
Same, Same But Different: Recovering Neural Network Quantization Error
Through Weight Factorization

Meller Eldad 1 Finkelstein Alexander 1 Almog Uri 1 Grobman Mark 1

Abstract
Quantization of neural networks has become com-
mon practice, driven by the need for efficient im-
plementations of deep neural networks on em-
bedded devices. In this paper, we exploit an
oft-overlooked degree of freedom in most net-
works - for a given layer, individual output chan-
nels can be scaled by any factor provided that
the corresponding weights of the next layer are
inversely scaled. Therefore, a given network has
many factorizations which change the weights of
the network without changing its function. We
present a conceptually simple and easy to imple-
ment method that uses this property and show
that proper factorizations significantly decrease
the degradation caused by quantization. We show
improvement on a wide variety of networks and
achieve state-of-the-art degradation results for
MobileNets. While our focus is on quantization,
this type of factorization is applicable to other
domains such as network-pruning, neural nets
regularization and network interpretability.

1. Introduction
Early efforts in the field of deep learning have focused
mostly on the training aspect of neural networks. The suc-
cess of these efforts has led to widespread deployment of
trained neural networks in data-centers (Park et al., 2018;
Jouppi et al., 2017) and on embedded devices (Ignatov et al.,
2018) where they are used for inference which in turn em-
phasized the need to make the inference phase more efficient.
Quantization, which means conversion of the arithmetic
used within the net from high-precision floating-points to
low-precision integers, is an essential step for efficient de-
ployment, however, quantization degrades network perfor-

1Hailo technologies, Tel Aviv, Israel. Correspondence to:
Meller Eldad <eldad.meller@hailotech.com>, Grobman Mark
<mark@hailotech.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

mance. Here, we follow the commonly used quantization
scheme described in Jacob et al. (2017) but note that other
schemes exist (Vanhoucke et al., 2011; Gupta et al., 2015;
Courbariaux et al., 2014) to which our results apply as well.
Briefly, integer quantization consists of approximating real
values with intergers according to xQ = x/scale where
scale = (max(x)−min(x))/2N and N is the number of
bits used in the approximation. Each layer’s weights and
activations are given a different scale according to their
extremum values. The noise introduced by this limited pre-
cision approximation encapsulates a fundamental dynamic
range-precision trade-off.

Existing approaches to decreasing induced degradation are
quantization-aware training (Jacob et al., 2017; Banner et al.,
2018a; Zhou et al., 2017; 2018; McKinstry et al., 2018) and
reducing the dynamic range of activations by clipping out-
liers (Migacz, 2017; Choi et al., 2018; Banner et al., 2018b).
Training is a powerful method but it is time-consuming, hard
to implement, and requires access to the original training
dataset which might not always be available (e.g. when the
user wishes to use an off-the-shelf pre-trained model). Clip-
ping has limited effect since it only addresses noise from
activation quantization.

In this paper, we propose a different approach. Instead of
focusing on improving the quantization process itself, we
explore an equivalent weight arrangement that make the
net less sensitive to quantization. An equivalent weight ar-
rangement is a factorization that changes the weights of the
networks without changing its function - i.e. for a given
input, the network output remains the same. During quanti-
zation, the range of each layer is set by the channel with the
largest absolute activation which we term the dominant chan-
nel. This single channel determines the noise in all other
channels, many of which have smaller values. Therefore,
amplifying these channels to match the dominant channel
while compensating the change at the next layer can reduce
the effect of the noise.

We begin by analyzing the noise introduced by quantization
of weights and activations in terms of signal-to-quantization-
noise ratio (SQNR). We inspect the effect of channel-scaling
on SQNR and introduce an equalization procedure which,
under some constraints, tries to scale each output channel



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

such that its range matches that of the dominant channel.
We show that equalization reduces the layer SQNR and
then apply equalization iteratively layer-by-layer and empir-
ically show that the overall post-quantization degradation
of the network decreases. Since our approach can be a pre-
processing step prior to quantization, it is fully compatible
with other approaches that improve the quantization process.
Nevertheless, an appealing aspect of our scheme is that for
most nets it reduces the quantization induced degradation
enough as to make quantization-aware training unnecessary
and thus facilitates rapid deployment of quantized models.

The main contributions of this paper are:

• Inversely proportional factorization: we show the
utility of weight factorization for the task of quantiza-
tion. Future work can benefit by exploiting these factor-
izations in other settings. To the best of our knowledge
this work is the first to both highlight and show the
usefulness of inversely proportional factorizations.

• Equalization: we show that layers which have chan-
nels with similar ranges are less affected by quantiza-
tion and we show how to transform a network closer
to this ideal. We also perform a quantitative analysis
of the effect of equalization on quantization noise and
quantization induced degradation for a wide range of
network architectures.

2. Previous Work
Equalization. Having channels with similar dynamic
ranges motivated (Jacob et al., 2017) to use of Relu6 activa-
tions which were subsequently used in MobileNets (Howard
et al., 2017). However, in practice, many channels remain
un-clamped and the dynamic range strongly varies within
a layer (Sheng et al., 2018). It was also observed (Krish-
namoorthi, 2018) that having a scale for each channel of
a layer greatly improves quantization performance. While
effective for networks where most of the degradation stems
from the quantization of weights, it doesn’t improve perfor-
mance of networks that are degraded by the quantization of
activation such as DenseNets (Huang et al., 2016).

Quantization Noise Analysis. The properties of noise in-
duced by the quantization of both activations and weights
were analyzed in Lin et al. (2015) focusing on the optimal
bit width assignment to each layer across the network. We
follow a similar analysis but focus on the dynamic ranges of
individual channels within a layer. Sakr et al. (2017) gives
an upper bound on the relationship between SQNR and
network accuracy. An empirical disambiguation of the con-
tributions of activation and weight noise to total degradation
was given in Krishnamoorthi (2018) for several networks.
The consensus of previous works seems to be that weight
quantization is responsible for the bulk of degradation but

we show the opposite for some common networks.

3. Theoretical Foundation
For a given network architecture there exist many weight
assignments that result in networks that realize the same
mapping from input to output. Thus, we are afforded with an
important degree of freedom enabling us to choose assign-
ments that have desirable properties for the task at hand. We
show, that for a family of networks it is possible to gradually
switch between equivalent assignments through the use of
inversely proportional factorizations. These factorizations
enable us to scale individual channels within a layer by any
positive factor. We then analyze the source of quantization
noise and show that by scaling channels we can improve
the SQNR withing a layer. Our analysis is done for Convo-
lutional Neural Networks (CNNs) but the same principles
can apply to other types of nets as well. Since our focus
is on trained networks we assume that batch-normalization
(Ioffe & Szegedy, 2015) layers are always folded back to
the preceding layer and we ignore them.

3.1. Channel scaling through inversely-proportional
factorization

Consider a convolutional layer with kernel W, bias B, input
X, and output Y. For notional simplicity we eschew convo-
lutions and consider matrix multiplication. To this end we
denote Xi,j

1×(Kx·Ky·Fin), Y
i,j
1×Fout

, the channel vectors when
the kernel is centered on spatial position i,j within X,Y
where Kx and Ky are the special dimensions of the kernel.
We can then write the kernel as a matrix W(Kx·Ky·Fin)×Fout

and the bias as a vector B1×Fout
. The following two factor-

izations hold:

Y i,j = (Xi,jC1)(C−1
1 W ) +B (1)

Y i,jC2 = Xi,j(WC2) + (BC2) (2)

where for both cases Ci is a diagonal matrix with positive
entries and C−1

i is its the inverse diagonal matrix. The first
factorization scales the channels of the layer’s input and
the second factorization scale the channels of layer’s output.
We now consider a simple setting where L1 and L2 are two
consecutive convolutional layers in a network. We assume
that the activation function of L1, A(·), is homogeneous
with degree 1 for positive numbers. That is, it satisfies
equation 3.

A(α · x) = α ·A(x) ∀α > 0 (3)

With this assumption, if Y1 is the output of L1 and X2 is the
input to L2, the scaling of Y1 results in a corresponding scal-
ing of X2. Combining all of the above we arrive to our main
result - the post-activation output channels of L1 can be



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

scaled by any positive factors by scaling the weights in the
kernel and bias of L1 (1) and the output of the network will
remain unchanged if we inversely scale the corresponding
weight in L2 (2). We term this endomorphism an inversely-
proportional factorization and it is shown schematically in
Figure 1.

Figure 1. A schematic showing inversely proportional factorization
in a pair of convolutional layers. An output channel i in K1,
the kernel of L1, is scaled by a positive factor ci. Assuming
the activation function A(·) is homogeneous, the post activation
channel is also scaled by ci. All the weights in K2, the kernel
of L2 that interact with channel i are inversely scaled. Y2, the
output of L2 remains unchanged. The bias terms were omitted for
clarity.

With the exception of the last layer, we can scale the in-
dividual channels withing each layer in a full network by
iteratively factorizing pairs of layers. Finally, we note that
the commonly used ReLU(Nair & Hinton, 2010), PRelu(He
et al., 2015a) and linear activations all satisfy the homo-
geneous property from equation (3). Thus our scheme is
applicable to most commonly used CNNs.

3.2. Quantization Noise Analysis

Understanding the formation and propagation of quantiza-
tion noise across the network is an essential step in the de-
sign of better quantization algorithms. In this section we an-
alyze the effects of weight and activations quantization using
the same two-layers setting depicted in Figure 1. We model
the effect of limited precision by adding noise terms ∆W1 ∈
IRK1×K1×Fin1×Fout1 , ∆W2 ∈ IRK2×K2×Fin2×Fout2 , and
∆Y1 ∈ IRFout1 to W1, W2, and Y1 respectively. The noisy
model is shown in Figure 2. For simplicity we also assume
that all the biases are zero and that all activations are linear.

We now show how each noise term affects the overall noise
at the output of each layer. For a given tensor T we denote
T̂ the noisy version of that tensor. In addition, we denote
with T̃∆N the additive noise source to T due to ∆N . We
start by calculating the output of the first layer

Figure 2. A simple model showing the effects of quantization on
two layers model. ∆W1, ∆W2, and ∆Y1 emulate the quantization
effect.

Ŷ1 = X1 ~ (W1 + ∆W1) + ∆Y1

= X1 ∗W1 + X1 ~ ∆W1 + ∆Y1

≡ Y1 + Ỹ1
∆W1

+ Ỹ1
∆Y1

(4)

The output of the first layer has two noise sources. Ỹ1
∆W1

is due to the interaction of the weight quantization noise
with the input X1 and Ỹ1

∆Y1 is the intrinsic quantization
noise. Assuming the noises are independent, their variance
is:

E
{

(Ỹ ∆W1
1 )2

}
= K2

1 · Fin1 · E{(X1)2} · E{∆(W1)2}

E
{

(Ỹ1
∆Y1

)2
}

= E{∆Y 2
1 }

(5)

For uniform quantization, the noise terms ∆W1,∆Y 1 dis-
tribution can be approximated as uniform, zero-centered,
i.i.d processes (Lin et al., 2015; Marco & Neuhoff, 2005).
Denoting by W r

1 , Y r
1 the dynamic ranges of W1, Y1 we get

∆W1 ∼ U(− W r
1

2N+1
,
W r

1

2N+1
)

∆Y 1 ∼ U(− Y r
1

2N+1
,

Y r
1

2N+1
)

(6)

The dynamic range of a tensor is determined by the extreme
values across all the channels within it and so the noise
distribution is determined by, at most, two channels - the
channel with the largest value and the channel with smallest
value. We term these channels the dominant channels and
note that there is substantial variance between the extermum
values of different channels. Next, we calculate the output
of the second layer. Explicit calculation of Y2 shows four
noise sources, three are due to the quantization of ∆W1,
∆W2, ∆Y1, and one rooted in the multiplication of Y ∆W1

1 ,
Y ∆Y1

1 by ∆W2. The last component can be neglected in



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

most practical scenarios and the variances of the others are

E
{

(Ỹ2
∆W1

)2
}

=
(∑

W 2
2

)
· E
{

(Ỹ1
∆W1

)2
}

E
{

(Ỹ2
∆Y1

)2
}

=
(∑

W 2
2

)
· E
{

(Ỹ1
∆Y2

)2
}

E
{

(Ỹ2
∆W2

)2
}

= K2
2 · Fin2 · E{(Y1)2} · E{(∆W2)2}

(7)

3.3. Effect of inversely-proportional factorization on
SQNR

We use SQNR to quantify the effect of the quantization
noise.

SQNRY ≡
E
{
Y 2
}

E
{

(Y − Ŷ )2
} =

E
{
Y 2
}

E
{
Ỹ 2
} (8)

We calculate SQNRY 1 and SQNRY 2, the SQNRs at the
outputs of layer 1 and 2 respectively, by plugging (5),(7)
into (8).

SQNRY 1 =
E
{
Y 2

1

}
E
{

(Ỹ1
∆W1

+ Ỹ1
∆Y1

)2
}

SQNRY 2 =
E
{
Y 2

1

}
E
{

(Ỹ2
∆W1

+ Ỹ2
∆Y1

+ Ỹ2
∆W2

)2
} (9)

We now show how inversely proportional factorization af-
fects the SQNR of both layers. We start by looking at the
effect on the signal components. We denote the scaling
vector with C ∈ IRFout1 and the scaled version of tensor
T by T ′. For simplicity, since scaling the whole layer by a
constant has no effect on the SQNR, we can assume without
loss of generality that C ≥ 1. Therefore, we can say that
all channels in Y1 are either amplified or unchanged. In
addition, we showed in Section 3.1 that the factorization has
no effect on Y2. Thus for the signal components we have

E{(Y ′1)2} ≥ E{(Y1)2}
E{(Y ′2)2} = E{(Y2)2}

(10)

Amplifying the channels of Y1 haphazardly might increase
the layer’s extremum values which will increases the vari-
ance of the noise sources ∆W1, ∆Y1 (6). On the other
hand, amplification Y1 is compensated by attenuation of W2

which may only decrease the variance of ∆W2 if it results
in a reduction of W2’s extremum values. Thus for the noise

sources we have

E{(∆W ′1)2} ≥ E{(∆W1)2}
E{(∆Y ′1)2} ≥ E{(∆Y1)2}
E{(∆W ′2)2} ≤ E{(∆W2)2}

(11)

We now make the crucial assumption that the channels of
Y1 are amplified in such a manner that the variances of
∆W1, ∆Y1 remain unchanged while the variance of ∆W2

decreases. Under these assumptions, Ỹ1
∆W1 , Ỹ1

∆Y1 are
unaffected by the amplification of Y1 and we get that

SQNR′Y 1 ≥ SQNRY 1 (12)

The effect on SQNRY 2 (9) is more tricky.
E
{

(Ỹ 2
∆W1

)2
}

, E
{

(Ỹ 2
∆Y 1

)2
}

are decreased by

the attenuation of W2. What happens to E
{

(Ỹ2
∆W2

)2
}

depends on E{(Y1)2} · E{(∆W2)2}, i.e. whether the
amplification of Y1 is more dominant than the attenuation
of ∆W2. Thus there is no guarantee that SQNRY 2

improves. Undaunted, in the next section we present
a greedy algorithm that through iterative application of
inversely-proportional factorization improves the SQNR
across the network and reduces the post-quantization
degradation.

4. Equalization Algorithm
Building on the analysis in Section 3 we propose two
algorithms designed around the idea of applying a pre-
quantization factorization that increases the energy of chan-
nels without changing the variance of the noise. This
is achieved by amplifying non-dominant channels such
that their extremum values are matched with those of
the dominant channels. As shown in Figure 3, these
algorithms tends to equalize the channels’ energy and
therefore got the name channel equalization. Code for
the implementation of the algorithm can be found at:
https://github.com/icml2019/equalization

4.1. One-Step Equalization

Algorithm 1 explains a simple, one-step channel equaliza-
tion method. We assume that the network can be repre-
sented as direct acyclic graph with layers being repres-
nted by nodes and that it is topologicaly sorted. The al-
gorithm is then applied iteratively beginning at the first
layer(node) and continues until we reach all of the net-
work’s output layers. At each iteration the layer’s chan-
nels are equalized by employing inversely-proportional
factorization with its successor layers. A layer is eligi-
ble to be equalized only once all of its predecessor layers

https://github.com/icml2019/equalization


Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

(a) One Step Equalization (b) Two Steps Equalization

Figure 3. Example of the effect of channel equalization on the two layers model. Each bar indicates the maximum values of a channel. The
blue graphs show the data for weights, the green for the activations, and the red the weights of the successor layer. Figure (a) demonstrates
the one step algorithm. On the left is the initial state and on the right is the state after equalization. Figure (b) demonstrates the two steps
algorithm. On the left is the state after is the next layer weights equalization and on the right is the final state

Algorithm 1 One Step Equalization
1: layer ← getF irstLayer()
2: while layer is not last layer do
3: kerOutChMax← getKerOutChMax(layer)
4: actOutChMax← getActOutChMax(layer)
5: kerOutMax← max(kerOutChMax)
6: actOutMax← max(actOutChlMax)
7: kerScale← kerOutMax

kerOutChMax

8: actScale← actOutMax
actOutChMax

9: scale← min(kerScale, actScale, Smax)
10: scaleLayer(layer, scale)
11: layer ← getNextLayer(layer)
12: end while

were equalized. The function getNextLayer() returns the
next layer. The functions getKerOutChMax(layer) and
getActOutChMax(layer) return the maximum values per
channel for the weights and activation respectively. Each
one of them results in a vector of length Fout. For each
channel, we calculate the ratio between the layer’s exter-
mum and the channel’s extremum for the activations and
weights, these ratios are defined as the activation and weight
scales. When a layer is scaled, each channel is scaled by
the minimum between the activation and weight scales. We
further limit the scale by a pre-defined maximum to prevent
the over-scaling of channels with small activation values.
scaleLayer(layer, scale) is the scaling of the layer and
its successors according to (1), (2). It is easy to see that
the maximum values of the weights and the activation post
equalization won’t change and that all the scales are ≥ 1.

For residual connections (e.g. ResNets) we need to match
scales of different layers, see Appendix A for more details.

An example of the results of one-step equalization on the
channel scales within a layer is shown in Figure 3(a). We
see that, post equalization, channels have much less variance
in scales which in turn implies that they tend to have similar
energy. As explained in section 3.3 for each iteration there
is no guarantee that SQNRY 2 improves but in most cases
we witnessed that it did. Moreover, even if the SQNRY 2

decreases it will improved in next iteration when the channel
of Y2 will be equalized.

4.2. Two Steps Equalization

We define optimal equalization (OE) as the state where the
extremum values of all the channels are equal. OE can
be done in terms of weights only, activations only or both.
OE for activations or weights can always be achieved but
equalization of one will be sub-optimal for the other. OE
for both, on the other hand, is out of reach in most cases
because we have only one scale per channel. The two steps
equalization tries to make a step toward the optimal OE.

Algorithm 2 explains the two steps equalization process.
The basic idea is to diminish the layers extremum val-
ues before the equalization. This is done by applying
proportionally-inverse factorization in reverse - we attenu-
ate the channels of the first layer and compensate by am-
plifying the values of the second layer. To avoid increas-
ing the weight noise in the second layer the compensating
amplification is not allowed to change the extremum val-
ues of the second layer. This is done by using the func-



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

Algorithm 2 Two Steps Equalization
1: layer ← getF irstLayer()
2: while layer is not last layer do
3: sucLayer ← getNextLayer(layer)
4: sucInChMax← getSucInChMax(sucLayer)
5: sucInMax← max(sucInChMax)
6: kerOutChMax← getKerOutChMax(layer)
7: actOutChMax← getActOutChMax(layer)
8: kerOutMax← max(kerOutChMax)
9: actOutMax← max(actOutChMax)

10: kerScale← KerOutMax
kerOutChMax ·

sucInChMax
sucInMax

11: actScale← actOutMax
actOutChMax ·

sucInChMax
sucInMax

12: scale = min(kerScale, actScale, Smax)
13: scale = scale/min(scale)
14: scaleLayer(layer, scale)
15: layer ← getNextLayer(layer)
16: end while

tion getSucInChMax that returns the maximum per input
channel of the successor layer weights. Dividing each chan-
nel by sucInChMax

sucInMax will equalize the next layer and attenu-
ate all the channels in the current layer. The second step of
the algorithm is the same as in the one-step equalization. At
the end of the algorithm we normalized all the scales so they
will all be ≥ 1. Figure 3(b) shows an example of two steps
equalization. We can see that the channels are equalized a
little bit better and that the maximum value of the next layer
is lower. Therefore, we can expect the noise in the network
after this equalization will be attenuated and indeed our
tests showed that this algorithm can produce better channel
equalization. Our intuition is that if a dominant channel
can be attenuated than it means that the weights of second
layer multiplying it are small. In other words - before the
factorization the second layer was ”naturally” attenuating
the channel, signaling that its scale is too large compared
to the other channels. In a limited precision setting it is
important that this ”gain control” be done beforehand since
quantization is adversely affected by channels with outlier
scales.

5. Experiments and Results
In this section we perform experiments analyzing the per-
formance of our proposed algorithms. We first verify our
analysis in previous sections by measuring the noise across
test networks with and without equalization. We then show
that a reduction in noise translates to a reduction in the
post-quantization degradation of classifier networks trained
on the ImageNet dataset(Russakovsky et al., 2015) and fi-
nally we show that our algorithm can also be applied to
MobileNets(Howard et al., 2017) with some modifications.
In all our tests we used layer wise quantization. Activations
were encoded using 8-bit unsigned integers and weights

were encoded using 8-bit integers. Biases were encoded us-
ing 16-bits integers. We used passive quantization, meaning
that no retrain was used and there is no need for labeled data.
For all experiments we extract the activation extremum val-
ues using 64. In addition we set a max amplification factor
to be C ≤ 16 to avoid numeric issues stemming from very
small activation values.

5.1. SQNR measurements

We designed a test that shows the noise of each layer sep-
arately. Moreover, the test can differentiate between acti-
vations and weights noises. For each layer we measured
three quantities: the layer output where only the weights
are quantized (Y1 + Ỹ1

∆W1), the layer output where only
the activations are quantized(Y1 + Ỹ1

∆Y 1
), and the layer

output where both are quantized (Ŷ1). To measure the noise
we compared these quantities to those of the original full
precision layer output.

We measured the SQNR of each layer and compared it to
the one predicted by (5) to verify our assumptions. The
results of this experiment are shown in in Figure 4 for
ResNet-152(He et al., 2015b) and Inception-V3(Szegedy
et al., 2015). The results show good agreement between
predicted and measured noise.

Figure 4. Noise estimation verification, A Comparison between the
estimated SQNR according to (5) and measured SQNR. The layer
index is sorted by the estimated SQNR from largest to smallest.

We now analyze the quality of our two-steps equal-
ization algorithm. To that end we look at a simple
setting where only the weight or only the activations
are quantized. For weight quantization, we compare
SQNRW1 ≡

∑
(W1)2/

∑
(∆W1)2, a measure of how

well the layers weights are equalized to the weight OE.
And for activation quantization, we compare SQNRY 1 ≡



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization∑
(Y1)2/

∑
(∆Y1)2 , a measure of how well the layers out-

put channels are equalized, to the activation OE. This gives
us an idea how far we are from the overall OE of both ac-
tivations and weights. Figure 5 shows the results of this
comparison on Inception-V3. We see that the method im-
proves significantly the SQNR of the activations and almost
reached the performance of the OE. For weights, the effect
is smaller and the gap to the OE is larger.

Figure 5. A comparison to the optimal SQNR. Demonstrating the
effect of equalization algorithm on the SQNR for inception-V3.
The figure shows how the algorithm tries to close the gap between
the original state and optimal equalization. In these graphs the
energy of the signal is measured and noise is estimated based on a
uniform distribution assumption. The layer index is sorted by the
estimated SQNR from largest to smallest.

Finally, we measured the effect of equalization on noises
throughout the network. We measured the SQNR in three
cases: without equalization, with one- and two-steps equal-
ization. Observing the results, as shown on Figure 6, sev-
eral conclusions can be drawn:(1) overall the SQNR is im-
proved by equalization (2) The greedy nature of the algo-
rithm means that for some intermediate layers the weight
induced SQNR decreases. This is due to the fact that weight
induced noise is increased when the layer input is amplified.

5.2. ImageNet Quantization Performance

We now show that the overall reduction in SQNR achieved
by the equalization algorithms results in improved perfor-
mance of the quantized networks. Table 1 summarizes our
results. We compared the classification performances of the
quantized networks to their floating point version. Equal-
ization improves quantization performance for almost all
nets and for some, like inception-V1 (Szegedy et al., 2014)
and DenseNet121 , a considerable improvement is observed.
An examination of these networks revealed layers which
suffer from an extreme imbalance between the channels.
As we showed, this significantly increase the noise within
the layer, triggering an avalanche effect throughout the net-
work. Equalization eliminates this effect and enables good
performance post quantization. Overall we see that two-

(a) Matched (b) Sorted

Figure 6. Noise measurement across the network for Inception-V3.
Measure the activation SQNR

∑
(Y1)2/

∑
(Ỹ ∆Y1

1 )2 and weights
SQNR

∑
(Y1)2/

∑
(Ỹ ∆W1

1 )2 for three cases: pre-equalization,
post one step equalization, and post two steps equalization. In fig-
ure (a), for better visibility, the layers are sorted by pre-equalization
SQNR values. In figure (b), for even better visibility, the post
equalization lines are sorted as well.

steps equalization gives better performance than one-step
equalization.

Figure 6 shows that the noise stemming from activation
quantization is always reduced while the noise stemming
from weight quantization occasionally increases after equal-
ization. To quantify the effect we have on both noise sources
we repeated the performance measurements for weights-
only and activations-only quantization. We see that equal-
ization has a positive effect for both scenarios and that which
noise term is dominant is network dependent. For exam-
ple, for the Inception architectures, weights quantization is
dominant, while for ResNet-152 and DenseNet activation
quantization is dominant. In addition, our results indicate
that the total degradation ≈ weight degradation + activation
degradation.

MobileNet is a challenging architecture for quantization and
many passive quantization schemes result in large degrada-
tion (Jacob et al., 2017; Lee et al., 2018). It also employs
ReLU6(Jacob et al., 2017) activations which require spe-
cial treatment for the equalization algorithm to work since
it does not satisfy (3). One-step equalization can be used
almost without change if it only amplifies channels with
extremum activation value below 6. One-step equalization
gives limited improvement (Table 2). To enable Two-steps
equalization we disable the division by min(scale) at the
end of algorithm 2 and in doing so allow the algorithm to
attenuate channels (C < 1). However, to prevent significant
modification to the full-precision network results, we limit
the attenuation to 70% of the original range. This method
shows negligible effect on the full-precision network but



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

Table 1. A comparison of the performance of the two proposed
algorithms. For each network we tabulate the post-quantization
degradation without equalization and with one- and two-steps
equalization. The degradation is measured relative to the networks
top-1 accuracy which is estimated using the full ILSCRC2015
validation set of 50K images. For Resnet-152 and Inception-V3 we
also measure the degradation when only the weights or activations
are quantized. To facilitate reproducibility we used open source
pre-trained networks. All networks are taken from TF-slim models
(TF-slim) with the exception of DenseNet(GitHub)

Network
Name

Original
Top-1
accuracy

No
Equal

One
Step
Equal

Two
Steps
Equal

Weights and Activations Quantization
ResNet-V1-50 75.2% 0.25% 0.38% 0.25%
ResNet-V1-152 76.8% 1.27% 0.80% 0.78%
Inception-V3 77.9% 0.66% 0.47% 0.35%
Inception-V1 69.8% 2.23% 0.41% 0.39%
DenseNet-121 74.3% 5.78% 0.42% 0.35%

Weights Quantization Only
ResNet-V1-152 76.8% 0.23% 0.19% 0.16%
Inception-V3 77.9% 0.55% 0.36% 0.32%

Activations Quantization Only
ResNet-V1-152 76.8% 0.98% 0.66% 0.62%
Inception-V3 77.9% 0.09% 0.03% 0.05%

Table 2. MobileNet degradation of the different quantization
schemes compared to the floating point implementation. All net-
works are taken from TF-slim models (TF-slim).

Net
Version

No
Equal

One
Step
Equal

Two
Steps
Equal

Bias
Only

Equal+
Bias

V1-1.0 7.89% 6.12% 3.2% 1.3% 0.95%
V2-1.0 42.68% 4.07% 2.1% 1.5% 0.61%
V2-1.4 8.06% 6.21% 1.9% 1.4% 0.55%

shows a significant improvement for the quantized network
(Table 2).

In addition, we found that due to the use of depthwise convo-
lutions which have a small number of weights in each kernel
the mean of the quantized weights might be different from
the original value which results in a shift of the distribution.
As a remedy to this problem we use knowledge distillation
(Hinton et al., 2015) and fine-tune only the biases to com-
pensate for the shift so that the distribution means are the
same for both the original and quantized network. Since
only the biases are being updated 1000 unlabeled images are
all that is needed and the fine-tuning process is very short.
Used in conjunction with equalization we get competitive
results (Table 2) with the state-of-the art (Jacob et al., 2017;
Lee et al., 2018; Krishnamoorthi, 2018; Sheng et al., 2018;
Google). However, our result is unique in the following

regards: it doesn’t require channel-wise quantization which
has significant overhead for hardware implementation as
well as additional storage requirements. It uses only∼ 1000
unlabeled images allowing it to be used with off-the-shelf
pre-trained models and the quantization process is simple
and very fast to implement.

6. Discussion
This paper highlights a property of convolutional neural
networks that is often overlooked which allows inversely-
proportional factorization. We showed methods to harness
this property to generate equivalent networks that are much
more robust to quantization noises. Our intuition was that
networks have implicit ”gain control” mechanisms that can
be made explicit through channel equalization. When the
channel are equalized, outliers are removed and quantization
performance is improved. Given the same constrains of 8bits
quantization, layer-wise scaling, and without re-training our
algorithms reached state-of-the-art performance.

Our focus was on passive quantization allowing rapid de-
ployment, however, equalization should benefit other quan-
tization methods. When fine tuning or quantization-aware
training are used, equalization can be integrated as a pre-
processing step to reduce noise prior to training. We believe
that most current quantization methods will benefit from
applying proper equalization.

There is much more to explore towards realizing the full
potential of inversely proportional factorizations. We sug-
gested a greedy equalization algorithm that performs well
but advanced equalization algorithms can push the improve-
ment even further. For example, we showed that the impact
of weights and activations quantization might change be-
tween layers. This property can be exploited for better
equalization. In addition, advanced prediction methods of
the noise’s effect on the network performance like those
suggested in Sakr et al. (2017) or Choi et al. (2016) can be
used for equalization optimization.

More generally, this work is a first attempt to utilize equiv-
alent net factorizations. The approach should find merit
in other applications as well. For pruning, activation only
equalization can be employed to make the interpretation of
weight importance more natural. After equalization, small
weights have less effect on the network and therefore are
more likely to be pruned by methods that rely on the relative
weight size(Han et al., 2015). During training, inversely-
proportional factorization can be used to scale the gradients
of different channels within a layer allowing for faster con-
vergence or avoiding vanishing/exploding gradients.



Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

References
Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scal-

able Methods for 8-bit Training of Neural Networks.
may 2018a. URL http://arxiv.org/abs/1805.
11046.

Banner, R., Nahshan, Y., Hoffer, E., and Soudry, D. ACIQ:
Analytical Clipping for Integer Quantization of neural
networks. oct 2018b. URL http://arxiv.org/
abs/1810.05723.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J.,
Srinivasan, V., and Gopalakrishnan, K. PACT: Parameter-
ized Clipping Activation for Quantized Neural Networks.
may 2018. URL http://arxiv.org/abs/1805.
06085.

Choi, Y., El-Khamy, M., and Lee, J. Towards the limit
of network quantization. CoRR, abs/1612.01543, 2016.
URL http://arxiv.org/abs/1612.01543.

Courbariaux, M., Bengio, Y., and David, J.-P. Training
deep neural networks with low precision multiplications.
dec 2014. URL http://arxiv.org/abs/1412.
7024.

GitHub, I. pudae/tensorflow-densenet. https://
github.com/pudae/tensorflow-densenet.

Google. Tensorflow lite. URL https://www.
tensorflow.org/lite/performance/
model_optimization.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep Learning with Limited Numerical Precision.
feb 2015. URL https://arxiv.org/abs/1502.
02551.

Han, S., Mao, H., and Dally, W. J. Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding. oct 2015. URL
http://arxiv.org/abs/1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep
into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. feb 2015a. URL http:
//arxiv.org/abs/1502.01852.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015b.
URL http://arxiv.org/abs/1512.03385.

Hinton, G., Vinyals, O., and Dean, J. Distilling the Knowl-
edge in a Neural Network. mar 2015. URL https:
//arxiv.org/abs/1503.02531.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mo-
bileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. apr 2017. URL http:
//arxiv.org/abs/1704.04861.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely Connected Convolutional Networks.
aug 2016. URL http://arxiv.org/abs/1608.
06993.

Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hart-
ley, T., and Van Gool, L. AI Benchmark: Running Deep
Neural Networks on Android Smartphones. oct 2018.
URL http://arxiv.org/abs/1810.01109.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and Training of Neural Networks for Efficient Integer-
Arithmetic-Only Inference. 2017. doi: 10.1109/CVPR.
2018.00286.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaf-
fey, A., Jaworski, A., Kaplan, A., Khaitan, H., Koch,
A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick,
M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek,
A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M.,
Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G.,
Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R.,
Wang, W., Wilcox, E., and Yoon, D. H. In-Datacenter Per-
formance Analysis of a Tensor Processing Unit. apr 2017.
URL http://arxiv.org/abs/1704.04760.

Krishnamoorthi, R. Quantizing deep convolutional networks
for efficient inference: A whitepaper. Technical report,
2018.

Lee, J. H., Ha, S., Choi, S., Lee, W., and Lee, S. Quan-
tization for rapid deployment of deep neural networks.
CoRR, abs/1810.05488, 2018. URL http://arxiv.
org/abs/1810.05488.

Lin, D. D., Talathi, S. S., and Annapureddy, V. S. Fixed
Point Quantization of Deep Convolutional Networks.

http://arxiv.org/abs/1805.11046
http://arxiv.org/abs/1805.11046
http://arxiv.org/abs/1810.05723
http://arxiv.org/abs/1810.05723
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1612.01543
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024
https://github.com/pudae/tensorflow-densenet
https://github.com/pudae/tensorflow-densenet
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://arxiv.org/abs/1502.02551
https://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1810.01109
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1810.05488
http://arxiv.org/abs/1810.05488


Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization

nov 2015. URL https://arxiv.org/abs/1511.
06393.

Marco, D. and Neuhoff, D. L. The validity of the additive
noise model for uniform scalar quantizers. IEEE Trans-
actions on Information Theory, 51(5):1739–1755, May
2005. ISSN 0018-9448. doi: 10.1109/TIT.2005.846397.

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani,
D., Arthur, J. V., Yildiz, I. B., and Modha, D. S. Discov-
ering Low-Precision Networks Close to Full-Precision
Networks for Efficient Embedded Inference. sep 2018.
URL http://arxiv.org/abs/1809.04191.

Migacz, S. 8-bit Inference with TensorRT. 2017.
URL http://on-demand.gputechconf.
com/gtc/2017/presentation/
s7310-8-bit-inference-with-tensorrt.
pdf{%}0Ahttp://on-demand.
gputechconf.com/gtc/2017/video/
s7310-szymon-migacz-8-bit-inference-with-tensorrt.
mp4.

Nair, V. and Hinton, G. E. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings
of the 27th International Conference on International
Conference on Machine Learning, ICML’10, pp. 807–
814, USA, 2010. Omnipress. ISBN 978-1-60558-907-
7. URL http://dl.acm.org/citation.cfm?
id=3104322.3104425.

Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khu-
dia, D., Law, J., Malani, P., Malevich, A., Nadathur, S.,
Pino, J., Schatz, M., Sidorov, A., Sivakumar, V., Tulloch,
A., Wang, X., Wu, Y., Yuen, H., Diril, U., Dzhulgakov,
D., Hazelwood, K., Jia, B., Jia, Y., Qiao, L., Rao, V.,
Rotem, N., Yoo, S., and Smelyanskiy, M. Deep Learning
Inference in Facebook Data Centers: Characterization,
Performance Optimizations and Hardware Implications.
nov 2018. URL http://arxiv.org/abs/1811.
09886.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Sakr, C., Kim, Y., and Shanbhag, N. Analytical guar-
antees on numerical precision of deep neural net-
works. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 3007–3016, International
Convention Centre, Sydney, Australia, 06–11 Aug

2017. PMLR. URL http://proceedings.mlr.
press/v70/sakr17a.html.

Sheng, T., Feng, C., Zhuo, S., Zhang, X., Shen,
L., and Aleksic, M. A Quantization-Friendly
Separable Convolution for MobileNets. mar
2018. doi: 10.1109/EMC2.2018.00011. URL
http://arxiv.org/abs/1803.08607http:
//dx.doi.org/10.1109/EMC2.2018.00011.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. Going deeper with convolutions. CoRR,
abs/1409.4842, 2014. URL http://arxiv.org/
abs/1409.4842.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015. URL http://
arxiv.org/abs/1512.00567.

TF-slim, G. Tensorflow slim models. URL
https://github.com/tensorflow/models/
tree/master/research/slim.

Vanhoucke, V., Senior, A., and Mao, M. Improving
the speed of neural networks on CPUs. Technical
report, 2011. URL http://research.google.
com/pubs/archive/37631.pdf.

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. Incre-
mental Network Quantization: Towards Lossless CNNs
with Low-Precision Weights. feb 2017. URL https:
//arxiv.org/abs/1702.03044.

Zhou, A., Yao, A., Wang, K., and Chen, Y. Explicit loss-
error-aware quantization for low-bit deep neural networks.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

https://arxiv.org/abs/1511.06393
https://arxiv.org/abs/1511.06393
http://arxiv.org/abs/1809.04191
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf{%}0Ahttp://on-demand.gputechconf.com/gtc/2017/video/s7310-szymon-migacz-8-bit-inference-with-tensorrt.mp4
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://arxiv.org/abs/1811.09886
http://arxiv.org/abs/1811.09886
http://proceedings.mlr.press/v70/sakr17a.html
http://proceedings.mlr.press/v70/sakr17a.html
http://arxiv.org/abs/1803.08607 http://dx.doi.org/10.1109/EMC2.2018.00011
http://arxiv.org/abs/1803.08607 http://dx.doi.org/10.1109/EMC2.2018.00011
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
http://research.google.com/pubs/archive/37631.pdf
http://research.google.com/pubs/archive/37631.pdf
https://arxiv.org/abs/1702.03044
https://arxiv.org/abs/1702.03044

