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A. Proofs of the Main Results
In this section, we provide the complete proofs of our main results. For notational simplicity, we define

Wi→j := WiWi−1 · · ·Wj+1Wj ,

W̄i→j :=
1

θi−j
Wi diag (bi−1) Wi−1 · · · diag (bj+1) Wj+1 diag (bj) Wj .

Since the Bernoulli random vectors are i.i.d., it holds that Ebi [W̄i→j ] = Wi→j . A quantity that shows up when analyzing
dropout training under squared error is E[‖U diag (b) Vx‖2], where the expectation is taken with respect to b, which is a
Bernoulli random vector with parameter θ. The following lemma gives the closed form of this expectation.

Lemma A.1. Let U ∈ Rd2×r, V ∈ Rd1×r, and C := E[xx>]. It holds that

E[‖U diag (b) Vx‖2] = θ2E[‖UVx‖2] + (θ − θ2)

r∑
j=1

‖u:j‖2‖C
1
2 vj:‖2.

The proof can be found in (Cavazza et al., 2018; Mianjy et al., 2018). Nonetheless, we provide a proof here for completeness.

Proof of Lemma A.1.

E[‖U diag (b) Vx‖2] = E
d2∑
i=1

Eb

 r∑
j=1

uijbjv>j:x

2

= E
d2∑
i=1

Eb[

r∑
j,k=1

uijuikbjbk(v>j:x)(v>k:x)]

= E
d2∑
i=1

r∑
j,k=1

uijuik(θ21j 6=k + θ1j=k)(v>j:x)(v>k:x) = θ2E[‖UVx‖2] + (θ − θ2)E
d2∑
i=1

r∑
j=1

u2
ij(v>j:x)2

= θ2E[‖UVx‖2] + (θ − θ2)

r∑
j=1

E[v>j:xx>vj:]
d2∑
i=1

u2
ij = θ2E[‖UVx‖2] + (θ − θ2)

r∑
j=1

‖C
1
2 vj:‖2‖u:j‖2.

A.1. Properties of the explicit regularizer

Recall that training a network with dropout aims at minimizing the following dropout objective

Lθ({Wi}k+1
i=1 ) = Ebi∼Bern(θ)

(x,y)∼D
[‖y− 1

θk
Wk+1 diag (bk) Wk . . . diag (b1) W1x‖2].

In Proposition 2.1 we show that this objective can be decomposed into a summation of the population loss plus an explicit
regularizer, i.e. Lθ(·) = L(·) +R(·), and give the closed form expression for the explicit regularizer.
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Proof of Proposition 2.1. We start by expanding the squared error:

Lθ({Wi}k+1
i=1 ) = Ebi∼Bern(θ)

(x,y)∼D
[‖y− W̄k+1→1x‖2]

= E[‖y‖2]− 2E[〈W̄k+1→1x, y〉] + E[‖W̄k+1→1x‖2]

= E[‖y‖2]− 2E〈Wk+1→1x, y〉+
1

θ2k
E[‖Wk+1 diag (bk) Wk . . . diag (b1) W1x‖2] (10)

We now focus on the last term in the right hand side of Equation (10).

E[‖Wk+1 diag (bk) Wk . . . diag (b1) W1x‖2] = E[‖W̄k+1→2 diag (b1) W1x‖2]

= θ2E[‖W̄k+1→2W1x‖2] + (θ − θ2)

d1∑
j=1

E[‖W̄k+1→2(:, j)‖2]‖C
1
2 W1(j, :)‖2 (11)

The second equality follows from Lemma A.1. Similarly, the first term on the right hand side of Equation (11) can be
expressed as:

E[‖W̄k+1→2W1x‖2] = E[‖W̄k+1→3 diag (b2) W2→1x‖2]

= θ2E[‖W̄k+1→3W2→1x‖2] + (θ − θ2)

d2∑
j=1

E[‖W̄k+1→3(:, j)‖2]‖C
1
2 W2→1(j, :)‖2

By recursive application of the above identity and plugging the result into Equation (11), we obtain:

E[‖W̄k+1→1x‖2] = θ2kE[‖Wk+1→1x‖2] + (1− θ)
k∑
i=1

di∑
j=1

θ2i−1E[‖W̄k+1→i+1(:, j)‖2]‖C
1
2 Wi→1(j, :)‖2 (12)

Plugging back the above equality into Equation (10), we get

Lθ({Wi}) = ‖y‖2 − 2E〈Wk+1→1x, y〉+ E[‖Wk+1→1x‖2] +
1− θ
θ2k

k∑
i=1

di∑
j=1

θ2i−1E[‖W̄k+1→i+1(:, j)‖2]‖C
1
2 Wi→1(j, :)‖2

= Ex[‖y−Wk+1→1x‖2] + (1− θ)
k∑
i=1

di∑
j=1

θ2(i−k)−1E[‖W̄k+1→i+1(:, j)‖2]‖C
1
2 Wi→1(j, :)‖2. (13)

It remains to calculate the terms of the form E[‖W̄k+1→i+1(:, j)‖2] in the right hand side of Equation (13). We introduce
the variable x ∼ N (0, 1) so that we can use Lemma A.1 again:

E[‖W̄k+1→i+1(:, j)‖2] = E[‖W̄k+1→i+2 diag (bi+1) Wi+1(:, j)x‖2]

= θ2E[‖W̄k+1→i+2Wi+1(:, j)‖2] + (θ − θ2)E
di+1∑
l=1

‖W̄k+1→i+2(:, l)‖2Wi+1(l, j)2. (14)

The first term on the right hand side of Equation (14) can be expanded as:

E[‖W̄k+1→i+2Wi+1(:, j)‖2] = E[‖W̄k+1→i+3 diag (bi+2) Wi+2→i+1(:, j)x‖2]

= θ2E[‖W̄k+1→i+3Wi+2→i+1(:, j)‖2] + (θ − θ2)E
di+2∑
l=1

‖W̄k+1→i+3(:, l)‖2Wi+2→i+1(l, j)2

By recursive application of the above equality and plugging the results into Equation (14), we get

E[‖W̄k+1→i+1(:, j)‖2] = θ2(k−i)‖Wk+1→i+1(:, j)‖2 + (1− θ)
k−i∑
m=1

θ2m−1E
di+m∑
l=1

‖W̄k+1→i+1+m(:, l)‖2Wi+m→i+1(l, j)2
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Plugging back the above identity into Equation (13) we get

R({Wi}) = (1− θ)
k∑
i=1

di∑
j=1

θ2(i−k)−1‖C
1
2 Wi→1(j, :)‖2E[‖W̄k+1→i+1(:, j)‖2]

=
1− θ
θ

k∑
i=1

di∑
j=1

‖C
1
2 Wi→1(j, :)‖2‖Wk+1→i+1(:, j)‖2

+ (
1− θ
θ

)2
k∑
i=1

di∑
j=1

‖C
1
2 Wi→1(j, :)‖2

k−i∑
m=1

θ2(i+m−k)E
di+m∑
l=1

Wi+m→i+1(l, j)2‖W̄k+1→i+m+1(:, l)‖2

=
1− θ
θ

k∑
i=1

di∑
j=1

‖C
1
2 Wi→1(j, :)‖2‖Wk+1→i+1(:, j)‖2

+ (
1− θ
θ

)2
k∑
i=1

di∑
j=1

‖C
1
2 Wi→1(j, :)‖2

k−i∑
m=1

di+m∑
l=1

Wi+m→i+1(l, j)2‖Wk+1→i+m+1(:, l)‖2

+ (
1− θ
θ

)3
k∑
i=1

di∑
j=1

‖C
1
2 Wi→1(j, :)‖2

k−i∑
m=1

di+m∑
l=1

Wi+m→i+1(l, j)2

(
k−i−m∑
mm=1

θ2(i+m+mm)

di+m+mm∑
ll=1

Wi+m+mm→i+m+1(ll, l)2E‖W̄k+1→i+1+m+mm(:, ll)‖2


= · · ·

=

k∑
l=1

λl
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖C
1
2 Wj1→1(i1, :)‖2

∏
p=1···l−1

Wjp+1→jp+1(ip+1, ip)
2‖Wk+1→jl+1(:, il)‖2,

which completes the proof.

Lemma A.2. [Properties of R and Θ] The following statements hold true:

1. All sub-regularizers, and hence the explicit regularizer, are re-scaling invariant.

2. The infimum in Equation (2) is always attained.

3. If C = I, then Θ(M) is a spectral function, i.e. if M and M′ have the same singular values, then Θ(M) = Θ(M′).

Proof of Lemma A.2. First, it is easy to see that the explicit regularizer and the sub-regularizers are all rescaling invariant.
For any sequence of scalars {αi} such that such that

∏k+1
i=1 αi = 1, let W̄i := αiWi . Then it holds that:

Rl({W̄i})=
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖
j1∏
q=1

αqWj1→1(i1, :)‖2
∏

p∈[l−1]

jp+1∏
q=jp+1

α2
qWjp+1→jp+1(ip+1, ip)

2‖
k+1∏

q=jl+1

αqWk+1→jl+1(:, il)‖2

=

k+1∏
q=1

α2
q

∑
(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖Wj1→1(i1, :)‖2
∏

p∈[l−1]

Wjp+1→jp+1(ip+1, ip)
2‖Wk+1→jl+1(:, il)‖2

= Rl({Wi})

Therefore, without loss of generality, we can express the induced regularizer as follows:

Θ(M) := inf
Wk+1···W1=M
‖Wi‖F≤‖M‖F

R({Wi}) (15)



Dropout and Nuclear Norm Regularization

Note that R({Wi}) is a continuous function and the feasible set F := {(Wi)
k+1
i=1 : Wk+1 · · ·W1 = M, ‖Wi‖F ≤ ‖M‖F }

is compact. Hence, by Weierstrass extreme value theorem, the infimum is attained.

Now let U ∈ Rdk+1×dk+1 and V ∈ Rd0×d0 be a pair of rotation matrices, i.e. U>U = UU> = I and V>V = VV> = I.
When the data is isotropic, i.e. C = I, the following equalities hold

R({Wi}) =

k∑
l=1

λl
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖Wj1→1(i1, :)‖2
∏

p=1···l−1

Wjp+1→jp+1(ip+1, ip)
2‖Wk+1→jl+1(:, il)‖2

=

k∑
l=1

λl
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖Wj1→1(i1, :)
>V‖2

∏
p=1···l−1

Wjp+1→jp+1(ip+1, ip)
2‖U>Wk+1→jl+1(:, il)‖2

= R(U>Wk+1,Wk, · · · ,W2,W1V)

That is, R(U>Wk+1,Wk, . . . ,W2,W1V) = R(Wk+1,Wk, . . . ,W2,W1) for all rotation matrices U and V. In particular,
let U,V be the left and right singular vectors of M, i.e. M = UΣV>. To prove that Θ is a spectral function, we need to show
that Θ(M) = Θ(Σ). Let {W̄i}, {W̃i} be such that Θ(M) = R({W̄i}),Θ(Σ) = R({W̃i}). Note that such weight matrices
always exist since the infimum is always attained. Then

Θ(Σ) = Θ(U>MV) ≤ R(U>W̄k+1, W̄k, . . . , W̄2, W̄1V) = R(W̄k+1, W̄k, . . . , W̄2, W̄1) = Θ(M).

Similarly, we have that Θ(M) ≤ R(U>W̃k+1, W̃k, . . . , W̃2, W̄1V) = R(W̃k+1, W̄k, . . . , W̃2, W̃1) = Θ(Σ), which com-
pletes the proof.

A.2. The induced regularizer and its convex envelope

Proof of Theorem 2.6. By Lemma 3.1, for any architecture, any dropout rate, and any set of weights {Wi} that implements a
network map Wk+1→1, the explicit regularizer is lower bounded by the effective regularization parameter times the product
of the squared nuclear norm of the network map and the principal squared root of the second moment of x, i.e. R({Wi}) ≥
ν{di}‖Wk+1→1C

1
2 ‖2∗. Consequently, the induced regularizer can also be lowerbounded as Θ(M) ≥ ν{di}‖MC

1
2 ‖2∗. On

the other hand, Lemma 3.2 establishes that Θ∗∗(M) ≤ ν{di}‖MC
1
2 ‖2∗ holds for any network map M. Putting these two

inequalities together, we arrive at

Θ∗∗(M) ≤ ν{di}‖MC
1
2 ‖2∗ ≤ Θ(M).

Since Θ∗∗(M) is the largest convex underestimator of Θ(M), and the squared nuclear norm is a convex function, we
conclude that Θ∗∗(M) = ν{di}‖M‖2∗.

Despite the complex form of the explicit regularizer given in Proposition 2.1, we can show that it is always lower bounded
by effective regularization parameter times ‖MC

1
2 ‖2∗. This result is given by Lemma 3.1.

Proof of Lemma 3.1. Recall that the explicit regularizer R({Wi}) is composed of k sub-regularizers

R({Wi}) = R1({Wi}) +R2({Wi}) + · · ·+Rk({Wi}).

The l-th sub-regularizer Rl({Wi}) can be written in the form of:

Rl({Wi}) = λl
∑

(jl,...,j1)∈([k]
l )

R{jl,...,j1}({Wi})

where
R{jl,...,j1}({Wi}) := ‖C

1
2 Wj1→1(i1, :)‖2

∏
p=1···l−1

Wjp+1→jp+1(ip+1, ip)
2‖Wk+1→jl+1(:, il)‖2.
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The following set of equalities hold true:

R{jl,...,j1}({Wi}) =
∑

il,··· ,i1

‖Wk+1→jl+1(:, il)‖2Wjl→jl−1+1(il, il−1)2 · · ·Wj2→j1+1(i2, i1)2‖C
1
2 Wj1→1(i1, :)‖2

≥ 1∏
i∈[l] dji

 ∑
il,...,i1

‖Wk+1→jl+1(:, il)‖|Wjl→jl−1+1(il, il−1)| · · · |Wj2→j1+1(i2, i1)|‖C
1
2 Wj1→1(i1, :)‖

2

=
1∏

i∈[l] dji

 ∑
il,...,i1

‖Wk+1→jl+1(:, il)Wjl→jl−1+1(il, il−1) · · ·Wj2→j1+1(i2, i1)Wj1→1(i1, :)
>C

1
2 ‖∗

2

≥ 1∏
i∈[l] dji

‖
∑
il,...,i1

Wk+1→jl+1(:, il)Wjl→jl−1+1(il, il−1) · · ·Wj2→j1+1(i2, i1)Wj1→1(i1, :)
>C

1
2 ‖2∗

=
1∏

i∈[l] dji
‖
∑
il,i1

Wk+1→jl+1(:, il)

 ∑
il−1,...,i2

Wjl→jl−1+1(il, il−1) · · ·Wj2→j1+1(i2, i1)

Wj1→1(i1, :)
>C

1
2 ‖2∗

=
1∏

i∈[l] dji
‖
∑
il,i1

Wk+1→jl(:, il)Wjl−1→j1(il, i1)Wj1→1(i1, :)
>C

1
2 ‖2∗

=
1∏

i∈[l] dji
‖Wk+1 · · ·W1C

1
2 ‖2∗

where the first inequality follows due to the Cauchy-Schwartz inequality, and the second inequality follows from the triangle
inequality for the matrix norms. The inequality holds with equality if and only if all the summands inside the summation are

equal to each other, and sum up to ‖Wk+1→1C
1
2 ‖∗∏

i∈[l] dji
, i.e. when

‖Wk+1→jl+1(:, il)‖|Wjl→jl−1+1(il, il−1)| · · · |Wj2→j1+1(i2, i1)|‖C
1
2 Wj1→1(i1, :)‖ =

1∏
i∈[l] dji

‖Wk+1→1C
1
2 ‖∗

for all (il, . . . , i1) ∈ [djl ]× · · · × [dj1 ]. This lowerbound holds for all l ∈ [k], and for all (jl, . . . , j1) ∈
(

[k]
l

)
. Thus, we get

the following lowerbound on the regularizer:

R({Wi}) ≥
∑
l∈[k]

λl
∑

(jl,...,j1)∈([k]
l )

1∏
i∈[l] dji

‖Wk+1→1C
1
2 ‖2∗ = ν{di}‖Wk+1→1C

1
2 ‖2∗

which completes the proof.

Not only ν{di}‖MC
1
2 ‖2∗ is a lowerbound for the induced regularizer, but also is an upperbound for its convex envelope. We

prove this result in Lemma 3.2.

Proof of Lemma 3.2. The induced regularizer is non-negative. Hence, the domain of the Fenchel dual of the induced
regularizer is the whole Rdk+1×d0 . The Fenchel dual of the induced regularizer Θ(·) is given by:

Θ∗(M) = max
P
〈M,P〉 −Θ(P)

= max
P
〈M,P〉 − min

{Wi}
Wk+1→1=P

R({Wi})

= max
{Wi}

〈M,Wk+1→1〉 −R({Wi}). (16)

Define Φ({Wi}) := 〈M,Wk+1→1〉 − R({Wi}) as the objective in the right hand side of Equation (16). Due to the
complicated products of the norms of the weights in the regularizer, maximizing Φ with respect to {Wi} is a daunting
task. Here, we find a lower bound on this maximum value. Let Wα

k+1 := αu11>dk and Wα
1 := 1d1v>1 C−

1
2 , where (u1, v1) is



Dropout and Nuclear Norm Regularization

the top singular vectors of MC−
1
2 , and 1d is the d-dimensional vector of all 1s. Furthermore, let Wα

i := 1di1
>
di−1

, for all
i ∈ {2, . . . , k}. Note that

Θ∗(M) = max
{Wi}

Φ({Wi}) ≥ max
α

Φ({Wα
i }).

We now simplify Φ({Wα
i }). First, the following equalities hold for the 〈M,Wα

k+1→1〉:

〈M,Wα
k+1→1〉 =

∑
(ik+1,...,i1)∈[dk+1]×···×[d1]

〈M,Wα
k+1(:, ik)

∏
j={k−1,...,1}

Wα
j+1(ij+1, ij)Wα

1 (i1, :)
>〉

=
∑

(ik+1,...,i1)∈[dk+1]×···×[d1]

Wα
k+1(:, ik)>MWα

1 (i1, :)

=
∑

(ik+1,...,i1)∈[dk+1]×···×[d1]

αu>1 MC−
1
2 v1

=
∑

(ik+1,...,i1)∈[dk+1]×···×[d1]

α‖MC−
1
2 ‖2

= α‖MC−
1
2 ‖2

∏
j∈[k]

dj =: α‖MC−
1
2 ‖2D.

The following terms show up in the expansion of the regularizer:

Wα
j1→1(i1, :)

> = Wα
j1(i1, :)Wα

j1−1 · · ·Wα
2 Wα

1 = 1>dj1−1
1dj1−1

1>dj1−2
· · · 1d2

1>d1
1d1

v>1 =
∏

i∈[j1−1]

div>1 C−
1
2

Wα
jp+1→jp+1(ip+1, ip) = Wα

jp+1
(ip+1, :)Wα

jp+1−1 · · ·Wα
jp+2Wα

jp+1(:, ip)

= 1>djp+1−1
1djp+1−11>djp+1−2

· · · 1djp+21>djp+1
1djp+1 =

∏
i∈{jp+1,··· ,jp+1−1}

di

Wα
k+1→jl+1(:, il) = αWα

k+1Wα
k · · ·Wα

jl+2Wα
jl+1(:, il) = αu11>dk1dk1>dk−1

· · · 1djl+2
1>djl+1

1djl+1
= α

∏
i∈{jl+1,··· ,k}

diu1

With the above equalities, the explicit regularizer reduces to:

R({Wα
i }) =

k∑
l=1

λl
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖C
1
2 Wα

j1→1(i1, :)‖2
∏

p=1···l−1

Wα
jp+1→jp+1(ip+1, ip)

2‖Wα
k+1→jl+1(:, il)‖2

=

k∑
l=1

λl
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

‖C
1
2 C−

1
2 v1

∏
i∈[j1−1]

di‖2
∏

p=1···l−1

∏
i∈{jp+1,··· ,jp+1−1}

d2
i ‖αu1

∏
i∈{jl+1,··· ,k}

di‖2

=

k∑
l=1

λl
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

∏
i∈[j1−1]

d2
i

∏
p=1···l−1

∏
i∈{jp+1,··· ,jp+1−1}

d2
iα

2
∏

i∈{jl+1,··· ,k}

d2
i

= α2
k∑
l=1

λl
∑

(jl,...,j1)∈([k]
l )

∑
(il,...,i1)∈[djl ]×···×[dj1 ]

∏
i∈[k] d

2
i∏

i∈[l] d
2
ji

=: α2ρ

Plugging back the above equalities into the definition of Φ, we arrive at Φ({Wα
i }) = α‖MC−

1
2 ‖2D − α2ρ. The maximum

of Φ({Wα
i }) with respect to α is achieved when α∗ = ‖MC−

1
2 ‖2D

2ρ , in which case we have

Θ∗(M) ≥ Φ({Wα∗

i }) =
D2

4ρ
‖MC−

1
2 ‖22 =: Ψ(M).
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Since Fenchel dual is order reversing, we get

Θ∗∗(M) ≤ Ψ∗(M)

=
ρ

D2
‖MC

1
2 ‖2∗

=

∑k
l=1 λ

l
∑

(jl,...,j1)∈([k]
l )
∑
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where the first equality follows from the fact that if f(M) = β‖MA‖2 and A � 0 then f∗(M) = 1
4β ‖MA−1‖2∗. This result

is standard in the literature, but we prove it here for completeness. Note that
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‖YA‖ = 1

2β ‖MA−1‖∗, in which case we have

f∗(M) = sup
Y
〈Y,M〉 − β‖YA‖2 =

1

2β
‖MA−1‖∗‖MA−1‖∗ − β(

1

2β
‖MA−1‖∗)2 =

1

4β
‖MA−1‖2∗.

A.3. Characterization of the global optima of the dropout objective

Proof of Proposition 3.3. When the network map has rank equal to one, it can be expressed as uv>, where u ∈ Rdk+1 and
v ∈ Rd0 . We show that for any architecture {di} and any network mapping uv> ∈ Rdk+1×d0 , it is always possible to

represent uv> = Wk+1 · · ·W1 such that the resulting network is equalized. One such factorization is when W1 =
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for i ∈ {2, . . . , k}. For these weight parameters, we have that
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With the above equalities, the regularizer reduces to:
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matrices is equalized, since
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Lemma A.3. For any integer r, and for any ν ∈ R+, it holds that

(Ir + ν1r1>r )−1 = Ir −
ν

1 + rν
1r1>r .

Lemma A.3 is an instance of the Woodbury’s matrix identity. Here, we include a proof for completeness.

Proof of Lemma A.3. The proof simply follows from the following set of equations.
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Lemma A.4. Consider the following optimization problem where the induced regularizer in Problem 3 is replaced with its
convex envelope:

min
W∈Rdk+1×d0

E[‖y−Wx‖2] + Θ∗∗(W), rank (W) ≤ min
i∈[k+1]

di =: r (17)

Define the “model” M̄ := CyxC−
1
2 . The global optimum of problem 17 is given as M∗ = Sαρ(M̄)C−

1
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, and ρ ∈ [min{r, rank (M̄)}] is the largest integer such that for all i ∈ [ρ], it holds that σi(M̄) > αρ.

Proof of Lemma A.4. Denote the objective in the optimization problem (17) as Eν{di}(W) := E[‖y−Wx‖2]+ν{di}‖WC
1
2 ‖2∗.
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Let Cy := E[yy>] and Cxy := E[xy>]. Note that
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Make the change of variable W̄←WC
1
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If W̄ is a solution to the above problem, then a solution to the original problem in Equation (17) is given as W̄C−
1
2 .

Following (Cavazza et al., 2018; Mianjy et al., 2018), we show that the global optimum of Problem 18 is given in terms of
an appropriate shrinkage-thresholding on the spectrum of M̄. Define r′ := max{rank (M̄) , r}. Let M̄ = UM̄ΣM̄V>M̄ and
W̄ = UW̄ΣW̄V>W̄ be rank-r′ SVDs of M̄ and W̄ respectively, such that σi(M̄) ≥ σi+1(M̄) and σi(W̄) ≥ σi+1(W̄) for all
i ∈ [r′ − 1]. Rewriting objective of Problem 18 in terms of these decompositions gives:
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The KKT conditions ensures that at the optima it holds for all i ∈ [r] that
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Let ρ = |i : σ̄i > 0| ≤ r be the number of nonzero σ̄i, i.e. rank of the global optimum W̄. For i ∈ [ρ], we have αi = 0.
Therefore, we have that:
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where κj := 1
j

∑j
i=1 σi(M̄). The equation above tell us that for i ∈ [ρ], the singular values of W̄ are just a shrinkage of

the singular values of M̄. In particular, it means that ρ ≤ rank (M̄). Therefore, without loss of generality, we assume that
r ≤ rank (M̄). Also, since σ̄i > 0 for all i ∈ [ρ], it holds that σi(M̄) >

ν{di}ρκρ
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By dual feasibility, we conclude that σi(M̄) ≤ ν{di}ρκρ
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for all i ∈ {ρ+ 1, . . . , r}, which completes the proof.

Proof of Theorem 2.7. Consider W∗, a global optimum of problem 3. If all such global optima can be implemented by
equalized networks, then by Theorem 2.6 it holds that Θ(W∗) = Θ∗∗(W∗) = ν{di}‖W

∗C
1
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problem in Equation 3 boils down to the following convex problem

min
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Proposition 3.3, on the other hand, states that any rank-1 network map can be implemented by an equalized network.
Therefore, the key idea of the proof is to make sure that the global optimum of problem 19 has rank equal to one.
It suffices to notice that under the assumption σ1(M̄) − σ2(M̄) ≥ 1
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for all j > 1. In this case, using Lemma A.4, the solution Sα1(M̄)C−

1
2 has rank equal to one, which

completes the proof.


