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Proof of Remark 3.3. It is shown in page 73 of (Villani,
2003) that given two probability measures ↵,� 2 P(R), we
have
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where F and G are the cumulative distribution functions
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Now suppose " is small enough such that x + "  x0 � ",
then we have F = G on (�1, x�"][ [x0

+",1) and thus
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Now recalling that ↵ has density function f , and using its
Taylor expansion, we have
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Details about Grassmann manifolds data

In this subsection we describe the setting of our experiments
on the data described in (Cetingul & Vidal, 2009).

Description of the Grassmannian as a Metric Space

The Grassmannian Gk,m�k is a set consisting of all k-
dimensional subspaces of Rm. In particular, G1,m denotes
the projective space RPm. To induce a natural metric on this
set, we will consider an alternative description as follows.
Suppose w 2 Gk,m�k is a k-dimensional subspace of Rm,
then we can choose k orthonormal vectors in w and form a
m⇥ k matrix W . Consider the m⇥m matrix P = WW>,
then it is easy to show that P is invariant under orthonormal
transformations of W . Hence we have an equivalent defini-
tion of Grassmannian which regards it as a submanifold in
Rm⇥m (Hüper et al., 2010):

Gk,m := {P 2 Rm⇥m|P>
= P, P 2

= P, tr(P ) = k}.

This is the manifold of rank k symmetric projection opera-
tors of Rm. We will use the equivalence between Gk,m�k

and Gk,m. Since Gk,m is a manifold embedded in Rm⇥m,
we can endow it with the restriction of the Euclidean met-
ric. For any two points P,Q 2 Gk,m�k, we can write
P = XX>, Q = Y Y > for some m ⇥ k matrices X and
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Y with orthogonal column vectors. The intrinsic distance
between P,Q is given by

d2I(P,Q) = 2 tr

�
arccos

2
�p

Y >XX>Y )

�
.

The extrinsic distance (Euclidean distance) between them is

d2E(P,Q) = kP �Qk2F = 2k � 2 tr(PQ)

= 2k � 2 tr(Y >XX>Y ).

Following Formula (9) in (Cetingul & Vidal, 2009), in the
remainder we always use the metric d :=

dEp
2

as the metric
on the Grassmannian. We call this metric as the manifold
distance.

To obtain an explicit description of the smooth structure
and tangent spaces of the Grassmannian, we can adopt the
following alternative perspective. We can regard Gk,m�k

as the quotient manifold Vk,m/GLk(R), where Vk,m =

{X 2 Rm⇥k| rank(X) = k} is the noncompact Stiefel
manifold and GLk(R) is the group of k ⇥ k invertible
real matrices (Absil et al., 2004). Vk,m is an open sub-
set of Rm⇥k, so the tangent space of Vk,m at X 2 Vk,m

is trivial, i.e. TXVk,m = Rm⇥k. As a quotient mani-
fold, we can regard the tangent space of Gk,m�k as a quo-
tient of Rm⇥k. Hence we can represent the tangent vec-
tors at [X] 2 Gk,m�k by m ⇥ k-matrices (sometimes we
also use X to denote an element of Gk,m�k). In fact, let
⇡ : Vk,m ! Vk,m/GLk(R) = Gk,m�k be the canonical
projection and X 2 Vk,m, then we can identify T[X]Gk,m�k

with a subspace HX of TXVk,m, where

HX = {X?K : K 2 R(m�k)⇥k},

and X? is an m⇥ (m� k) matrix, denoting an orthogonal
complement of X . Equivalently, we can define HX =

{� 2 Rm⇥k
: X> ⇥� = 0}.

In practice, we represent an element w of Gk,m�k by
an m ⇥ k matrix X , such that the columns of X con-
stitute an orthonormal basis of w. For a tangent vector
� 2 T[X]Gk,m�k, the exponential map is of the form

exp[X](�) = [XV cos(⌃) + U sin(⌃)]V >,

where U⌃V > is the singular value decomposition of � and
the right hand side is a representative of a k-dimensional
subspace.

Mean Shift on the Grassman Manifold and
Experimental Setup

With the help of the explicit formula of exponential map,
one is able to carry out mean shift method on Grassmann
manifolds. In (Cetingul & Vidal, 2009), an extrinsic mean
shift method was proposed as follows: given a set of points

X = {Xn}Nn=1 ⇢ Gk,m�k, and some kernel-related func-
tion  with bandwidth ", we update the points by
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Notice that rXd2(X,Xn) on Grassmannian is nothing but

rXd2(X,Xn) = �2(Im �XX>
)XnX

>
n X.

In our experiments, we carry out the mean shift with respect
to Gaussian kernels as comparison. More precisely, we take
 (x2

; ") = C" exp(� x2

( 2
3 ")

2 ), where C" is the normalization
coefficient.

We also carry out the mean shift with respect to the trunca-
tion kernels in a slightly different formula from (Cetingul &
Vidal, 2009): we first pull back the points on the manifold
to the tangent space, do the mean shift method on tangent
space (this is an Euclidean space), and then map the points
back to the manifold by the exponential map, whose explicit
formula is given above. To pull back the points on the mani-
fold to the tangent space, we will need an explicit formula
of log, the inverse of exponential map (Subbarao & Meer,
2009):

8X,Y 2 Gk,m�k, logX(Y ) = U arcsin(S)V >,

where, USD>
= Y � XX>Y and V CD>

= X>Y is
the generalized SVD with C>C + S>S = I . A precise
procedure for the mean shift variant is then described as
follows:
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where as mentioned bove, the ball is determined by the
metric d.

In practice, we have another parameter K besides ". This
means that " neighborhoods are trimmed whenever their
cardinality exceeds K: in such cases only the K closest
points to the center of the ball are considered. This has the
effect of limiting the size of the OT problems one has to
solve in practice to K ⇥K (as the size the of the distance
matrix involved). In our experiments we fixed this parameter
to the value 200.


