Supplementary Materials for the Paper:
“On Dropout and Nuclear Norm Regularization”

A. Proofs of the Main Results

In this section, we provide the complete proofs of our main results. For notational simplicity, we define

Wisj = WiWi_1---W; .1 Wy,

1 . . .
Wi—>j = 7—]W7 dlag (bi—l) Wi—l cee dlag (bj+1) Wj+1 dlag (bj) Wj.

ei

Since the Bernoulli random vectors are i.i.d., it holds that E,, [W;_,;] = W,_,;. A quantity that shows up when analyzing
dropout training under squared error is E[||U diag (b) Vx||?], where the expectation is taken with respect to b, which is a
Bernoulli random vector with parameter 6. The following lemma gives the closed form of this expectation.

Lemma A.l. Let U € R%2*", V € RUX" and C := E[xx"]. It holds that

E[||U diag (b) Vx|[*] = °E[[|UVX[]*] + (6 — %) > [l ]*|CZ v ]|

The proof can be found in (Cavazza et al., 2018; Mianjy et al., 2018). Nonetheless, we provide a proof here for completeness.

Proof of Lemma A.1.

E[||U diag (b) Vx||?] EZ]Eb Zuwb VX —EZ]Eb Z Wi Uik bg V x)(v.x)]

J,k=1

r

d2 dz s
=B Y wiuin(0® 1k + 01;21) (v ) (viix) = CE[[UV|*] + (0 = 6P)E > > uf(v]x)?

i=1j,k=1 i=1 j=1

d2 I
= 0%E[||UVx|]?] + (0 — 62) ZEV xx i)Y g = 0PE[[UV]®] + (0 — 6%) > C2 v, [fuy >
=1 i

O

A.1. Properties of the explicit regularizer
Recall that training a network with dropout aims at minimizing the following dropout objective
k+1 1 . 2
Lo({Wi}iZ1) = B ~pem@)[lly — g W1 diag (bx) Wi .. . diag (br) Wax|[7].
(xy)~D

In Proposition 2.1 we show that this objective can be decomposed into a summation of the population loss plus an explicit
regularizer,i.e. Ly(-) = L(-) + R(-), and give the closed form expression for the explicit regularizer.
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Proof of Proposition 2.1. We start by expanding the squared error:

Lo({Wi ) = B, eem@) [y = Weg1-1x]1%]
(X7Y)ND

= E[llyll*] = 2E[(Wk+151%,Y)] + E[[ Wit 1-1x]|°]

1 . .
=E[|ly|]*] — 2E(Wyt1-1%,y) + g3 Ell Wi diag (by) Wy .. diag (by) Wix||?] (10)
We now focus on the last term in the right hand side of Equation (10).

E[||[Wg1 diag (by) Wy, . .. diag (by) Wix||?] = E[||[Wgy1_2 diag (by) Wix||?]
di
PE[[[Wht1 o Wix|[P] + (0 = 6%) Y E[[Wia2( DIPIICTW (G071
Jj=1

The second equality follows from Lemma A.1. Similarly, the first term on the right hand side of Equation (11) can be
expressed as:

E[[|Wht152Wix|]?] = E[|Wgy1-5 diag (ba) Wa_,1x]|?]
do
= 0°E[||Wis153Wams1x[|*] + (0 — 0°) D CE[|Wipa3( ) 1PIC2 Wassr (4, 2) |12

j=1

By recursive application of the above identity and plugging the result into Equation (11), we obtain:

k d;
E[|[Wks151x[1*] = 02 E[|Wip11x]°] + ZZ O* V]| Wis1i1 () [P1ICT Wi (7, )12 (12)

Plugging back the above equality into Equation (10), we get

Lo({W:}) = [lylI* = 2E(Wi151%,y) + B[[|Wri151x]] 9% 22921 VB[ Wit1oi1 Gy D)IPIICEWiS (7, 2) 2
=1 j=1
kodi ]
= Bullly = WigroaxlP]+ (1= 6) D> 62 E][Wipa i1 G )IPIICE Wi (5, (13)
i=1 j=1

It remains to calculate the terms of the form E[||Wj.1_;11(:, 5)||?] in the right hand side of Equation (13). We introduce
the variable x ~ N(0, 1) so that we can use Lemma A.1 again:

E[[Wit15i+10, 5)17] = E[|[Wit 1242 diag (bis1) Wir1 (5, )z
dig1

= O°E[|[Wrs15i2Wir1 (5 0) 1P + (0 — 6°)E Z [Wieiai2 (s DIPWira (1, 5)% (14)
=1

The first term on the right hand side of Equation (14) can be expanded as:
E[|[Wit1-it2Wis1 (5 0) 7] = E[|Wrg1-it3 diag (bisa) Wirayipa (5, 5) 2]’

dit2

= OEl[Wks1-i+3Wiszoira (5 DIPT+ (0 = 0B Y [Wisasiva( DIPWigaisa (1,5)°
=1

By recursive application of the above equality and plugging the results into Equation (14), we get

L+m

E[W 151 (5 )2 = 020 [ W1 i ()| 292’” 'E Z W 1msi1m (5 DIPWi s (1)
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Plugging back the above identity into Equation (13) we get

k d;
i) — 1 . = .
R({W:}) =(1-6) Z 92(2 DHICTWon (G ) IPE[ Wi (5 5)17]
=1j=
gk A , »
= 6 D ICEWina (5, ) 1P IWhsa i ()l
i=1 j=1
1-6 k  d; k—i ditm
+ (T)2Z [C2Wis1 (4, ) Z 2itm-hE Z Witmosit1 (L) Whrisivma G012
i=1 j=1 m=1 I=1
1—0 e
= Z ICZWis1 (G, )P Wit sis () [
i=1 j=1
1 _ 0 k di . k—1 di+7n
+ (T)QZ ICZWia (4, )7 Z Z Witmoit1 (L) Whtisigmta G012
i=1 j=1 m=1 i=1
1-6 k d; k—i ditm k—i—m
+(T)3Z [C2Wis1 (4, )1 Z Z Wismoiv1(l,5)° ( Z gt mm)
i=1 j=1 m=1 [=1 mm=1
di+m,+7nm _
Z Wi+7n+m’m—>i+m+1 (ll, l)2E||Wk+1—>i+1+m+mm(:5 ll) ||2
li=1

k
1 - . . .
:Zl Z Z IC= W5, 51 (i, )| H Wi, i1 ogp+1 (p1s0p) W g1 G i) |12
=1 (Jis--- ] (7,1, 1) p=1---1—1

£ el

which completes the proof. O

Lemma A.2. [Properties of R and ©] The following statements hold true:

1. All sub-regularizers, and hence the explicit regularizer, are re-scaling invariant.
2. The infimum in Equation (2) is always attained.

3. IfC =, then ©(M) is a spectral function, i.e. if M and M’ have the same singular values, then ©(M) = O(M’).

Proof of Lemma A.2. First, it is easy to see that the explicit regularizer and the sub-regularizers are all rescaling invariant.

For any sequence of scalars {«; } such that such that Hk+11 a; = 1,let W; := «; W, . Then it holds that:

J1 Jpt1 k+1
Rl({wi}): Z Z | Haqw.hﬁl(ilvz)uz H H agw.jp+1‘)jp+1(ip+l’Z’p)2|| H O‘lJVVICJrIszJrl(:aZ.l)”2

(Gro-ngn) iy i1) g=1 pell—1] g=jp+1 q=ji+1

G([k]) e[dﬂl]x [dn]

k+1
= Ha Z Z W, —1(i1, D2 H W7p+1—>Jp+1(Zp+laZp) [Wrt1—ji41( i)ll®

=1 (i,eengr)  (ie01) pell—1]

E([llc]) e[djl]xmx[djl]

= Ri({W:})

Therefore, without loss of generality, we can express the induced regularizer as follows:

OM) = inf | RU{W}) (15)
W, < Ml
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Note that R({W,}) is a continuous function and the feasible set F := {(W;)** 1 : Wi 1 --- Wy =M, |[W,|r < [M||r}
is compact. Hence, by Weierstrass extreme value theorem, the infimum is attained.

Now let U € R¥+1%dk+1 and V € R%*4% be a pair of rotation matrices, i.e. U'U=UU" =TandV'V=VV' =1L
When the data is isotropic, i.e. C = I, the following equalities hold

k
RAWH =D X > >0 IWhmalid)l® [T Wit G 00) 2 Wi ()|
=1 (Jiyeengt)  (Gryeenrtin) p=1-1—1
e (1) " €ldy]xxds, ]
k
=S W) VI TT W1l i) U Wisagoa i)
=1 (Juse-s31) (215ee05%1) p=1---1—1

6([7']) e[djl}x»--x[dh}

=R(U Wy i1, Wg, -+, Wy, W, V)

That is, R(U Wyy1, Wy, ..., W2, W, V) = R(Wy41, Wy, ..., Wy, Wy) for all rotation matrices U and V. In particular,
let U, V be the left and right singular vectors of M, i.e. M = UXV . To prove that © is a spectral function, we need to show
that O(M) = ©(X). Let {W,}, {W,} be such that O(M) = R({W;}),0(X) = R({W;}). Note that such weight matrices
always exist since the infimum is always attained. Then

O()=0(U'MV) < R(U"Wii1,Wi,...,Wo,W1V) = R(Wy;1,Wg,..., Wy, W1) = O(M).

Similarly, we have that ©(M) < R(U Wy 41, Wy, ..., W2, W1 V) = R(Wry1, Wy, ..., Wy, W;) = O(X), which com-
pletes the proof. O

A.2. The induced regularizer and its convex envelope

Proof of Theorem 2.6. By Lemma 3.1, for any architecture, any dropout rate, and any set of weights {W; } that implements a
network map Wy1_,1, the explicit regularizer is lower bounded by the effective regularization parameter times the product
of the squared nuclear norm of the network map and the principal squared root of the second moment of x, i.e. R({W;}) >

V{d;} HWkJrlHlCé |2. Consequently, the induced regularizer can also be lowerbounded as ©(M) > (4.} ||MC% 2. On

the other hand, Lemma 3.2 establishes that ©**(M) < v¢g43 HMC% |2 holds for any network map M. Putting these two
inequalities together, we arrive at

O (M) < v,y IMC? |2 < O(M).

Since ©**(M) is the largest convex underestimator of ©(M), and the squared nuclear norm is a convex function, we
conclude that ©** (M) = v4,3 M2 O

Despite the complex form of the explicit regularizer given in Proposition 2.1, we can show that it is always lower bounded
. 1 . L
by effective regularization parameter times |MC?2 ||2. This result is given by Lemma 3.1.

Proof of Lemma 3.1. Recall that the explicit regularizer R({W,}) is composed of k sub-regularizers
R({W:}) = Ri({Wi}) + Ro({Wi}) + - + R ({Wi}).
The [-th sub-regularizer R;({W;}) can be written in the form of:
Rl({w’}) = /\l Z R{jlwn;jl}({wi})
Gt € (1)

where
Rijo gy (Wi} = 1C2 Wy o1 (i )P TT Wien o1 o i) I Waea o1 Gy i) |-

p=1---1—1
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The following set of equalities hold true:

Rijriy AW = 3 IWagamjist (i) IPWimgs 1 iy i1=1)? - Wiy 1 (i, 1) ]| C2 W, S (i, )2

Mo
2
> Hiel izi Wittt G i)Wy 1 (i r—1) |- Wy 41 (i, i) [|CF W, S (i1, 0|
s /
= l_Le[lqu ”Z“ Wit 1551 (i)Wt (it iim1) - Wi (i, i)W, S (i1, 1) TCE
- 11e ”;“W’““W“ ViOWi g (i 1) - Wiy (i, i)Wy, 5 (i) T CFJ2

1 . o o ) 1
= ﬁﬂzwkﬂ—nm(w) D> Wit (iniia) - Wiy (ia,in) | Wy oa(in, ) TC2 2
€Ty G 15eensia
1 ..
o, . ||ZWk+1—m Vi)W, _1, (i1, i)Wy, S (i1,2) TC2 |2
i€l Ji i1,i1
Wi Wi CH?
= 7 5 k41" 1 *
Hie[l] dji

where the first inequality follows due to the Cauchy-Schwartz inequality, and the second inequality follows from the triangle
inequality for the matrix norms. The inequality holds with equality if and only if all the summands inside the summation are

1
Wrt151C2 ||

e 4 ,1.e. when

equal to each other, and sum up to

o 1 . 1 1
W11 G i) 1TW im0 1 (s t—1) [ -+ [Wa oy 42 (2, ) [[[C2 W, 5 (i, 0) || = ﬁllwkﬂﬂcz\l*
i€[l] Vi

for all (4,...,41) € [d;,] % --- x [d},]. This lowerbound holds for all { € [k], and for all (j;,...,j1) € ([’l“]). Thus, we get
the following lowerbound on the regularizer:

1 1 1
RU{W:H =Y A ) ﬁ”wk—o—l—ﬂcz 1 = (a3 [Wii11C2 |2
€K (i) e() i€[l] “i

which completes the proof. O

Not only v¢4,) ||MC% |2 is a lowerbound for the induced regularizer, but also is an upperbound for its convex envelope. We
prove this result in Lemma 3.2.

Proof of Lemma 3.2. The induced regularizer is non-negative. Hence, the domain of the Fenchel dual of the induced
regularizer is the whole R%++1*do_ The Fenchel dual of the induced regularizer O(-) is given by:

O*(M) = max (M,P) — O(P)
= max (M, P) — ?1win R({W:})

Wk+1i1=P
= fax M, Wit151) — R({W,}). (16)

i

Define ®({W;}) := (M, Wyy1,1) — R({W,}) as the objective in the right hand side of Equation (16). Due to the
complicated products of the norms of the weights in the regularizer, maximizing ® with respect to {W,} is a daunting

. . _1 .
task. Here, we find a lower bound on this maximum value. Let W | := au; lt—irk and W := 14,v{ C~2, where (uy,vy) is
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the top singular vectors of MCfé, and 14 is the d-dimensional vector of all 1s. Furthermore, let W' := 1, 1;71 , for all
i €{2,...,k}. Note that

i

O (M) = max B({W,}) > max d((W: ).

We now simplify ®({W¢'}). First, the following equalities hold for the (M, Wy, ; ,;):

(M, Wiy ) = > MWE G [T Wl i) Wi (i) )
(i1, ) Eldi ] x[da] =11}
= > Wi Gy i) TMWS (i1, )
(Tht1seer21)Edpg1] XX [d1]
= Z auIMCfévl

(Tkt1500501) E[dp 1] X - X [d1]

= 3 aMC™E

(ik+1 ..... il)e[dk+1]><“-><[d1]

= a|MC2 ||y [ dj = aMC™3|,D.
JE[K]

The following terms show up in the expansion of the regularizer:

. _1
WG i (i, ) T = W (i, )W WEWE =1 gy 1 e dglg ta v = [ divicz

j1—1
i€[j1—1]
o4 - - _ @ . . o a o o
ij+1_’jp+1(zp+1’ ip) = Wit (ip+1, ')ijﬂ—l o 'ij+2wjp+1(~a ip)
— T T _ -
1d7p+1 11d7p+1 11d7p+1 2 1d7p+21d1p+1 1de+1 - H dz
i€{jp+1, jpr1—1}
« . g — « (% o «a Lo o T T B
W11 (i) = aWe Wi - WS LoWE L (5d) = aug g, a1, - 10l“+214“+11d“+1 —a H dou,

i€{ji+1, k}

With the above equalities, the explicit regularizer reduces to:

R({W{}) ZA’ > SooleEws @) IP TT W1 (o i) 2 W e (i) 1
ryeng)  (Gryeenyin) p=1---1—1
() €ldy,]x-x[dy, ]

k
=3y S ez I 4@l I1 I1 Elony [ dil?

=1 (jlv"'ajl) (ilv"‘vil) iE[j1—1] p=1---1—1 ie{jp+17"'ajp+l_1} ie{jl"l‘l;“',k}
E(Uf]) €ldj,Ix---x[dj;]

SNy Y el IO @ I«

=1 (ji,-s51) (i1,---y81) i€lji—1]  p=1l-l-1i€{jp+1, jpt1—1} i€{ji+1, Kk}
c [’;]) €ldj, 1% x[dy;]

_ 2 & AL Hie[k] df )
[dj,] * €l

=1 (Jus-- ,Jl)E( )(Hy i1)€[dj, ] x-x Ji

Plugging back the above equalities into the definition of ®, we arrive at &({W}) = aHMCfé |loD — a?p. The maximum

_1
of ®({W%}) with respect to « is achieved when a* = W, in which case we have

. D? .
0" (M) = ¢({W" }) = TpIIMCT\Ig = U(M).
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Since Fenchel dual is order reversing, we get
0™ (M) < ¥*(M)
P 1
=2 MC=2 |3

k l I, 1) 4i
_ 21:1 A Z(jl,,,,,jl)e(l’ﬁ) Z(i,, ..... i1)€ldy,]x-x[dj, ] Hi;” d?i
w4

DY > gl
x---x[dj, ]

1 (j“___m)e([lle])(il ..... i1)€[dy, ] i€ll] %

MC? |2

k
1 1
=> 2D = IMC= [
[Liep 4.

Grremndn) () Ji

1
= via;IMC? |2

where the first equality follows from the fact that if f(M) = 3||MA||? and A >~ O then f*(M) = ﬁ IMA™!||2. This result
is standard in the literature, but we prove it here for completeness. Note that

(Y,M) = B YA|* = (YA,MA™") — B||YA|?
< [IYA[[IMAT! . — Bl YA|?

where the inequality is due to Holder’s identity. The right hand side above is a quadratic in || YA|| and is maximized when
IYA| = 55[MA™"|., in which case we have

1 1 1
*(M) = sup(Y,M) — B||[YA|? = = |MA|l.|IMA~} . — B(==MATY.)? = —|MA™Y|2.
1 (M) = sup(Y, M) = BI[YA" = 5]l [l I = A4 1) = 751 I

A.3. Characterization of the global optima of the dropout objective

Proof of Proposition 3.3. When the network map has rank equal to one, it can be expressed as uv ', where u € R%+1 and
v € R9. We show that for any architecture {d;} and any network mapping uv' &€ Ré+1*do it js always possible to

. . . . 1
represent uv'! = Wi41 - - - Wy such that the resulting network is equalized. One such factorization is when W; = f/lgv s
1
ul g, la;1g, . .
Wi = N and W; = Jid s fori € {2,...,k}. For these weight parameters, we have that
T T T
1d_7~1_1 1¢ij1—1ld~ 1d21d1 ldIVT V—r

Wi (in, )T = W (i0,) TWy, - W Wy = -
e " " Vi dj, 1 \/dj, 1dj, o Vdady Vdi o \/dj,
ij+14)jp+1 (ip+1> ip) = ij+1 (ip+1> :)ijp+171 e 'ij+2wjp+1(:’ ip)

1T ‘ T 1, 17 | L
djpp1—1 Jpt1—1 dj, g -2 p+2 1 djp+1

V&pr i1 iy 1di 2/ 2dj 0 /dj dy,  /dj, L d,
Wi1—i41(5%) = Wit Wi - Wi 10W5 41 (5,4)
T T T
uldk ldkldk—l 1d1’z+21djl+1 1dj,+1 u

~ Vx Vardi N dredy Vd1dy, B Vd;

1g




Dropout and Nuclear Norm Regularization

With the above equalities, the regularizer reduces to:

1 . . . .
R({Wi}) = Z/\l > > IC2W 1 (i )P T Wiparosdp it Gprns i) W1y 41 G i) |2
tseeg1)  (Bryeantn) p=1--1—1
() eldy 1% x[dy,

k
1V 1 u
SOOI DI DI S | e b
=1 (iyeesg1)  (iyenyin) J1 p=1..q—1 Jet1iTp i
e([’lv] e[djl]X"'X[djl]

k 1

[C2v]*[u]]?

S UD DR SR e

I=1  (iyongi)  Giryesin) pe(l] “p
e(15) " €ldy1x-x[d;,]

l

k
A 1 1
=2 3 g O = v TR
pe(l

Il

—
—
Q
<,
=
Z

1 1
where we used the fact that ||u]|||C2v|| = |juv' C?|.. Moreover, note that the network specified by the above weight
matrices is equalized, since

1
luvTCz|2

1
- hTCH.
Wewd, Thewdi,

gl T 1Bollvinal =

p=1---1—1
O
Lemma A.3. For any integer r, and for any v € R, it holds that
Ty—1 . T
I +vl )" =1, — 1.1, .
1+4+rv
Lemma A.3 is an instance of the Woodbury’s matrix identity. Here, we include a proof for completeness.
Proof of Lemma A.3. The proof simply follows from the following set of equations.
(I, +v1,17)(1 L) =1 + w11 — —2—1,17 T
r T Vgl r rly ) = 1p vipgl, — r - rly lpl,
1+7rv 1+rv "7 147y
2
—1, + (y— v.o_rr )mjzlr
14+rv 14+rv
O

Lemma A.4. Consider the following optimization problem where the induced regularizer in Problem 3 is replaced with its
convex envelope:

min E[lly — Wx||2] + 0" (W), rank(W)< min d; =:r 17
WeR%+1%do i€[k+1]

Define the “model” M := nyC_%. The global optimum of problem 17 is given as M* = S, (M)C_%, where o, =
V{d;} Z?:l o; (M)

e and p € [min{r,rank (M)}] is the largest integer such that for all i € p], it holds that o;(M) > .

(W) :=E[[ly—Wx]]?]

Proof of Lemma A.4. Denote the objective in the optimization problem (17) as €, ,
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Let Cy := E[yy "] and Cyy := E[xy | Note that

. . 1
min_ &, (W)= min_ E[|y|] +E[|Wx|?] — 2E[ly, Wx)] + (4, [WC? |

rank(W)<r rank(W)<r
= Egin)< Tr (E[Wxx " WT]) — 2Tr (E[WxyT)) +y{di}||WC%||3
rank(W)<r
= in Tr(WCW') — 2Tr (WC, LIWCE |12
iR T (WEWT) = 2T (WCsy) + va W32

Make the change of variable W + WC? and denote M := CyXC_%, the goal is to solve the following problem

. — S = . W 5
min Tr(ww )—QW,M Fra W2 min M — W2+ vy [W]2 (18)
mn M) v0a [ WIE = min =W v V)

If W is a solution to the above problem, then a solution to the original problem in Equation (17) is given as WC 2.
Following (Cavazza et al., 2018; Mianjy et al., 2018), we show that the global optimum of Problem 18 is given in terms of
an appropriate shrinkage-thresholding on the spectrum of M. Define 7’ := max{rank (M) ,7}. Let M = Uy Xy V,; and
W = Uy Sy Vy, be rank-r’ SVDs of M and W respectively, such that o;(M) > o;11(M) and o;(W) > o1 (W) for all
i1 € [’ — 1]. Rewriting objective of Problem 18 in terms of these decompositions gives:

IM = W% + v (W2 = [UgE0Vy — UsSwVylle + vy

= |1Zx — USe V' IIE + viap 12012

= |ZallF + 1Zwl% - 2(S0, USwV'T) + vy 1S

U Sw Vi ll2

where U’ = U]\T,IU\,*v and V' = VI\T,IVW. By Von Neumann’s trace inequality, for a fixed X we have that

’

(S USgVT) <3 0,(M)oy (W),

i=1
where the equality is achieved when Uy, = U and Vi = V. Hence, problem 18 is reduced to

T

. 2

min_ || Sy — Syll? + v,y (Trace(Sy))* = min Y (A(M) = 6:)° +vgay | Y o

IZylo<r. oER] Pt
wZ

The Lagrangian is given by

r

L(z,a) = Z (\i(M) —7,)” + V{d;} <Z Ui) - Z ;0
i=1 i=1

=1

The KKT conditions ensures that at the optima it holds for all ¢ € [r] that

7i >0, a; >0, 503 =0, 2(5; — 0i(M)) + 2v44, Z@' —a; =0
j=1

Let p = |i : 6; > 0| < r be the number of nonzero G, i.e. rank of the global optimum W. Fori € [p], we have «; = 0.
Therefore, we have that:

Gi ey Yy 05 =0i(M) = (I, +v(a,y1,1,] )51, = 01,,(M)
j=1
_ _ Z/{di}plip 1

_ Vid;
= 01, = (I, - #IPIT)O’LP(M) = 01,p(M) — 1+ prian p
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where k; == % 25:1 o;(M). The equation above tell us that for i € [p], the singular values of W are just a shrinkage of
the singular values of M. In particular, it means that p < rank (M). Therefore, without loss of generality, we assume that
r < rank (M). Also, since &; > 0 for all i € [p], it holds that o; (M) > ffrd;,if:’; foralli € [p]. Fori € {p+1,...,7},0n
the other hand, ; = 0 and we have

1 B " _ _ Vid;} P _ _ _ Vid;}PKp
—; = 0; + Vyq, 0;j—oiM) =04 ———— o;iM) —o;(M) = —0;(M) + ———,
3 {dl};J (M) pr{di}; §() = oi(M) = —o (M) + 0
J J
where we used the fact that
R e e
i = Lp = i -7 =0 )k =7
P e & 1+ pria;y Lt prgay " 1+ prgay
By dual feasibility, we conclude that o;(M) < % foralli € {p+1,...,r}, which completes the proof. O

Proof of Theorem 2.7. Consider W*, a global optimum of problem 3. If all such global optima can be implemented by
equalized networks, then by Theorem 2.6 it holds that O(W*) = ©**(W*) = v ||W*C% |2. In this case, the lifted
problem in Equation 3 boils down to the following convex problem

min  E[|y — Wx|?] + (4} [WCZ |2, rank (W) < min d; =: 7. (19)
WeR%k+1%d0 i€[k+1]

Proposition 3.3, on the other hand, states that any rank-1 network map can be implemented by an equalized network.

Therefore, the key idea of the proof is to make sure that the global optimum of problem 19 has rank equal to one.

V{d;}o 1(M)
I+via;y

It suffices to notice that under the assumption o1 (M) — oo(M) > V{i_} o2(M), it holds that oy (M) > and

;M) < Va3 o1 (M) for all j > 1. In this case, using Lemma A.4, the solution S, (M)C_% has rank equal to one, which
J I4+via;) 1

completes the proof. O



