max + nµ2
max

≤ n2µ2
max

‖∇qij(αj)‖2 ≤ nµmax (84)

Since qij(αj) and δij represent the probabilities of adver-
tisers winning they sum to 1. Therefore for all user type
j ∈ [m], their sum is bounded by 1, i.e.,

∑
i∈[n] qij(αj) ≤ 1

and
∑
i∈[n] δij ≤ 1 Using the triangle inequality we get

n−1∑
i=1

|δij − qij(αj)| ≤
n−1∑
i=1

|δij |+
n−1∑
i=1

|qij(αj)|

≤ 2 (85)

We represent the Hessian∇2qij(αj) by H(αj) for brevity.
Then the Hessian of L(·)

∇2Lj(αj) = 2 ·
n−1∑
i=1

∇qij(αj)∇qij(αj)>

−
n−1∑
i=1

(δij − qij(αj)) ·H(αj) (86)

We know from Lemma 12 that the eigen-values of H(αj)
are bounded in absolute value by 2n(L+ nµ2

max). We also
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know that the only non-zero eigen-value of vv> for any
vector v is ‖v‖22.

Let ‖X‖? be the spectral-norm of matrix X , which is de-
fined as the maximum singular value of X . Then, since
singular-values are absolute values of the eigen-values the
spectral norm of H(αj) and vv> are bounded. Specifically,

‖H(αj)‖?
Lemma 12
≤ 2n(L+ nµ2

max) (87)

‖qij(αj)qij(αj)>‖? ≤ ‖qij(αj)‖22
(84)
≤ n2µ2

max. (88)

Now, we use the sub-additivity of the spectral-norm (repre-
sented as ‖ · ‖?)

‖A+B‖? ≤ ‖A‖? + ‖B‖? (Sub-additivity of ‖ · ‖?, 89)

This gives us the following

‖∇2Lj(αj)‖?
(88)

≤ 2
∑

i∈[n−1]

‖∇qij(αj)∇qij(αj)>‖?+(δij−qij(αj))‖H(αj)‖?

(88)

≤ 2
∑

i∈[n−1]

‖∇qij(αj)∇qij(αj)>‖?+(δij−qij(αj))‖H(αj)‖?

(87),(88)
≤ 2

∑
i∈[n−1]

n2µ2
max + 4n(L+ nµ2

max)
∑

i∈[n−1]

(δij−qij(αj))

(85)
≤ 2n3µ2

max + 4n(L+ nµ2
max)

Therefore, ‖∇2Lj(αj)‖? ≤ O(n(L + n2µ2
max)), and the

eigen-values of ∇2Lj(αj)‖? are bounded in absolute value
by O(n(L+ n2µ2

max)).

D.12. Proof of Lemma 10

Proof of Lemma 10. Without loss of generality consider a
reordering of (x1, x2, . . . , xn), s.t., for some p ≤ n− 1,

xi ≥ 0 ∀ i ≤ p (90)
xi < 0 ∀ i > p (91)

Case A:
∑
i∈[p] xi <

1/2:

We can replace x by−x, since this does not change the norm∥∥∑
i∈[n−1] xi∇qij(αj)

∥∥
2
. Now replacing p by (n− p− 1)

we get case B.

Case B:
∑
i∈[p] xi ≥ 1/2:

The coverage remains invariant if the bids of all adver-
tisers are uniformly shifted for any given user type j.

(α1j , α2j , . . . , αnj). Therefore we have for all i ∈ [n− 1]

∂qij(α)

∂αij
+

∑
k∈[n−1]\{i}

∂qij(α)

∂αkj

(36)
= −∂qij(α)

∂αnj
(92)

(37)
=

∣∣∣∣∂qij(α)∂αnj

∣∣∣∣
Lemma 8
≥ ηµmax.

Calculating the weighted sum of Equation (93) over i ∈ [p]
with weights xi we get

∑
i∈[p]

xi

( ∑
k∈[n−1]

∂qij(α)

∂αkj

)
(93)
>
∑
i∈[p]

xiηµmin

>
ηµmin

2
.

On rearranging the LHS we get

∑
k∈[n−1]

(∑
i∈[p]

xi
∂qij(α)

∂αkj

)
>
ηµmin

2
.

Therefore, by pigeon hole principle on elements of the outer
sum, ∃ k ∈ [n− 1], s.t.,

∑
i∈[p]

xi
∂qij(α)

∂αkj
≥ 1

n− 1

∑
k∈[n−1]

(∑
i∈[p]

xi
∂qij(α)

∂αkj

)
(93)

≥ ηµmin

2(n− 1)
. (94)

From Equation (37) for all i ∈ [p] and k > p, ∂qij(α)∂αkj
< 0 .

Therefore, k ≤ p in Equation (94). From this we get

∑
i∈[n−1]

xi
∂qij(α)

∂αkj
=
∑
i∈[p]

xi
∂qij(α)

∂αkj
+

∑
i∈[n−1]\[p]

xi
∂qij(α)

∂αkj

(94)
≥ ηµmin

2(n− 1)
+

∑
i∈[n−1]\[p]

xi
∂qij(α)

∂αkj

Lemma 8
≥ ηµmin

2(n− 1)
+ ηµmin

∑
i∈[n−1]\[p]

(−xi)

(91)
≥ ηµmin

2(n− 1)
. (95)

Therefore, ∃ k ∈ [n− 1], such that,
∑
i∈[n−1] xi

∂qij(α)
∂αkj

>
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ηµmin. It follows that∥∥∥∥ ∑
i∈[n−1]

xi∇qij(α)
∥∥∥∥2
2

=
∑
t∈[m]

∑
k∈[n−1]

( ∑
i∈[n−1]

xi
∂qij(α)

∂αkt

)2

(40)
=
∑

k∈[n−1]

( ∑
i∈[n−1]

xi
∂qij(α)

∂αkj

)2

(95)
≥
(

ηµmin

2(n− 1)

)2

(96)∥∥∥∥ ∑
i∈[n−1]

xi∇qij(α)
∥∥∥∥
2

≥ ηµmin

2(n− 1)
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For all j, k ∈ [m], i ∈ [n− 1], s.t.j 6= k .

∂revshift, j(α)

∂αij
= Pr
U
[j]
∑
k 6=i

∫
supp(fij)

yfij(y)fkj(y + αij − αkj)
∏
` 6=i,k

F`j(y + αij − α`j)dy (45)

− Pr
U
[j]
∑
k 6=i

∫
supp(fkj)

yfkj(y)fij(y + αkj − αij)
∏
` 6=i,k

F`j(y + αkj − α`j)dy

∂revshift, j(α)

∂αik
= 0 (46)

Figure 7. Gradient of revshift,j(·). Equations from the proof of Lemma 4.

For all i ∈ [n− 1] and j ∈ [m]

qij(tu+ α) =

∫
supp(fij)

fij(y)Fnj(y + tui + αij)
∏
k 6=i,n

Fkj(y + t(ui − uk) + αij − αkj)dy (58)

∂qij(tu+ α)

∂t
= ui

∫
supp(fij)

fij(y)fnj(y + tui + αij)
∏
k 6=i,n

Fkj(y + t(ui − uk) + αij − αkj)dy (59)

+ (ui−uk)
∫

supp(fij)

fij(y)Fnj(y+tui+αij)
∑
k 6=i,n

fkj(y+t(ui−uk)+αij−αkj)
∏
6̀=i,k,n

F`j(y+t(ui − u`)+αij−α`j)dy

Figure 8. Directional derivative of qij(·). Equations from the proof of Lemma 9.

For all distinct i, k, t in [n]

∂2qij
∂αij∂αij

=

∫
supp(fij)

fij(y)
∑
k 6=i

f ′kj(y + αij − αkj)
∏
6̀=k,i

F`j(y + αij − α`j)dy (66)

+

∫
supp(fij)

fij(y)
∑
k 6=i

fkj(y + αij − αkj)
∑
` 6=i,k

f`j(y + αij − α`j)
∏

h 6=`,k,i

Fhj(y + αij − αhj)dy

∂2qij
∂αkj∂αkj

=

∫
supp(fij)

fij(y)f
′
kj(y + αij − αkj)

∏
6̀=k,i

F`j(y + αij − α`j)dy (67)

∂2qij
∂αkj∂αij

=
∂2qij

∂αij∂αkj
= −

∫
supp(fij)

fij(y)f
′
kj(y + αij − αkj)

∏
` 6=k,i

F`j(y + αij − α`j)dy (68)

−
∫

supp(fij)

fij(y)fkj(y + αij − αkj)
∑
` 6=k,i

f`j(y + αij − α`j)
∏

h 6=`,k,i

Fhj(y + αij − αhj)dy

∂2qij
∂αkj∂αtj

=

∫
supp(fij)

fij(y)fkj(y + αij − αkj)ftj(y + αij − αtj)
∏
` 6=k,i

F`j(y + αij − α`j)dy. (69)

Figure 9. Hessian of qij(·). Equations from proof of Lemma 11.


