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Abstract

We give a formal and complete characterization
of the explicit regularizer induced by dropout in
deep linear networks with squared loss. We show
that (a) the explicit regularizer is composed of an
`2-path regularizer and other terms that are also re-
scaling invariant, (b) the convex envelope of the
induced regularizer is the squared nuclear norm
of the network map, and (c) for a sufficiently large
dropout rate, we characterize the global optima of
the dropout objective. We validate our theoretical
findings with empirical results.

1. Introduction
Deep learning is revolutionizing the technological world
with recent advances in artificial intelligence. However, a
formal understanding of when or why deep learning algo-
rithms succeed has remained elusive. Recently, a series of
works focusing on computational learning theoretic aspects
of deep learning have implicated inductive biases due to
various algorithmic choices to be a crucial potential explana-
tion (Zhang et al., 2016; Gunasekar et al., 2018a; Neyshabur
et al., 2014; Martin & Mahoney, 2018; Mianjy et al., 2018).
Here, we examine such an implicit bias of dropout in deep
linear networks.

Dropout is a popular algorithmic approach that helps train-
ing deep neural networks that generalize better (Hinton et al.,
2012; Srivastava et al., 2014). Inspired by the reproduction
model in the evolution of advanced organisms, dropout
training aims at breaking co-adaptation among neurons by
dropping them independently and identically according to a
Bernoulli random variable.

Here, we restrict ourselves to simpler networks; we con-
sider multi-layered feedforward networks with linear activa-
tions (Goodfellow et al., 2016). While the overall function
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is linear, the representation in factored form makes the op-
timization landscape non-convex and hence, challenging
to analyze. More importantly, we argue that the fact we
choose to represent a linear map in a factored form has im-
portant implications to the learning problem, akin in many
ways to the implicit bias due to stochastic optimization al-
gorithms and various algorithmic heuristics used in deep
learning (Gunasekar et al., 2017; Li et al., 2018; Azizan &
Hassibi, 2019).

Several recent works have investigated the optimization
landscape properties of deep linear networks (Baldi &
Hornik, 1989; Saxe et al., 2013; Kawaguchi, 2016; Hardt &
Ma, 2016; Laurent & Brecht, 2018), as well as the implicit
bias due to first-order optimization algorithms for training
such networks (Gunasekar et al., 2018b; Ji & Telgarsky,
2018), and the convergence rates of such algorithms (Bartlett
et al., 2018; Arora et al., 2018). The focus here is to have a
similar development for dropout when training deep linear
networks.

1.1. Notation

For an integer i, [i] represents the set {1, . . . , i}, ei denotes
the i-th standard basis, and 1i ∈ Ri is the vector of all ones.
The set of all k-combinations of a set S is denoted by

(S
k

)
.

We denote linear operators and vectors by Roman capital
and lowercase letters, respectively, e.g. Y and y. Scalar
variables are denoted by lower case letters (e.g. y) and sets
by script letters, e.g. Y . We denote the `2 norm of a vector
x by ‖x‖. For a matrix X, ‖X‖F denotes the Frobenius
norm, ‖X‖∗ denotes the nuclear norm, and σi(X) is the i-th
largest singular value of matrix X. For X ∈ Rd2×d1 and a
positive definite matrix C ∈ Rd1×d1 , ‖X‖2C := Tr

(
XCX>

)
.

The standard inner product between two matrices X,X′,
is denoted by 〈X,X′〉 := Tr

(
X>X′

)
. We denote the i-th

column and the j-th row of a matrix X with vectors x:i and
xj:, both in column form. The vector of diagonal elements
of X is denoted as diag (X). The diagonal matrix with
diagonal entries as the elements of a vector x is denoted as
diag (x). With a slight abuse of notation, we use {Wi} as a
shorthand for the tuple (W1, . . . ,Wk+1).
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Table 1. Key terms, corresponding symbols, and descriptions.

Term Symbol Description

architecture {di} (d0, . . . , dk+1)

implementation {Wi} (W0, . . . ,Wk+1)

network map Wk+1→1 Wk+1Wk · · ·W1

population risk L({Wi}) Ex,y[‖y−Wk+1→1x‖2]

dropout objective Lθ({Wi}) see Equation (1)

explicit regularizer R({Wi}) Lθ({Wi})−L({Wi})

induced regularizer Θ(M) see Equation (2)

1.2. Problem Setup

We consider the hypotheses class of multilayer feed-forward
linear networks with input dimension d0, output dimension
dk+1, k hidden layers of widths d1, . . . , dk, and linear trans-
formations Wi ∈ Rdi×di−1 , for i = 1, . . . , k + 1 :

L{di} = {g : x 7→Wk+1 · · ·W1x, Wi ∈ Rdi×di−1}.

We refer to the set of k + 1 integers {di}k+1
i=0 specifying

the width of each layer as the architecture of the func-
tion class, the set of the weight parameters {Wi}k+1

i=1 as
an implementation, or an element of the function class, and
Wk+1→1 := Wk+1Wk · · ·W1 as the network map.

The focus here is on deep regression with dropout under
`2 loss, which is widely used in computer vision tasks, in-
cluding human pose estimation (Toshev & Szegedy, 2014),
facial landmark detection, and age estimation (Lathuilière
et al., 2019). More formally, we study the following learn-
ing problem for deep linear networks. Let X ⊆ Rd0

and Y ⊆ Rdk+1 denote the input feature space and the
output label space, respectively. Let D denote the joint
probability distribution on X × Y. We assume that E[xx>]
has full rank. Given a training set {xi, yi}ni=1 drawn i.i.d.
from the distribution D, the goal of the learning problem
is to minimize the population risk under the squared loss
L({Wi}) := Ex,y[‖y−Wk+1→1x‖2]. Note that the popula-
tion risk L depends only on the network map and not the spe-
cific implementations of it, i.e. L({Wi}) = L({W′i}) for
all Wk+1 · · ·W1 = W′k+1 · · ·W′1. For that reason, with a
slight abuse of notation we write L(Wk+1→1) := L({Wi}).

Dropout is an iterative procedure wherein at each iteration
each node in the network is dropped independently and
identically according to a Bernoulli random variable with
parameter θ. Equivalently, we can view dropout, algorith-
mically, as an instance of stochastic gradient descent for
minimizing the following objective over {Wi}:

Lθ({Wi}) := E(x,y,{bi})[‖y− W̄k+1→1x‖2], (1)

where W̄i→j := 1
θk

WiBi−1Wi−1 · · ·BjWj , and Bl =

diag ([bl(1), . . . , bl(dl)]) represents the dropout pattern in
the lth layer with Bernoulli random variables on the diag-
onal; if Bl(i, i) = 0 then all paths from the input to the
output that pass through the ith hidden node in the lth layer
are turned “off”, i.e., those paths have no contribution in
determining the output of the network for that instance of
the dropout pattern; we refer to the parameter 1− θ as the
dropout rate. W̄i→j is an unbiased estimator of Wi→j , i.e.
E{bi}[W̄i→j ] = Wi→j .

We say that the dropout algorithm succeeds in training a net-
work if it returns a map Wk+1→1 that (approximately) min-
imizes Lθ. In this paper, the central question under investi-
gation is to understand which network maps/architectures is
a successful dropout training biased towards.

To answer this question, we begin with the following simple
observation that

Lθ({Wi})=L({Wi})+E(x,{bi})‖Wk+1→1x− W̄k+1→1x‖2

In other words, the dropout objective is composed of
the population risk L({Wi}) plus an explicit regularizer
R({Wi}) := E(x,y,{bi})[‖Wk+1→1x − W̄k+1→1x‖2] in-
duced by dropout. Denoting the second moment of x by
C := E[xx>], we note that R({Wi}) = E{bi}[‖Wk+1→1 −
W̄k+1→1‖2C]. Since any stochastic network map specified
by W̄k+1→1 is an unbiased estimator of the network map
specified by Wk+1→1, the explicit regularizer captures the
variance of the network implemented by the weights {Wi}
under Bernoulli perturbations. By minimizing this variance
term, dropout training aims at breaking co-adaptation be-
tween hidden nodes – it biases towards networks whose
random sub-networks yield similar outputs (Srivastava et al.,
2014).

If {W∗i } is an infimum of (1), then it minimizes the
explicit regularizer among all implementations of the
network map, M = W∗k+1 · · ·W∗1, i.e., R({W∗i }) =

inf
Wk+1···W1=M

R({Wi}). We refer to the infimum of the ex-

plicit regularizer over all implementations of a given net-
work map M as the induced regularizer:

Θ(M) := inf
Wk+1···W1=M

R({Wi}) (2)

The domain of the induced regularizer Θ is the linear
maps implementable by the network, i.e., the set {M :
rank (M) ≤ mini di}. Since the infimum of the induced
regularizer is always attained (see Lemma A.2 in the ap-
pendix), we can equivalently study the following problem to
understand the solution to Problem 1 in terms of the network
map:

min
M

L(M) + Θ(M), rank (M) ≤ min
i∈[k+1]

di. (3)

To characterize which networks are preferable by dropout
training, one needs to understand the explicit regularizer
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R, understand the induced regularizer Θ, and explore the
global minima of Problem 3. In this regard, we make several
important contributions summarized as follows.

1. We derive the closed form expression for the explicit
regularizer R({Wi}) induced by dropout training in
deep linear networks. The explicit regularizer is com-
prised of the `2-path regularizer as well as other rescal-
ing invariant sub-regularizers.

2. We show that the convex envelope of the induced reg-
ularizer is proportional to the squared nuclear norm
of the network map, generalizing a similar result for
matrix factorization (Cavazza et al., 2018) and sin-
gle hidden layer linear networks (Mianjy et al., 2018).
Furthermore, we show that the induced regularizer
equals its convex envelope if and only if the network
is equalized, a notion that quantitatively measures co-
adaptation between hidden nodes (Mianjy et al., 2018).

3. We completely characterize the global minima of the
dropout objective Lθ in Problem 1 despite the objective
being non-convex, under a simple eigengap condition
(see Theorem 2.7). This gap condition depends on the
model, the data distribution, the network architecture
and the dropout rate, and is always satisfied by deep
linear network architectures with one output neuron.

4. We empirically verify our theoretical findings.

The rest of the paper is organized as follows. In Section 2,
we present the main results of the paper. In Section 3, we
discuss the proof ideas and the key insights. Section 4
details the experimental results and Section 5 concludes
with a discussion of future work. We refer the reader to
Table 1 for a quick reference to the most useful notation.

2. Main Results
2.1. The explicit regularizer

In this section, we give the closed form expression for the
explicit regularizer R({Wi}), and discuss some of its im-
portant properties.

Proposition 2.1. The explicit regularizer is composed of k
sub-regularizers: R({Wi}) =

∑
l∈[k] λ

lRl({Wi}), where
λ := 1−θ

θ . Each of the sub-regularizers has the form:

Rl({Wi}) =
∑

(jl,...,j1)

∈([k]
l )

∑
(il,...,i1)

∈[djl ]×···×[dj1 ]

α2
j1,i1

∏
p=1···l−1

β2
pγ

2
jl,il

where αj1,i1 := ‖Wj1→1(i1, :)‖C, βp :=
Wjp+1→jp+1(ip+1, ip), and γjl,il := ‖Wk+1→jl+1(:, il)‖.

Understanding the regularizer. For simplicity, we as-
sume here the case where the data distribution is whitened,
i.e. C = I. This assumption is by no means restrictive, as
we can always redefine W1 ←W1C

1
2 to absorb the second

moment the first layer. Moreover, it is a common practice
to whiten the data as a preprocessing step.

The l-th sub-regularizer, i.e. Rl({Wi}), partitions the net-
work graph (see Figure 1) into l + 1 subgraphs. This par-
titioning is done via the choice of l pivot layers, a set of
l distinct hidden layers, indexed by (j1, . . . , jl) ∈

(
[k]
l

)
.

The sub-regularizer enumerates over all such combinations
of pivot layers, and pivot nodes within them indexed by
(i1, . . . , il) ∈ [dj1 ] × · · · × [djl ]. For a given set of pivot
layers and pivot nodes, the corresponding summand in the
sub-regularizer is a product of three types of terms: a “head”
term αj1,i1 , “middle” terms βp, p ∈ [l−1], and “tail” terms
γjl,il . It is easy to see that each of the head, middle and tail
terms computes a summation over product of the weights
along certain walks on the (undirected) graph associated
with the network (see Figure 1). For instance, a head term

αj1,i1 =
∑
i0∈[d0]

∑
i′1,i
′
2,...,i

′
j1−1

i′′j1−1,...,i
′′
2 ,i
′′
1

W1(i′1, i0)W2(i′2, i
′
1) · · ·

Wj1(i1, i
′
jl−1)Wj1(i1, i

′′
jl−1) · · ·W2(i′′2 , i

′′
1)W1(i′′1 , i0),

is precisely the sum of the product of all weights along all
walks from i0 in the input layer to i1 in layer j1 and back

to i0, i.e., walks from i0
i′1,i
′
2,...,i

′
j1−1−−−−−−−−→ i1

i′′j1−1,...,i
′′
2 ,i
′′
1−−−−−−−−−→ i0.

Similarly, middle terms are the sum of the product of the

weights along ip
i′1,i
′
2,...,i

′
j1−1−−−−−−−−→ ip+1

i′′j1−1,...,i
′′
2 ,i
′′
1−−−−−−−−−→ ip.

A few remarks are in order.

Remark 2.2. For k = 1, the explicit regularizer reduces to

R(W2,W1) = λ

d1∑
i=1

‖W1(:, i)‖2‖W2(i, :)‖2,

which recovers the regularizer studied by the previous work
of Cavazza et al. (2018) and Mianjy et al. (2018) in the
setting of matrix factorization and single hidden layer linear
networks, respectively.

Remark 2.3. All sub-regularizers, and consequently the
explicit regularizer itself are rescaling invariant. That is,
for any given implementation {Wi}, and any sequence of
scalars α1, . . . , αk+1 such that

∏
i αi = 1, it holds that

Rl({Wi}) = Rl({αiWi}). In particular, Rk equals

Rk({Wi}) =
∑

ik,...,i1

‖W1(i1, :)‖2W2(i2, i1)2

W3(i3, i2)2 · · ·Wk(ik, ik−1)2‖Wk+1(:, ik)‖2.
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Figure 1. Illustration of the explicit regularizer as given in Proposition 2.1 for k = 9, l = 3, (i1, i2, i3) = (2, 3, 2) and (j1, j2, j3) =
(2, 5, 7). The head term α2

j1,i1 corresponds to the summation over the product of the weights on any pairs of path from an input node to
i1-th node in the j1-th hidden layer. Similarly, the tail term γ2

jl,il
accounts for the product of the weights along any pair of path between

the output and the il-th node in the jl-th hidden layer. Each of the middle terms β2
p , accumulates the product of of the weights along pair

of path between ip-th node in the (jp + 1)-th hidden layer and the ip+1-th node in the jp+1-th hidden layer.

Note that Rk({Wi}) = ψ2
2(Wk+1, . . . ,W1), the `2-

path regularizer, which which has been recently studied
in (Neyshabur et al., 2015b) and (Neyshabur et al., 2015a).

2.2. The induced regularizer

In this section, we study the induced regularizer as given by
the optimization problem in Equation (2). We show that the
convex envelope of Θ factors into a product of two terms:
a term that only depends on the network architecture and
the dropout rate, and a term that only depends on the net-
work map. These two factors are captured by the following
definitions.

Definition 2.4 (effective regularization parameter). For
given {di} and λ, we refer to the following quantity as
the effective regularization parameter:

ν{di} :=
∑
l∈[k]

∑
(jl,...,j1)∈([k]

l )

λl∏
i∈[l] dji

.

We drop the subscript {di} whenever it is clear from the
context.

The effective regularization parameter naturally arises when
we lowerbound the explicit regularizer (see Equation (5)).
It is only a function of the network architecture and the
dropout rate and does not depend on the weights – it in-

creases with the dropout rate and the depth of the network,
but decreases with the width.

Definition 2.5 (equalized network). A network implemented
by {Wi}k+1

i=1 is said to be equalized if ‖Wk+1 · · ·W1C
1
2 ‖∗

is equally distributed among all the summands in Propo-
sition 2.1, i.e. for any l ∈ [k], (jl, . . . , j1) ∈

(
[k]
l

)
, and

(il, . . . , i1) ∈ [djl ]× · · · × [dj1 ] it holds that

|αj1,i1β1 · · ·βl−1γjl,il | =
‖Wk+1 · · ·W1C

1
2 ‖∗

Πldjl
.

We are now ready to state the main result of this section.
Recall that the convex envelope of a function is the largest
convex under-estimator of that function. We show that
irrespective of the architecture, the convex envelope of the
induced regularizer is proportional to the squared nuclear
norm of the network map times the principal root of the
second moment.

Theorem 2.6 (Convex Envelope). For any architecture
{di} and any network map M ∈ Rdk+1×d0 implementable
by that architecture, it holds that:

Θ∗∗(M) = ν{di}‖MC
1
2 ‖2∗

Furthermore, Θ(M) = Θ∗∗(M) if and only if the network is
equalized.
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This result is particularly interesting because it connects
dropout, an algorithmic heuristic to avoid overfitting, to nu-
clear norm regularization, which is a classical regularization
method with strong theoretical foundations. We remark that
a result similar to Theorem 2.6 was recently established for
matrix factorization (Cavazza et al., 2018).

2.3. Global optimality

Theorem 2.6 provides a sufficient and necessary condition
under which the induced regularizer equals its convex enve-
lope. If any network map can be implemented by an equal-
ized network, then Θ(M) = Θ∗∗(M) = ν{di}‖MC

1
2 ‖2∗, and

the learning problem in Equation (3) is a convex program.
In particular, for the case of linear networks with single hid-
den layer, Mianjy et al. (2018) show that any network map
can be implemented by an equalized network, which en-
ables them to characterize the set of global optima under the
additional generative assumption y = Mx. However, it is
not clear if the same holds for general deep linear networks
since the regularizer here is more complex. Nonetheless, the
following result provides a sufficient condition under which
global optima of Lθ({Wi}) are completely characterized.

Theorem 2.7. Let Cyx := E[yx>] and C := E[xx>], and
denote M̄ := CyxC−

1
2 . If σ1(M̄)− σ2(M̄) ≥ 1

νσ2(M̄), then
M∗, the global optimum of Problem 3, is given by

W∗k+1→1 = S νσ1(M̄)
1+ν

(M̄)C−
1
2 ,

where Sα(M̄) shrinks the spectrum of matrix M̄ by α and
thresholds it at zero. Furthermore, it is possible to imple-
ment M∗ by an equalized network {W∗i } which is a global
optimum of Lθ({Wi}).

The gap condition in the theorem above can always be sat-
isfied (e.g. by increasing the dropout rate or the depth, or
decreasing the width) as long as there exists a gap between
the first and the second singular values of M̄. Moreover, for
the special case of deep linear networks with one output
neuron (Ji & Telgarsky, 2018; Nacson et al., 2018), this con-
dition is always satisfied since M̄ ∈ R1×d0 and σ2(M̄) = 0.

Corollary 2.8. Consider the class of deep linear networks
with a single output neuron. Let {W∗i } be a minimizer
of Lθ. For any architecture {di} and any network map
Wk+1→1, it holds that: (1) Θ(Wk+1→1) = ν‖Wk+1→1‖2C,
(2) W∗k+1→1= 1

1+νCyx, (3) the network specified by {W∗i }
is equalized.

We conclude this section with a remark. We know from the
early work of (Srivastava et al., 2014) that feature dropout
in linear regression is closely related to ridge regression.
Corollary 2.8 generalizes the results of (Srivastava et al.,
2014) to deep linear networks, and establishes a similar
connection between dropout training and ridge regression.

3. Proof Ideas
Here, we sketch proofs of the main results from Section 2;
complete proofs are deferred to the supplementary.

Sketch of the Proof of Theorem 2.6 The key steps are:

1. First, in Lemma 3.1, we show that for any set
of weights {Wi}, it holds that R({Wi}) ≥
ν{di}‖Wk+1→1C

1
2 ‖2∗. In particular, this implies that

Θ(M) ≥ ν{di}‖MC
1
2 ‖2∗ holds for any M.

2. Next, in Lemma 3.2, we show that Θ∗∗(M) ≤
ν{di}‖MC

1
2 ‖2∗ holds for all M.

3. The claim is implied by Lemmas 3.1 and 3.2, and the
fact that ‖ · ‖2∗ is a convex function.

Lemma 3.1. Let {Wi} be an arbitrary set of weights. The
explicit regularizer R({Wi}) satisfies

R({Wi}) ≥ ν{di}‖Wk+1Wk · · ·W1C
1
2 ‖2∗,

and the equality holds if and only if the network is equalized.

We sketch the proof for isotropic distributions (C = I), and
emphasize the role of equalization and effective regulariza-
tion parameter.

Sketch of the Proof of Lemma 3.1 We show that each
term in the explicit regularizer is lower bounded by some
multiple of the square of the nuclear norm of the linear map
implemented by the network. We begin by lower bounding
a particular summand in the expansion of Rl({Wi}) given
in Proposition 2.1 with indices j1, . . . , jl:

R{jl,...,j1}({Wi}) =
∑
il,...,i1

α2
j1,i1

∏
p=1···l−1

β2
pγ

2
jl,il

≥ 1

Πldjl

 ∑
il,...,i1

|αj1,i1β1 · · ·βl−1γjl,il |

2

,

where the inequality follows due to Cauchy-Schwartz in-
equality and holds with equality if and only if all the sum-
mands in φ :=

∑
il,...,i1

|αj1,i1β1 · · ·βl−1γjl,il | are equal
for all il, . . . , i1 ∈ [djl ]× · · · × [dj1 ]. At the same time, we
have that

φ =
∑
il,...,i1

‖Wk+1→jl+1(:, il)‖|β1 · · ·βl−1|‖Wj1→1(i1, :)‖

(a)
=

∑
il,...,i1

‖Wk+1→jl+1(:, il)β1 · · ·βl−1Wj1→1(i1, :)
>‖∗

≥ ‖
∑
il,...,i1

Wk+1→jl+1(:, il)β1 · · ·βl−1Wj1→1(i1, :)
>‖∗

(b)
= ‖Wk+1 · · ·W1‖∗
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where (a) follows since the outer product inside the nuclear
norm has rank equal to 1, the inequality is due to the triangle
inequality for matrix norms, and (b) follows trivially. In
fact, the inequality above holds if each of the summands in
(a) are equal to

|αj1,i1β1 · · ·βl−1γjl,il | =
‖Wk+1 · · ·W1‖∗

Πldjl
(4)

for all il, . . . , i1 ∈ [djl ] × · · · × [dj1 ]. Each of the
sub-regularizers can be lowerbounded by noting that
Rl({Wi}) =

∑
jl,...,j1

R{jl,...,j1}({Wi}).

Lemma 3.1 is central to our analysis for two reasons. First,
it gives a sufficient and necessary condition for the induced
regularizer to equal the square of the nuclear norm of the
network map. This also motivates the concept of equalized
networks in Definition 2.5. We note that for the special
case of single hidden layer linear networks, i.e., for k=1,
this lower bound can always be achieved (Mianjy et al.,
2018); it remains to be seen whether the lower bound can
be achieved for deeper networks. Second, summing over
{jl, . . . , j1} ∈

(
[k]
l

)
, we conclude that

Rl({Wi}) ≥
∑

jl,...,j1

‖Wk+1→1‖2∗∏
l djl

=: LBl({Wi}). (5)

The right hand side above is the lowerbound for l-th subreg-
ularizer, denoted by LBl. Summing over l ∈ [k], we get the
following lowerbound on the explicit regularizer

R({Wi}) ≥ ‖Wk+1→1‖2∗
∑
l

∑
jl,...,j1

λl∏
l djl︸ ︷︷ ︸

ν{di}

(6)

which motivates the notion of effective regularization pa-
rameter in Definition 2.4. As an immediate corollary of
Lemma 3.1, it holds that for any matrix M we have that
Θ(M) ≥ ν{di}‖M‖2∗. We now focus on the biconjugate of
the induced regularizer, and show that it is upper bounded by
the same function, i.e. the effective regularization parameter
times the square of the nuclear norm of the network map.
Lemma 3.2. For any architecture {di} and any network
map M, it holds that Θ∗∗(M) ≤ ν{di}‖MC

1
2 ‖2∗.

To convey the main ideas of the proof, here we include a
sketch for the simple case of k = 2, d1 = d2 = d under the
isotropic assumption (C = I); for the general case, please
refer to the appendix.

Sketch of the proof of Lemma 3.2 First, the induced reg-
ularizer is non-negative, so the domain of Θ∗ is Rdk+1×d0 .
The Fenchel dual of the induced regularizer Θ(·) is given by:

Θ∗(M) = max
P
〈M,P〉 −Θ(P)

= max
P
〈M,P〉 − min

W3,W2,W1
W3→1=P

R(W3,W2,W1)

= max
W3,W2,W1

〈M,W3→1〉 −R(W3,W2,W1), (7)

Denote the objective in (7) by Φ(W3,W2,W1) :=
〈M,W3→1〉 −R(W3,W2,W1). Let (u1, v1) be the top sin-
gular vectors of M. For any α ∈ R, consider the following
assignments to the weights: Wα

1 = αu11>d ,Wα
2 = 1d1>d and

Wα
3 = 1dv>1 . Note that

max
W3,W2,W1

Φ(W3,W2,W1) ≥ max
α

Φ(Wα
3 ,W

α
2 ,W

α
1 ).

We can express the objective on the right hand side merely
in terms of α, d and ‖M‖2 as follows:

R(Wα
3 ,W

α
2 ,W

α
1 ) = λ

d∑
i=1

‖Wα
1 (i, :)‖2‖Wα

3→2(:, i)‖2

+ λ

d∑
i=1

‖Wα
2→1(i, :)‖2‖Wα

3 (:, i)‖2

+ λ2
d∑

i,j=1

‖Wα
1 (i, :)‖2Wα

2 (j, i)2‖Wα
3 (:, j)‖2

= 2λα2d3 + λ2α2d2.

Similarly, the inner product 〈M,Wα
3→1〉 reduces to

〈M,Wα
3→1〉 =

d∑
i,j=1

〈M,Wα
3 (:, j)Wα

2 (j, i)Wα
1 (i, :)>〉

=

d∑
i,j=1

αu>1 Mv1 = αd2‖M‖2.

Plugging back the above equalities in Φ we get:

Φ(Wα
3 ,W

α
2 ,W

α
1 ) = αd2‖M‖2 − 2λα2d3 − λ2α2d2.

Maximizing the right hand side above with respect to α

Θ∗(M) ≥ max
α

Φ(Wα
3 ,W

α
2 ,W

α
1 ) =

d2

4(2λd+ λ2)
‖M‖22.

Since Fenchel dual is order reversing, we get

Θ∗∗(M) ≤ 2λd+ λ2

d2
‖M‖2∗ = ν{d,d}‖M‖2∗, (8)

where we used the basic duality between the spectral norm
and the nuclear norm. Lemma 3.1 implies that the biconju-
gate Θ∗∗(M) is lower bounded by ν{d,d}‖M‖2∗, which is a
convex function. On the other hand, inequality (8) shows
that the biconjugate is upper bounded ν{d,d}‖M‖2∗. Since
square of the nuclear norm is a convex function, and that
Θ∗∗(·) is the largest convex function that lower bounds Θ(·),
we conclude that Θ∗∗(M) = ν{d,d}‖M‖2∗.

Sketch of the proof of Theorem 2.7 In light of Theo-
rem 2.6, if the optimal network map W∗k+1→1, i.e. the opti-
mum of the problem in Equation 3 can be implemented by an



Dropout and Nuclear Norm Regularization

equalized network, then Θ(W∗k+1→1) = Θ∗∗(W∗k+1→1) =

ν{di}‖W
∗
k+1→1C

1
2 ‖2∗. Thus, the learning problem essen-

tially boils down to the following convex program:

min
W

Ex,y[‖y−Wx‖2] + ν{di}‖WC
1
2 ‖2∗. (9)

Following the previous work of (Cavazza et al., 2018;
Mianjy et al., 2018), we show that the solution to prob-
lem (9) can be given as W∗ = Sαρ(CyxC−

1
2 )C−

1
2 , where

αρ :=
ν
∑ρ
i=1 σi(CyxC−

1
2 )

1+ρν , ρ is the rank of W∗, and Sαρ(M)
shrinks the spectrum of the input matrix M by αρ and thresh-
olds them at zero. However, as mentioned above, it is not
clear if any network map can be implemented by an equal-
ized network. Nonetheless, it is easy to see that the equal-
ization property is satisfied for rank-1 network maps.

Proposition 3.3. Let {di}k+1
i=0 be an architecture and M ∈

Rdk+1×d0 be a rank-1 network map. Then, there exists a set
of weights {Wi}k+1

i=1 that implements M, and is equalized.

For example, for deep networks with single output neuron,

the weights W1 =
1d1

w>√
d1

and Wi =
1di1>di−1√
didi−1

for i 6= 1

implements the network map w>, and are equalized.

Denote M̄ := CyxC−
1
2 . Equipped with Proposition 3.3, the

key here is to ensure that Sα(M̄) has rank equal to one. In
this case, W∗ will also have rank at most one and can be
implemented by a network that is equalized. To that end, it
suffices to have α ≥ σ2(M̄), which implies

νσ1(M̄)

1 + ν
≥ σ2(M̄) =⇒ σ1(M̄)− σ2(M̄) ≥ σ2(M̄)

ν

which gives the sufficient condition in Theorem 2.7.

4. Experimental Results
Dropout is widely used for training modern deep learning
architectures resulting in the state-of-the-art performance in
numerous machine learning tasks (Srivastava et al., 2014;
Krizhevsky et al., 2012; Szegedy et al., 2015; Toshev &
Szegedy, 2014). The purpose of this section is not to make
a case for (or against) dropout when training deep networks,
but rather verify empirically the theoretical results from the
previous section.1

For simplicity, the training data {xi} is sampled from a stan-
dard Gaussian distribution which in particular ensures that
C = I. The labels {yi} are generated as yi ← Nxi, where
N ∈ Rdk+1×d0 . N is composed of UV> + noise, where
U ∈ Rdk+1×r, V ∈ Rd0×r are sampled from a standard
Gaussian and the entries of noise are sampled indepen-
dently from a Gaussian distribution with small standard

1The code for the experiments can be found at:
https://github.com/r3831/dln dropout
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Figure 2. Distribution of the singular values of the trained network
for different values of the dropout rate 1−θ. It can be seen that the
dropout training performs a more sophisticated form of shrinkage
and thresholding on the spectrum of the model matrix M.

deviation. At each step of the dropout training, we use a
minibatch of size 1000 to train the network. The learning
rate is tuned over the set {1, 0.1, 0.01}. All experiments are
repeated 50 times, the curves correspond to the average of
the runs, and the grey region shows the standard deviation.

The experiments are organized as follows. First, since
the convex envelope of the induced regularizer equals the
squared nuclear norm of the network map (Theorem 2.6),
it is natural to expect that dropout training performs a
shrinkage-thresholding on the spectrum of CyxC−

1
2 = M

(see Lemma A.4 in the appendix). We experimentally verify
this in Section 4.1. Second, in Section 4.2, we focus on
the equalization property. We attest Theorem 2.7 by show-
ing that dropout training equalizes deep networks with one
output neuron.

4.1. Spectral shrinkage and rank control

Note that the induced regularizer Θ(M) is a spectral func-
tion (see Lemma A.2 in the appendix). On the other hand, by
Theorem 2.6, Θ∗∗(M) = ν{di}‖M‖2∗. Therefore, if dropout
training succeeds in finding an (approximate) minimizer of
Lθ, it minimizes an upperbound on the squared of the nu-
clear norm of the network map. Hence, it is natural to expect
that the dropout training performs a shrinkage-thresholding
on the spectrum of the model, much like nuclear norm regu-
larization. Figure 2 confirms this intuition. Here, we plot the
singular value distribution of the final network map trained
by dropout, for different values of the dropout rate.

As can be seen in the figure, dropout training indeed shrinks
the spectrum of the model and thresholds it at zero. How-
ever, unlike the nuclear norm regularization, the shrink-
age is not uniform across the singular values that are not
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Figure 3. The normalized equalization gap r(t)` , which captures the
gap between the sub-regularizers and their respective lower bounds,
is plotted as a function of the number of iterations. Dropout con-
verges to the set of equalized networks.

thresholded. Moreover, note that the shrinkage parameter
in Theorem 2.7 is governed by the effective regularization
parameter ν{di}, which strictly increases with the dropout
rate. This suggests that as we increase the dropout rate (de-
crease θ), the spectrum should be shrunk more severely, and
the resulting network map should have a smaller rank. This
is indeed the case as can be seen in Figure 2.

4.2. Convergence to equalized networks

One of the key concepts behind our analysis is the notion
of equalized networks. In particular, in Lemma 3.1 we see
that if a network map can be implemented by an equalized
network, then there is no gap between the induced regular-
izer and its convex envelope. It is natural to ask if dropout
training indeed finds such equalized networks. As we will
discuss, Figure 3 answers this question affirmatively.

Recall that a network is equalized if and only if each and
every sub-regularizer achieves its respective lowerbound in
Equation 5, i.e. Rl({Wi}) = LBl({Wi}) for all l ∈ [k].
Figure 3 illustrates that dropout training consistently de-
creases the gap between the sub-regularizers and their re-
spective lowerbounds. Here, the network has one output
neuron, five hidden layers each of width 5, and input dimen-
sionality of d0 = 5. In Figure 3 we plot the normalized

equalization gap r(t)
` :=

R`({W(t)
i })

LB`({W(t)
i })
− 1 of the network

under dropout training as a function of the iteration number.
Similarly, we define the normalized equalization gap for the
explicit regularizer r(t) = R({Wi})

Θ∗∗(Wk+1→1) − 1. The network
quickly becomes (approximately) equalized, and thereafter
the trajectory of dropout training stays close to the equalized
networks. We believe that this observation can be helpful in
analyzing the dynamics of dropout training, which we leave
for future work.

5. Discussion
Motivated by empirical success of dropout (Srivastava et al.,
2014; Krizhevsky et al., 2012), there has been several stud-
ies in recent years to understand its theoretical founda-
tions (Baldi & Sadowski, 2013; Wager et al., 2013; 2014;
Van Erven et al., 2014; Helmbold & Long, 2015; Gal &
Ghahramani, 2016; Gao & Zhou, 2016; Helmbold & Long,
2017; Mou et al., 2018; Bank & Giryes, 2018).

Previous work of Zhai & Zhang (2015); He et al. (2016);
Cavazza et al. (2018) and Mianjy et al. (2018) study dropout
training with `2-loss in matrix factorization and shallow lin-
ear networks, respectively. The work that is most relevant
to us is that of Cavazza et al. (2018); Mianjy et al. (2018),
whose results are extended to the case of deep linear net-
works in this paper. In particular, we derive the explicit regu-
larizer induced by dropout, which happens to be composed
of the `2-path regularizer and other rescaling invariant reg-
ularizers. Furthermore, we show that the convex envelope
of the induced regularizer factors into an effective regular-
ization parameter and the square of the nuclear norm of
network map multiplied with the principal root of the sec-
ond moment of the input distribution. We further highlight
equalization as a key network property under which the
induced regularizer equals its convex envelope. We specify
a subclass of problems satisfying the equalization property,
for which we completely characterize the optimal networks
that dropout training is biased towards.

Our work suggests several interesting directions for future
research. First, given the connections that we establish with
the nuclear norm and the `2-path regularization, it is natural
to ask what role does the dropout regularizer play in gener-
alization. Second, how does the dropout regularizer change
for neural networks with non-linear activation functions.
Finally, it is important to understand dropout in networks
trained with other loss functions, especially those that are
popular for various classification tasks.
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