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Abstract
We introduce the Wasserstein transform, a method
for enhancing and denoising datasets defined on
general metric spaces. The construction draws in-
spiration from Optimal Transportation ideas. We
establish the stability of our method under data
perturbation and, when the dataset is assumed to
be Euclidean, we also exhibit a precise connec-
tion between the Wasserstein transform and the
mean shift family of algorithms. We then use this
connection to prove that mean shift also inherits
stability under perturbations. We study the perfor-
mance of the Wasserstein transform method on
different datasets as a preprocessing step prior to
clustering and classification tasks.

1. Introduction
Optimal transport (OT) is concerned with finding cost effi-
cient ways of deforming a given source probability distribu-
tion into a target distribution (Villani, 2003; 2008; Santam-
brogio, 2015). In recent years, ideas from OT have found
applications in machine learning and data analysis in general.
Applications range from image equalization (Delon, 2004),
shape interpolation (Solomon et al., 2015), image/shape
(Solomon et al., 2016; Rubner et al., 1998) and document
classification (Kusner et al., 2015; Rolet et al., 2016), semi-
supervised learning (Solomon et al., 2014), to population
analysis of Gaussian processes (Mallasto & Feragen, 2017)
and domain adaptation (Courty et al., 2017).

In line with previous applications of OT, we represent
datasets as probability measures on an ambient metric space.
We introduce the so called Wasserstein transform (WT)
which takes this input dataset and alters its interpoint dis-

*Equal contribution 1Department of Mathematics, The Ohio
State University, Ohio, USA 2Department of Computer Science
and Engineering, University of Minnesota, Minnesota, USA
3Department of Computer Science and Engineering, The Ohio
State University, Ohio, USA. Correspondence to: Facundo Mémoli
<memoli@math.osu.edu>, Zane Smith <smit9474@umn.edu>,
Zhengchao Wan <wan.252@osu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

tance information in order to both enhance features, such as
clusters, present in the data, and to denoise the data. As a
theoretical contribution, we prove the stability of our con-
struction to perturbations in the input data (i.e. changes in
the input probability measure).

We also interpret our proposed feature enhancing method
as both a generalization and a strengthening of Mean Shift
(MS) (Cheng, 1995; Fukunaga & Hostetler, 1975) which
can operate on general metric spaces. Although mean shift
has been generalized to data living on Riemannian mani-
folds (Subbarao & Meer, 2009; Shamir et al., 2006), our
interpretation departs from the ones in those papers in that
we do not attempt to estimate a local mean or median of
the data but, instead, we use the local density of points to
iteratively directly adjust the distance function on the metric
space. We do this without appealing to any intermediate
embedding into a Euclidean space. As a further contribution,
through this connection between the WT and MS, we are
able to prove that MS is stable to data perturbations. We are
not aware of any extant results in the literature that address
this type of stability for MS methods.

Our experiments show that the Wasserstein transform is
effective in both denoising and resolving the well known
chaining effect that affects linkage based clustering methods.
Furthermore, we compared the perfomance of our method
with mean shift on the MNIST dataset (LeCun et al., 1998)
and on Grassmannian manifold data (Cetingul & Vidal,
2009).

2. Optimal Transport Concepts
Given a compact metric space (X, dX) one of the fundamen-
tal concepts of OT (Villani, 2003) is the so called Wasser-
stein distance on the set of all probability measures P(X)
onX . The `1-Wassertein distance dW,1(α, β) between prob-
ability measures α, β ∈ P(X) is obtained by solving the
following linear optimization problem:

dW,1(α, β) := inf
µ∈Π(α,β)

∫∫
X×X

dX(x, x′) dµ(x× x′),

where Π(α, β) is the set of all couplings between the prob-
ability measures α and β: namely, µ in Π(α, β) is a prob-
ability measure on X × X whose marginals are α and β,
respectively.
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Figure 1. In this illustration α is the empirical probability measure
associated to the point cloud X shown in the figure, and dX is the
Euclidean distance. With the truncation kernel, the Wasserstein
transform Wε will calculate the dissimilarity (via dW,1) of the ε-
neighborhoods (shown as light red disks) corresponding to all pairs
of points to produce a new distance d(")

α onX . For example, for the
pair of left most points, A andB, their respective ε-neighborhoods
are not only similar, but also the distance between these regions
is small so d(")

α (A,B) will be small too. Something similar is
true for the pair C and D. In contrast, despite the fact that the
points B and C are very close to eachother, their ε-neighborhoods
are structurally different: the neighborhood of B is essentially 2-
dimensional whereas that of C is 1-dimensional. This will result in
d(")
α (B,C) being large. Similarly, since the ε-neighborhood of E

is 0-dimensional and that ofG is 1-dimensional, despite being very
close to each other d(")

α (E,G) will be large. Finally, d(")
α (E,F )

will equal the ground distance between E and F since their respec-
tive neighborhoods consist of a single point (cf. Remark 2.1).

Remark 2.1 (Wasserstein distance between Dirac mea-
sures). A simple but important remark (Villani, 2003) is
that for points x, x′ ∈ X , if one considers the Dirac mea-
sures supported at those points (which will be probability
measures), δx and δx0 , then the Wasserstein distance be-
tween these Dirac measures equals the ground distance:
dW,1(δx, δx0) = dX(x, x′).

Remark 2.2 (A lower bound on Euclidean spaces). It
is known (Rubner et al., 1998) that in Euclidean space
Rd, ‖mean(α)−mean(β)‖ ≤ dW,1(α, β) for any α, β ∈
P(Rd). In words, in Euclidean spaces, the Wasserstein dis-
tance between two probability measures is bounded below
by the Euclidean distance between their respective means,
which is compatible with the fact that α and β can certainly
have the same means but can still be quite different as mea-
sures. In Section 3.4, this simple fact will help elucidating a
relationship between MS and WT on Euclidean spaces.

3. The Wasserstein Transform
Given a compact metric space (X, dX), we introduce a
subset Pf (X) of P(X), which consists of those probabil-
ity measures on X with full support: the support supp(α)
of a probability measure α is the largest closed subset
such that every open neighborhood of a point in supp(α)
has positive measure. Given an ambient metric space
X = (X, dX), we interpret a given probability measure
α ∈ Pf (X) as the data. For example, given point cloud
X = {x1, . . . , xn} ⊂ Rd one could choose α to be the
empirical measure 1

n

∑n
i=1 δxi . The ambient space distance

between data points (in this case the Euclidean distance) is

not always directly useful, and by absorbing information
about the spatial density of data points, the Wasserstein
transform introduced below produces a new metric on the
data points which can be used in applications to reveal and
concentrate interesting features present but not apparent in
the initial presentation of the data. The essential idea behind
the Wasserstein transform is to first capture local informa-
tion of the data and then induce a new distance function
between pairs of points based on the dissimilarity between
their respective neighborhoods. Localization operators are
gadgets that capture these neighborhoods.

3.1. Localization Operators

One can always regard a point in a metric space as a Dirac
measure supported at that point. More generally, a point in a
metric space can be replaced by any reasonable probability
measure which includes information about the neighbor-
hood of the point – this leads to the notion of localization
operators for probability measures.

Definition 1. Let (X, dX) be a metric space – referred to
as the ambient metric space. A localization operator L is
a map from Pf (X) to Markov kernels over X , i.e., given
α ∈ Pf (X), L produces L(α) = (X,mL

α(·)), where for
every x ∈ X , mL

α(x) is a probability measure on X . We
refer to mL

α(x) as the localized measure at x.

The following are two simple extreme examples. (a) Given
α in Pf (X), let mL

α(x) ≡ α,∀x ∈ X , which assigns to
all points in X the probability measure α. This is a trivial
example in that it does not localize the measure α at all. (b)
For any α in Pf (X), let mL

α(x) = δx,∀x ∈ X . This is a
legitimate localization operator but it does not retain any
information from α. We will see some useful choices of
localization operators in the next couple sections.

3.2. The Wasserstein Transform

After specifying a localization operator L and given α ∈
Pf (X), one associates each point x in X with a probability
measure mL

α(x), and then obtains a new metric space by
considering the Wasserstein distance between each pair of
these localized measures.

Definition 2 (The Wasserstein transform). Let (X, dX) be
a given ambient metric space and let α ∈ Pf (X). Given
a localization operator L, the Wasserstein transform WL

applied to α gives the distance function dLα on X defined by

dLα(x, x′) := dW,1
(
mL
α(x),mL

α(x′)
)
,∀x, x′ ∈ X.

By WL(α) we will denote the (pseudo) metric space
(X, dLα). Even if in this paper we consider only the `1-
Wasserstein transform, it is possible to formulate a similar
transform using the notion of `p-Wasserstein distance.
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Figure 2.Iterating the Wasserstein transform: iteratively change
the metric based on density of points as indicated by� .

Remark 3.1 (Iterating the Wasserstein transform). The
Wasserstein transform can be iterated any desired number
of times with the purpose of successively enhancing features
and/or reducing noise. See Figure 2. After applying the
Wasserstein transform once to� 2 P f (X ), the ambient
metric space(X; d X ) is transformed into(X; d L

� ). Then we
can apply the Wasserstein transform again to� on the am-
bient space(X; d L

� ) etc. This fact is useful in applications
such as clustering; see Section 5.

3.3. Local Truncations

We now concentrate on a particular type of localization
operator which we calllocal truncation. Given� 2 P f (X )
and ascale parameter" > 0, consider for eachx 2 X the
probability measure

m( " )
� (x) :=

� jB " (x )

� (B " (x))
;

arising from restricting� to the closed ballB " (x) and
then renormalizing to obtain a new probability measure.
In other words, for each setA � X , the measure of
that set ism( " )

� (x)(A) = � (B " (x ) \ A )
� (B " (x )) : WhenX is �nite,

X = f x1; : : : ; xn g, and� is its empirical measure, this
formula becomes

m( " )
� (x)(A) =

# f i j x i 2 A anddX (x i ; x) � "g
# f i j dX (x i ; x) � "g

:

We denote the resulting Wasserstein transform byW " , and
in this case, for each� , the new metric produced byW " (� )
will be denoted asd( " )

� . See Figure 1 for an intuitive expla-
nation.

Remark 3.2(Behavior across scales). Notice that as" !
1 one hasm( " )

� (x) = � for any x 2 X: However, for
" ! 0, m( " )

� (x) ! � x . In words," acts as alocalization
parameter: for small" the renormalized measures absorb
local information, whereas for large values the renormal-
ized measures for different points become indistinguishable.
Thus we have the following for anyx; x 0 in X :

(1) as" ! 0 one hasd( " )
� (x; x 0) ! dX (x; x 0); and

(2) as" ! 1 one hasd( " )
� (x; x 0) ! 0.

Figure 3.After applying one iteration of the Wasserstein transform,
both the distance betweenA; C and the distance betweenC; E
should remain almost the same since these are all critical points of
f . According to the formula in Remark 3.3, sincef 0 has negative
sign atB andB lies to the right ofA, B will be pushed towardsA,
while D will be pushed away fromA sincef 0(D ) > 0 and it lies
to the right ofA. Similarly bothD andF are pushed towardsE .

Interpretation of W " (� ) on the real line. Using the fact
that the Wasserstein distance onR admits a closed form
expression (Villani, 2003) we are able to prove the following
Taylor expansion.

Remark 3.3(Taylor expansion ford( " )
� (x; x 0) ). WhenX is

a subset of the real line, and the probability measure� has
a densityf , we have the asymptotic formula ford( " )

� (x; x 0)
as" ! 0: for x0 > x andf (x); f (x0) > 0,

d( " )
� (x; x 0) = x0 � x +

1
3

�
f 0(x0)
f (x0)

�
f 0(x)
f (x)

�
"2 + O("3):

The interpretation is that after one iteration of the Wasser-
stein transformW " of � , pairs of pointsx andx0 on very
dense areas (re�ected by large values off (x) and f (x0))
will be at roughly the same distance they were before apply-
ing the Wasserstein transform. However, if one of the points,
sayx0 is in a sparse area (i.e.f (x0) is small), then the
Wasserstein transform will push it away fromx. It is also
interesting what happens whenx andx0 are both critical
points off : in that case the distance does not change (up to
order "2). See Figure 3 for an illustration. See the supple-
mentary document for a proof of this Taylor expansion.

3.4. The Wasserstein Transform as a Generalization of
Mean Shift to Any Metric Space

Mean Shift (Cheng, 1995; Fukunaga & Hostetler, 1975) is
a clustering method for Euclidean data which operates by it-
eratively updating each data point until convergence accord-
ing to a rule that moves points towards the mean/barycenter
of their neighbors. More speci�cally, given a point cloud
X = f x1; : : : ; xn g in Rd, a kernel functionK : R+ ! R+ ,
and a scale parameter" > 0, then in thekth iteration thei th
point is shifted as follows:x i (0) = x i and fork � 0,

x i (k + 1) =

P n
j =1 K

�
kx j (k ) � x i (k )k

"

�
x j (k)

P n
j =1 K

�
kx j (k ) � x i (k )k

"

� : (1)

The kernels of choice are the Gaussian kernelK (t) =
e� t 2 =2, the Epanechnikov kernelK (t) = max f 1� t; 0g, or


