
Stochastic Blockmodels meet Graph Neural Networks
Supplemental Material

1. Hyparameter Settings
QUANTITATIVE RESULTS:

The framework proposed uses a stick-breaking IBP prior
which has two parameters: α and K. The parameter α is
the initial guess of the number of non-zero entries in the
binary vector bn and K is the truncation parameter. In the
experiments, α ∈ {5, 10, 20, 50, 100}. In general, a higher
value of the α parameter worked better for DGLFRM-B
and LFRM, as compared to the α value in the DGLFRM
model. This difference in α reflects the inherent capacity
of the latent space of these models. The embedding learned
by DGLFRM, while being highly sparse, are in real space
resulting in more capacity to represent data as compared to
the binary latent space in DGLFRM-B and LFRM.

The encoder network for DGLFRM and DGLFRM-B had
two non-linear GCN layers. The length of the first non-
linear layer was fixed to 32/64 for the datasets which had
side-information (Cora, Citeseer and Pubmed), and other-
wise was set to 128/256. The second layer of the GCN
encoder had K ∈ {50, 100, 200} hidden units. The decoder
network for DGLFRM and DGLFRM-B had two layers
with dimension 32 and 16. All the models were trained for
500-1000 iterations using the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 0.01. We used 0.5 dropout.
The temperature parameter of the Binary Concrete distribu-
tion (Maddison et al., 2017) was 0.5 for the prior and 1.0
for the posterior.

QUALITATIVE RESULTS:

For experiments on the synthetic data (with 100 nodes and
10 communities), the DGLFRM model had two GCN en-
coding layers with 32 and K = 10 hidden units, and the
decoder had a simple inner-product layer. The VGAE model
had the same set of hyperparameters as above. The quali-
tative experiment on the NIPS12 co-authorship dataset had
two hidden layers with 64 and K = 10 hidden units. The α
parameter for this experiment was fixed to 2.

2. K-means on VGAE embeddings
Variational Graph Autoencoder (VGAE), unlike the pro-
posed model, is not able to learn embeddings which are

readily interpretable. It requires additional processing such
as K-Means over the learned embeddings for node cluster-
ing. Moreover, a method like K-Means does not result in
overlapping communities. In this section, we compare the
clusters obtained after applying K-means on embeddings
learned from VGAE with the readily available overlapping
communities obtained from our framework.

We use K-means to find clusters for NIPS12 (3134 authors)
co-authorship data on the node embeddings learned using
VGAE. The K-means results are shown in Table 1. We
performed two experiments with different k-means cluster
hyperparameter K (K=5 and K=20). We also show the
clusters (communities) which our model was readily able
to infer for reference Table 2. We only show prominent
authors and their clusters for both the models.

As we see in Table 1, ad-hoc post-processing of embeddings
may break some relevant coherent communities which were
inferred by our model. It is also important to note that,
unlike our model, k-means has no strength indicator for
community membership.

3. Latent Structure on NIPS12
The latent structure of the NIPS12 dataset learned by DGL-
FRM and VGAE is shown in Figure 1. In this experiment,
the truncation parameter for the stick-breaking prior is 50.
As shown in Figure 1(b), the posterior inference in DGL-
FRM is naturally able to “turn off” the unnecessary columns
in Z. The average number of active communities for each
node was found to be 8. The sparse nature of the embedding
matrix allows us to consider each column as a possible com-
munity of a given node. For visualization, we have ordered
the indices of the communities (columns of Z) such that the
community with higher active nodes has a lower index in
the visualization. For the VGAE model, we used a two layer
GCN with dimensions 32 and 16. Figure 1(c) depicts the
dense node embedding learned by VGAE.

3.1. Effect of Side Information

We also perform an experiment to investigate the model’s
ability to leverage side information associated with nodes.
For this experiment, we ran our model on three datasets
(Cora, Citeseer and Pubmed) with and without node features.



Stochastic Blockmodels meet Graph Neural Networks

(a) DGLFRM (b) DGLFRM (Filtered) (c) VGAE

Figure 1. (a-c) The latent structure on NIPS12 dataset using DGLFRM and VGAE. Both the models had the same encoder and latent
dimension. The latent structure learned by DGLFRM was filtered by removing the columns which were inactive for all nodes. DGLFRM
can effectively infer the “active” communities.

Table 1. Example of NIPS12 communities inferred by k-means clustering (post-processing step) on the embeddings learned using VGAE.
Authors have hard-assignments (memberships) in these communities.

Cluster (K=5) Authors

Cluster 1 Hinton G, Dayan P, Jordan M, Tang A, Sejnowski T, Willams C
Cluster 2 Weinshall D, Rinott Y, Barto A, Singh S, Sutton R, Giles C, Connolly C, Baldi P, Precup D
Cluster 3 Thrun S, Shibata T, Stein C, Peper F, Michel A, Druzinsky R, Abu-Mostafa Y
Cluster 4 LeCun Y, Pearlmutter B

Cluster (K=20) Authors

Cluster 1 Hinton G, Williams C
Cluster 2 Jordan M, Connolly C, Barto A, Singh S, Sutton R
Cluster 3 Michel A, Tang A
Cluster 4 Dayan P, Sejnowski T
Cluster 5 Thrun S, Peper F
Cluster 6 Baldi P, Weinshall D
Cluster 7 Shibata T, Druzinsky R
Cluster 8 Stein C
Cluster 9 Precup D
Cluster 10 Giles C
Cluster 11 Pearlmutter B
Cluster 12 LeCun Y
Cluster 13 Rinott Y
Cluster 14 Abu-Mostafa Y

Table 2. Example of communities inferred by our model on NIPS data. Authors ordered by strength of membership in these communities.

Cluster Authors

Probabilistic Modeling Sejnowski T, Hinton G, Dayan P, Jordan M, Williams C
Reinforcement Learning Barto A, Singh S, Sutton R, Connolly C, Precup D
Robotics/Vision Shibata T, Peper F, Thrun S, Giles C, Michel A
Computational Neuroscience Baldi P, Stein C, Rinott Y, Weinshall D, Druzinsky R
Neural Networks Pearlmutter B Abu-Mostafa Y, LeCun Y, Sejnowski T, Tang A



Stochastic Blockmodels meet Graph Neural Networks

We compare the AUC-ROC results in Fig. 2. As expected,
when using the node side information, the model performs
better as compared to the case when it ignores the side
information.

Figure 2. Red: Without side information. Blue: With side informa-
tion.

References
Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014. URL http:
//arxiv.org/abs/1412.6980.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In ICLR, 2017.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

