
Agnostic Federated Learning

A. Related work
Here, we briefly discuss several learning scenarios and work related to our study of federated learning.

The problem of federated learning is closely related to other learning scenarios where there is a mismatch between the
source distribution and the target distribution. This includes the problem of transfer learning or domain adaptation
from a single source to a known target domain (Ben-David, Blitzer, Crammer, and Pereira, 2006; Mansour, Mohri, and
Rostamizadeh, 2009b; Cortes and Mohri, 2014; Cortes, Mohri, and Muñoz Medina, 2015), either through unsupervised
adaptation techniques (Gong et al., 2012; Long et al., 2015; Ganin & Lempitsky, 2015; Tzeng et al., 2015), or via lightly
supervised ones (some amount of labeled data from the target domain) (Saenko et al., 2010; Yang et al., 2007; Hoffman
et al., 2013; Girshick et al., 2014). This also includes previous applications in natural language processing (Dredze et al.,
2007; Blitzer et al., 2007; Jiang & Zhai, 2007; Raju et al., 2018), speech recognition (Legetter & Woodland, 1995; Gauvain
& Chin-Hui, 1994; Pietra et al., 1992; Rosenfeld, 1996; Jelinek, 1998; Roark & Bacchiani, 2003), and computer vision
(Martı́nez, 2002)

A problem more closely related to that of federated learning is that of multiple-source adaptation, first formalized and
analyzed theoretically by Mansour, Mohri, and Rostamizadeh (2009c;a) and later studied for various applications such as
object recognition (Hoffman et al., 2012; Gong et al., 2013a;b). Recently, (Zhang et al., 2015) studied a causal formulation
of this problem for a classification scenario, using the same combination rules as Mansour et al. (2009c;a). The problem
of domain generalization (Pan & Yang, 2010; Muandet et al., 2013; Xu et al., 2014), where knowledge from an arbitrary
number of related domains is combined to perform well on a previously unseen domain is very closely related to that of
federated learning, though the assumptions about the information available to the learner and the availability of unlabeled
data may differ.

In the multiple-source adaptation problem studied by Mansour, Mohri, and Rostamizadeh (2009c;a) and Hoffman, Mohri,
and Zhang (2018), each domain k is defined by the corresponding distribution Dk and the learner has only access to a
predictor hk for each domain and no access to labeled training data drawn from these domains. The authors show that it
is possible to define a predictor h whose expected loss LD(h) with respect to any distribution D that is a mixture of the
source domains Dk is at most the maximum expected loss of the source predictors: maxk LDk

(hDk
). They also provide an

algorithm for determining h.

Our learning scenario differs from the one adopted in that work since we assume access to labeled training data from each
domain Dk. Furthermore, the predictor determined by the algorithm of Hoffman, Mohri, and Zhang (2018) belongs to a
specific hypothesis set H′, which is that of distribution weighted combinations of the domain predictors hk, while, in our
setup, the objective is to determine the best predictor in some global hypothesis set H, which may include H′ as a subset,
and which is not depending on some domain-specific predictors.

Our optimization solution also differs from the work of Farnia & Tse (2016) and Lee & Raginsky (2017) on local minimax
results, where samples are drawn from a single source D, and where the generalization error is minimized over a set of
locally ambiguous distributions D̂, where D̂ is the empirical distribution. The authors propose this metric for statistical
robustness. In our work, we obtain samples from p unknown distributions, and the set of distributions Dλ over which we
optimize the expected loss is fixed and independent of samples. Furthermore, the source distributions can differ arbitrarily
and need not be close to each other. In reverse, we note that our stochastic algorithm can be used to minimize the loss
functions proposed in (Farnia & Tse, 2016; Lee & Raginsky, 2017).

B. Extensions
In this section, we briefly discuss several extensions of the framework, theory and algorithms that we presented.

B.1. Domain definitions

The choice of the domains can significantly impact learnability in federated learning. In view of our learning bounds, if the
number of domains, p, is large and Λ is the full simplex, Λ = ∆p, then the models may not generalize well. Thus, if the
number of clients is very large, using each client as a domain may be a poor choice for better generalization. Ideally, each
domain is represented with a sufficiently large number of samples and is relatively homogeneous or pure. This suggests
using a clustering algorithm for defining the domains based on the similarity of the client distributions. Different Bregman
divergences could be used to define the divergence or similarity between distributions. Thus, techniques such as those of
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Banerjee, Merugu, Dhillon, and Ghosh (2005) could be used to determine clusters of clients using a suitable Bregman
divergence.

Client clusters can also be determined based on domain expertise. For example, in federated keyboard next word prediction
(Hard et al., 2018), domains can be chosen to be the native language of the clients. If the model is used in variety of
applications, domains can also be based on the application of interest. For example, the keyboard in (Hard et al., 2018) is
used in chat apps, long form text input apps, and web inputs. Here, domains can be the app that was used. Training models
agnostically ensures that the user experience is favorable in all apps.

B.2. Incorporating a prior on Λ

Agnostic federated learning as defined in (1) treats all domains equally and does not incorporate any prior knowledge of λ.
Suppose we have a prior distribution pΛ(λ) over λ ∈ Λ at our disposal, then, we can modify (1) to incorporate that prior. If
the loss function ` is the cross-entropy loss, then the agnostic loss can be modified as follows:

max
λ∈Λ

(LDλ(h) + log pΛ(λ)) . (9)

In this formulation, larger weights are assigned to more likely domains. The generalization guarantees of Theorem 1 can be
appropriately modified to include these changes. Furthermore, if the prior pΛ(λ) is a log-concave function of λ, then the
new objective is convex in h and concave in λ and a slight modification of our proposed algorithm can be used to determine
the global minima. We note that we could also adopt a multiplicative formulation with the prior multiplying the loss, instead
of the additive one with the negative log of the probability in Equation 9.

B.3. Domain features and personalization

We studied agnostic federated learning, where we learn a model that performs well on all domains. First, notice that we do
not make any assumption on the hypothesis set H and the hypotheses can use the domain k as a feature. Such models could
be useful for applications where the target domain is known at inference time. Second, while this paper deals with learning a
centralized model, the resulting model hDΛ

can be combined with a personalized model, on the client’s machine, to design
better client-specific models. This can be done for example by learning an appropriate mixture weight αk ∈ [0,1] to use a
mixture αkhDΛ

+ (1 − αk)hk of the domain agnostic centralized model hDΛ
and a client- or domain-specific model hk.

C. Learning-theoretical guarantees
C.1. Proof of Proposition 1

Consider the following two distributions with support reduced to a single element x ∈ X and two classes Y = {0,1}:
D1(x,0) = 0, D1(x,1) = 1, D2(x,0) = 1

2
, and D2(x,1) = 1

2
. Let Λ = {δ1, δ2}, where δk, k = 1,2, denotes the Dirac

measure on index k. We will consider the case where the sample sizes mk are all equal, that is h
U
= 1

2
(D1 +D2). Let p0

denote the probability that h assigns to class 0 and p1 the one it assigns to class 1. Then, the cross-entropy loss of a predictor
h can be expressed as follows:
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where the last inequality follows the non-negativity of the relative entropy. Furthermore, equality is achieved when
p0 = 1 − p1 = 1

4
, which defines h

U
, the minimizer of L

U
(h). In view of that, LDΛ

(h
U
) is given by the following:

LDΛ
(h

U
) = max (Lδ1(U),Lδ2(U))

= max{ log
4

3
,
1

2
log

4

1
+ 1

2
log

4

3
}

= log
4√
3
.

We now compute the loss of hDΛ
:

min
h∈H

LDΛ
(h) = min

h∈H
max
k∈[p]

LDk
(h)

= min
(p0,p1)∈∆2

max

⎧⎪⎪⎨⎪⎪⎩
log
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log

1

p1
, log

1√
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= log 2,

since 1
2

is the solution of the convex optimization in p1, in view of max{ 1
p1
, 1√

p1(1−p1)
} = 1√

p1(1−p1)
≤ 1

2
for p1 > 1

2
.

C.2. Proof of Theorem 1

The proof is an extension of the standard proofs for Rademacher complexity generalization bounds (Koltchinskii &
Panchenko, 2002; Mohri et al., 2018). Fix λ ∈ Λ. For any sample S = S1, . . . , Sp, define Ψ(S1, . . . , Sp) by

Ψ(S1, . . . , Sp) = sup
h∈H

(LDλ
(h) −L

Dλ
(h)) .

Let S′ = (S′1, . . . , S′p) be a sample differing from S = (S1, . . . , Sp) only by point x′k,i in S′k and xk,i in Sk. Then, since the
difference of suprema over the same set is bounded by the supremum of the differences, we can write

Ψ(S′) −Ψ(S) = sup
h∈H

(LDλ
(h) −L

D
′
λ
(h)) − sup

h∈H
(LDλ

(h) −L
Dλ
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D
′
λ
(h)) − (LDλ

(h) −L
Dλ

(h))
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≤ λkM
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.

Thus, by McDiarmid’s inequality, for any δ > 0, the following inequality holds with probability at least 1 − δ for any h ∈H:

LDλ
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Therefore, by the union over Λε, with probability at least 1 − δ, for any h ∈H and λ ∈ Λε the following holds:
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By definition of Λε, for any λ ∈ Λ, there exists λ′ ∈ Λε such that LDλ
(h) ≤ LD′

λ
(h) +Mε. In view of that, with probability

at least 1 − δ, for any h ∈H and λ ∈ Λ the following holds:
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k

2mk
log
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δ
.

The expectation appearing on the right-hand side can be bounded following standard proofs for Rademacher complexity
upper bounds (see for example (Mohri et al., 2018)), leading to

E [max
h∈H

LDλ
(h) −L

Dλ
(h)] ≤Rm(G, λ).

The sum ∑pk=1
λ2
k

mk
can be expressed in terms of the skewness of Λ, using the following equalities:

m
p
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p
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p
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m

)2

mk
m
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This completes the proof.

C.3. Proof of Lemma 1

For any λ ∈ Λ, define the set of vectors Aλ in Rm by

Aλ = {[ λk
mk

`(h(xk,i), yk,i)]
(k,i)∈[p]×[mk]

∶x ∈ Xm,y ∈ Ym}.

For any a ∈ Aλ, ∥a∥2 =
√
∑pk=1mk

λ2
k

m2
k

=
√
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λ2
k

mk
≤
√

s(Λ ∥m)
m

. Then, by Massart’s lemma, for any λ ∈ Λ, the following

inequalities hold:

Rm(G, λ) = E
Sk∼D

mk
k

σ

[sup
h∈H

p
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λk
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≤ E
σ
[sup
a∈A

p
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i=1

σk,iak,i]

≤
√
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m

√
2 log ∣Aλ∣
m

=
√

2s(Λ ∥m) log ∣Aλ∣
m

.

By Sauer’s lemma, the following holds for m ≥ d: ∣Aλ∣ ≤ ( em
d

)d. Plugging in the right-hand side in the inequality above
completes the proof.

D. Alternative learning guarantees
An objective similar to that of AFL was considered in the context of multiple-source domain adaptation by Liu et al. (2015).
The authors presented generalization bounds for a scenario where the target is based on some specific mixture λ of the
source domains. Our theoretical results differ from those of this work in two ways. First, our generalization bounds do
not hold for a single mixture weight λ but for any subset Λ of the simplex. Second, the complexity terms in the bounds

presented by these authors are proportional to
√
mmaxk∈[p]

λk
mk

, while our guarantees are in terms of
√
∑pk=1

λ2
k

mk
, which is

strictly tighter. In particular, in the special case where k = 2, λ1 = 1√
m

, λ2 = 1 − λ1 and m1 = 1 and m2 =m − 1, the bounds

of Liu et al. (2015) are proportional to a constant and thus not informative,
√
mmaxk∈[p]

λk
mk

= 1, while our guarantees are
in terms of 1√

m
.

Our generalization error in Theorem 1 is particularly useful when Λ is a strict subset of the simplex, Λ ⊂ ∆p. If Λ = ∆p, we
can give the following alternative learning guarantee based.
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Theorem 3. For any δ > 0, with probability at least 1 − δ over the draw of samples Sk ∼ Dmk
k , the following inequality

holds for all h ∈H and λ ∈ Λ:

LDλ
(h) ≤ L

Dλ
(h) +

p

∑
k=1

⎛
⎝

2λkR
k
mk

(G) + λkM
√

1

2mk
log

p

δ

⎞
⎠
,

where Rk
mk

(G) is the Rademacher complexity over domain Dk with mk samples.

Proof. For a fixed k ∈ [p], by a standard Rademacher complexity bound, for any δ > 0, with probability at least 1 − δ, the
following inequality holds for all h ∈H:

LDk
(h) ≤ L

Dk
(h) + 2Rk

mk
(G) +M

√
1

2mk
log

1

δ
.

Summing up the inequalities for each k ∈ [p] after multiplication by λk and using the union bound complete the proof.

We will now compare the generalization bounds of Theorem 1 and Theorem 3. The Rademacher complexity term of the
bound of Theorem 1, Rm(G, λ), is more favorable than that of Theorem 3, since by the sub-additivity of sup and the
linearity of expectation, we can write

Rm(G, λ) = E
Sk∼D

mk
k

σ

[sup
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∑
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The comparison of the last terms of the two bounds, M
√

s(λ ∥m)
2m

log ∣Λε∣
δ

versus M ∑pk=1

√
1

2mk
log p

δ
, depends on the

covering number ∣Λε∣. When ∣Λε∣ is small, as in the case where Λ is a finite discrete set (in the extreme case reduced to a
single element), then, the last term of the bound of Theorem 1 is more favorable. This is because ∣Λε∣ is then smaller or in
the same order of magnitude as p, while, by the sub-additivity of

√⋅, the following inequality holds:

√
s(λ ∥m)

m
=

¿
ÁÁÀ

p

∑
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mk
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√
1
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.

On the other hand, when ∣Λε∣ = O(( 1
ε
)p) as in the case where Λ is the full simplex, then log ∣Λε∣ = pO(log 1

ε
) can be

substantially larger than log p and the last term of the bound of Theorem 3 seems more favorable since, by the Cauchy-
Schwarz inequality, the following inequality holds:

p

∑
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λk

√
1
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≤ √

p
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p
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= √
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m
.

In general, it is not clear which of the two bounds is more favorable. This depends on m, λ, and Λε. Learning bounds
improving upon both may be based on a careful interpolation, which we leave to future work.

E. Analysis of the optimization algorithm
E.1. Proof of Theorem 4

The time complexity of the algorithm follows the definitions of the complexity terms Uλ, Uw, and Up the dimension d in
Properties 1. To prove the convergence guarantee, we first state the following lemma.
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Lemma 5. Assume that the Property 1.1 holds. Then,

max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ) ≤ 1

T
max
λ∈Λ
w∈W

{
T

∑
t=1

L(wt, λ) − L(w,λt)}.

Proof. Recall that (wA, λA) is the solution returned by the algorithm. First observe that L is convex in w and linear and
thus concave in λ. Thus, by the generalized von Neumann’s theorem, the following holds:

max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ) = max
λ∈Λ

L(wA, λ) −max
λ∈Λ

min
w∈W

L(w,λ) (von Neumann’s minimax)

≤ max
λ∈Λ

{L(wA, λ) − min
w∈W

L(w,λA)} (subadd. of max)

= max
λ∈Λ
w∈W

{L(wA, λ) − L(w,λA)}

≤ 1

T
max
λ∈Λ
w∈W

{
T

∑
t=1

L(wt, λ) − L(w,λt)}. (convexity in w and lin. in λ)

This completes the proof.

In view of the lemma, to derive convergence guarantees for the algorithm, it suffices to bound L(wt, λ) − L(w,λt). Since L
is linear in λ and convex in w, we have

L(wt, λ) − L(w,λt) = L(wt, λ) − L(wt, λt) + L(wt, λt) − L(w,λt)
≤ (λ − λt)∇λL(wt, λt) + (wt −w)∇wL(wt, λt)
≤ (λ − λt)δλL(wt, λt) + (wt −w)δwL(wt, λt)
+ (λ − λt)(∇λL(wt, λt) − δλL(wt, λt)) + (wt −w)(∇wL(wt, λt) − δwL(wt, λt)).

In view of these inequalities, by the subadditivity of max, the following inequality holds:

max
λ∈Λ
w∈W

{
T

∑
t=1

L(wt, λ) − L(w,λt)}

≤ max
λ∈Λ
w∈W

T

∑
t=1

(λ − λt)δλL(wt, λt) + (wt −w)δwL(wt, λt)

+max
λ∈Λ
w∈W

T

∑
t=1

λ(∇λL(wt, λt) − δλL(wt, λt)) −w(∇wL(wt, λt) − δwL(wt, λt))

+
T

∑
t=1

λt(∇λL(wt, λt) − δλL(wt, λt)) −wt(∇wL(wt, λt) − δwL(wt, λt)). (10)
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We now bound each of the three terms above separately. For the first term, observe that for any w ∈W,
T

∑
t=1

(wt −w)δwL(wt, λt)

= 1

2γw

T

∑
t=1

∥(wt −w)∥2
2 + γ2

w∥δwL(wt, λt)∥2
2 − ∥(wt − γwδwL(wt, λt) −w)∥2

2

≤ 1

2γw

T

∑
t=1

∥(wt −w)∥2
2 + γ2

w∥δwL(wt, λt)∥2
2 − ∥(wt+1 −w)∥2

2 (property of projection)

= 1

2γw
∥(w1 −w)∥2

2 − ∥(wT+1 −w)∥2
2 +

γw
2

T

∑
t=1

∥δwL(wt, λt)∥2
2 (telescoping sum)

≤ 1

2γw
∥(w1 −w)∥2

2 +
γw
2

T

∑
t=1

∥δwL(wt, λt)∥2
2

≤
2R2

W

γw
+ γw

2

T

∑
t=1

∥δwL(wt, λt)∥2
2

≤
2R2

W

γw
+ γw

2

T

∑
t=1

∥δwL(wt, λt) −∇wL(wt, λt) +∇wL(wt, λt)∥2
2.

Since the right-hand side does not depend on w, taking the maximum of both sides over w ∈W and the expectation yields

E [max
w∈W

T

∑
t=1

(wt −w)δwL(wt, λt)] ≤
2R2

W

γw
+ γwTσ

2
w

2
+ TγwG

2
w

2
,

using the following identity:

E [∥δwL(wt, λt) −∇wL(wt, λt) +∇wL(wt, λt)∥2
2]

= E [∥δwL(wt, λt) −∇wL(wt, λt)∥2] − 2E [δwL(wt, λt) −∇wL(wt, λt)] ⋅ ∇wL(wt, λt) + ∥∇wL(wt, λt)∥2
2

= E [∥δwL(wt, λt) −∇wL(wt, λt)∥2] + ∥∇wL(wt, λt)∥2
2.

Similarly, using the projection property, the following inequality can be shown:

E [max
λ∈Λ

T

∑
t=1

(λ − λt)δλL(wt, λt)] ≤
2R2

Λ

γλ
+
γλTσ

2
λ

2
+
TγλG

2
λ

2
.

For the second term, by the Cauchy-Schwarz inequality, we can write

max
λ∈Λ

T

∑
t=1

λ(∇λL(wt, λt) − δλL(wt, λt)) ≤ RΛ∥
T

∑
t=1

∇λL(wt, λt) − δλL(wt, λt)∥2.

Taking the expectation of both sides and using Jensen’s inequality yields

E [max
λ∈Λ

T

∑
t=1

λ(∇λL(wt, λt) − δλL(wt, λt))] ≤ RΛ

√
Tσλ.

Similarly, we obtain the following:

E [max
w∈W

w∇wL(wt, λt) − δwL(wt, λt)] ≤ RW

√
Tσw.

For the third term, observe that the stochastic gradients at time t are unbiased, conditioned on λt, and wt, hence,

E [
T

∑
t=1

λt(∇λL(wt, λt) − δλL(wt, λt)) −wt(∇wL(wt, λt) − δwL(wt, λt))] = 0.

Combining the upper bounds just derived gives:

E [max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ)] ≤
2R2

W

Tγw
+ γw(σ2

w +G2
w)

2
+

2R2
Λ

Tγλ
+
γλ(σ2

λ +G2
λ)

2
+ RWσw√

T
+ RΛσλ√

T
.

Setting γw = 2RW√
T ((σ2

w+G2
w))

and γλ = 2RΛ√
T ((σ2

λ
+G2

λ
))

to minimize this upper bound and using Lemma 5 completes the proof.
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E.2. Proof of Lemma 2

The unbiasedness of δλL(w,λ) follows directly its definition. For the variance, observe that, for index k ∈ [p], since the
probability of not drawing domain k is (1 − 1

p
), the variance is given by the following

Var
k

[δλL(w,λ)] = [1 − 1

p
][0 − Lk(w)]2 + 1

p

p

∑
k=1

1

mk

mk

∑
i=1

[pLk,i(w) − Lk(w)]2

≤ [1 − 1

p
]M2 + 1

p

p

∑
k=1

1

mk

mk

∑
i=1

[pM]2 = pM2.

Summing over all indices from k ∈ [p] completes the proof.

E.3. Proof of Lemma 3

The time complexity and the unbiasedness follow from the definitions. We now bound the variance. Since ∇wLk,Jk is an
unbiased estimate of ∇wLk(w) and we have:

Var[δw] =
p

∑
k=1

λ2
k Var [∇wLk,Jk(w) −∇wLk(w)] ≤

p

∑
k=1

λ2
kσ

2(w, I) ≤ RΛσ
2
I(w).

This completes the proof.

E.4. Proof of Lemma 4

The time complexity and the unbiasedness follow from the definitions. We now bound the variance. By definition for any
w,λ,

Var(δw) =
p

∑
k=1

λk
mk

mk

∑
j=1

(∇wLk,j(w) − L(w,λ))2

=
p

∑
k=1

λk
mk

mk

∑
j=1

(∇wLk,j(w) − Lk(w))2 +
p

∑
k=1

λk(Lk(w) − L(w,h))2

≤ σ2
I(w) + σ2

O(w),

where the second equality follows from the unbiasedness of the stochastic gradients.

E.5. Comparison of PERDOMAIN and WEIGHTED stochastic gradients

For large values of p, to do a fair comparison, we need to average p independent copies of the WEIGHTED-stochastic
gradient, which we refer to as p-WEIGHTED, and compare it with the PERDOMAIN-stochastic gradient. Since the variance
of the average of p i.i.d. random variables is 1/p times the individual variance, by Lemma 4, the following holds:

Var(p-WEIGHTED) =
σ2
I(w) + σ2

O(w)
p

.

Further, observe that RΛ = maxλ∈Λ∑pk=1 λ
2
k ≥

1
p

. Thus,

Var(PERDOMAIN) ≥
σ2
I(w)
p

.

Hence, the right choice of the stochastic variance of w depends on the application. If all domains are roughly equally
weighted, then we have R(Λ) ≈ 1

p
and the PERDOMAIN-variance is a more favorable choice. Otherwise, if σ2

O(w) is small,
then the WEIGHTED-stochastic gradient is more favorable.

F. Alternative optimization algorithms for AFL
F.1. Stochastic mirror descent

In this section, we extend our STOCHASTIC-AFL algorithm to the case where a general mirror map is used, as in the mirror
descent algorithm. The pseudocode of our general algorithm STOCHASTIC-MD-AFL is given in Figure 5.
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Algorithm STOCHASTIC-MD-AFL

Initialization: w0 ∈W and λ0 ∈ Λ.
Parameters: step size γw > 0 and γλ > 0.
For t = 1 to T :

1. Obtain stochastic gradients: δwL(wt−1, λt−1) and δλL(wt−1, λt−1).

2. wt = argminw∈W δwL(wt−1, λt−1) ⋅w + 1
γw
Bw(w∥wt−1).

3. λt = argminλ∈Λ δλL(wt−1, λt−1) ⋅ λ + 1
γλ
Bλ(λ∥λt−1).

Output: wA = 1
T ∑

T
t=1wt and λA = 1

T ∑
T
t=1 λt.

Figure 5. Pseudocode of the STOCHASTIC-MD-AFL algorithm.

Let Φw be a function defined over Int(W) that is of the Legendre type (Rockafellar, 1997), that is a proper convex and
differential function such that ∇Φw is a one-to-one mapping from Int(W) to ∇Φw(Int(W)). Let Bw denote the Bregman
divergence associated to Φw. For all w,w′ ∈W, we have

Bw(w∥w′) = Φw(w) −Φw(w′) −∇Φw(w′) ⋅ (w −w′).

Similarly let Φλ be a Legendre-type function defined over an open set whose closure contains Λ and let Bλ denote the
corresponding Bregman divergence. To simplify the notation, we use ∥ ⋅ ∥ to denote the norm over both w and λ, where
the usage becomes clear in the context. Let ∥ ⋅ ∥∗ denote the corresponding dual norms. We will assume that the following
properties hold.

Properties 2. Assume that the following properties hold for the loss function L and sets W and Λ ⊆ ∆p:

1. Convexity: w ↦ L(w,λ) is convex for any λ ∈ Λ.

2. Compactness: maxλ∈Λ ∥λ∥ ≤ RΛ and maxw∈W ∥w∥ ≤ RW, for some RΛ > 0 and RW > 0.

3. Bounded gradients: ∥∇wL(w,λ)∥∗ ≤ Gw and ∥∇λL(w,λ)∥∗ ≤ Gλ for all w ∈W and λ ∈ Λ.

4. Stochastic variance: E[∥δwL(w,λ) − ∇wL(w,λ)∥2
∗] ≤ (σ∗w)2 and E[∥δλL(w,λ) − ∇λL(w,λ)∥2

∗] ≤ (σ∗λ)2 for all
w ∈W and λ ∈ Λ.

5. Strong convexity of Φ: assume that Φw is αw-strongly convex and Φλ is αλ-strongly convex with respect to the norm
∥ ⋅ ∥. Further, assume that both Φw and Φλ are Legendre-type functions.

With these definitions, we can now prove convergence guarantees for STOCHASTIC-MD-AFL.

Theorem 4. [Appendix E.1] Assume that the Properties 2 hold. Then, for the step sizes γw = RW
√
αw√

T ((σ∗w)2+G2
w)

and

γλ =
RΛ

√
αλ√

T ((σ∗
λ
)2+G2

λ
)
, the following guarantee holds for STOCHASTIC-MD-AFL:

E [max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ)] ≤
2RW

√
αw((σ∗w)2 +G2

w)√
T

+
2RΛ

√
αλ((σ∗λ)2 +G2

λ)√
T

+ RWσ
∗
w√

T
+
RΛσ

∗
λ√
T
.

Proof. By Lemma 5, it suffices to bound ∑Tt=1 L(wt, λ) − L(w,λt). By (10), we can decompose this sum into three terms.
The expectation of third term is zero (see proof of Theorem 4). We now bound ∑Tt=1(wt − w)∇wL(wt, λt). To do so,
following (Mohri et al., 2018), we break step (2) of the algorithm into two equivalent steps:

vt = [∇Φw]−1(∇Φw(wt−1) − γwδwL(wt−1, λt−1)).
wt = argmin

w∈W
B(w∥vt).
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We can write
T

∑
t=1

(wt −w)δwL(wt, λt)

= 1

γw

T

∑
t=1

(∇Φw(wt) −∇Φw(vt+1)) ⋅ (wt −w) (def. of vt)

= 1

γw

T

∑
t=1

(B(w∥wt) −B(w∥vt+1) +B(wt∥vt+1)) (Breg. div. Identity)

≤ 1

γw

T

∑
t=1

(B(w∥wt) −B(w∥wt+1) −Bw(wt+1∥vt+1) +B(wt∥vt+1)) (Pythagorean ineq.)

= 1

γw
(B(w∥w1) −B(w∥wT+1)) +

1

γw

T

∑
t=1

(−Bw(wt+1∥vt+1) +B(wt∥vt+1)) (telescoping sum)

≤ B(w∥w1)
γw

+ 1

γw

T

∑
t=1

(B(wt∥vt+1) −Bw(wt+1∥vt+1)) .

The second sum can be analyzed as follows:

B(wt∥vt+1) −Bw(wt+1∥vt+1)
= Φw(wt) −Φw(wt+1) −∇Φw(vt+1)(wt −wt+1)

≤ (∇Φw(wt) −∇Φw(vt+1))(wt −wt+1) −
αw
2

∥wt −wt+1∥2 (α-strong convexity)

= γwδwL(wt, λt)(wt −wt+1) −
αw
2

∥wt −wt+1∥2 (def. of vt+1)

≤ γw∥δwL(wt, λt)∥∗∥wt −wt+1∥ −
αw
2

∥wt −wt+1∥2 (def. of dual norm)

≤ γ
2
w∥δwL(wt, λt)∥2

∗
2αw

(max. of 2nd deg. eq.)

≤ γ
2
w(∥δwL(wt, λt) −∇wL(wt, λt)∥2

∗ + ∥∇wL(wt, λt)∥2
∗)

αw
. (triangle ineq. and Cauchy-Schwarz)

Summing the inequalities above and taking expectation yields

E [
T

∑
t=1

(wt −w)δwL(wt, λt)] ≤
R2
w

γw
+ γw((σ

∗
w)2 +G2

w)
αw

.

Similarly it can be shown that

E [
T

∑
t=1

(λ − λt)δλL(wt, λt)] ≤
R2
λ

γλ
+
γλ((σ∗λ)2 +G2

λ)
αw

.

For the second term, by the Cauchy-Schwarz inequality and Jensen’s inequality, we have

E [max
λ∈Λ

T

∑
t=1

λ(∇λL(wt, λt) − δλL(wt, λt))] ≤ RΛ E [∥
T

∑
t=1

∇λL(wt, λt) − δλL(wt, λt)∥∗] ≤ RΛ

√
Tσ∗λ.

Similarly, we can show that the following inequality holds:

E [max
w∈W

T

∑
t=1

w(∇wL(wt, λt) − δwL(wt, λt))] ≤ RW

√
Tσ∗w.

Combining these inequalities, we obtain the following:

E [max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ)]

≤ 1

T
[R

2
w

γw
+ γw((σ

∗
w)2 +G2

w)
αw

+
R2
λ

γλ
+
γλ((σ∗λ)2 +G2

λ)
αλ

+
√
T (RWσ

∗
w +RΛσ

∗
λ)] .

Plugging in the expressions of γw and γλ completes the proof.
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Algorithm NON-STOCHASTIC-AFL

Initialization: w0 and λ0 ∈ Λ.
Parameters: step size γwt+1 = 1

βwt
and γλt+1 = 1

βλt
.

For t = 1 to T :

1. Obtain gradients: ∇wL(wt−1, λt−1) and ∇λL(wt−1, λt−1).

2. wt = PROJECT(wt−1 − γwt ∇wL(wt−1, λt−1),W).

3. λt = PROJECT(λt−1 + γλt ∇λL(wt−1, λt−1),Λ).

Output: wA = 1
T ∑

T
t=1wt and λA = 1

T ∑
T
t=1 λt.

Figure 6. Pseudocode of the NON-STOCHASTIC-AFL algorithm.

F.2. Algorithm for strongly convex objectives

When the loss function is strongly convex with respect to w and strongly concave with respect to λ, conditions which often
hold in the presence of regularization terms, a more favorable convergence rate of O((logT )/T ) can be proven for the
non-stochastic algorithm NON-STOCHASTIC-AFL whose pseudocode is given in Figure 6.

Theorem 5. Assume that the objective function is βw-strongly convex with respect to w and βλ-strongly concave with
respect to λ, and that Properties 1.1 and 1.3 hold. Then, the following guarantee holds for NON-STOCHASTIC AFL:

E [max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ)] ≤
G2
w +G2

λ

2
⋅ 1 + logT

T
.

Proof. By Lemma 5, it suffices to consider L(wt, λ)− L(w,λt). Since the function is strongly convex with respect to w and
strongly concave with respect to λ,

L(wt, λ) − L(w,λt) ≤ (λ − λt)∇λL(wt, λt) − βλ∥λ − λt∥2
2 + (wt −w)∇wL(wt, λt) − βw∥w −wt∥2

2.

We bound the term corresponding to λ,

T

∑
t=1

∇λL(λt, λt) −
βλ
2

∥λ − λt∥2
2

=
T

∑
t=1

1

2γλt+1

(∥λt − λ∥2
2 + (γλt+1)2∥∇λL(λt, λt)∥2

2 − ∥λt − γλt+1∇λL(λt, λt) − λ∥2
2) −

βλ
2

∥λ − λt∥2
2

(a)
≤

T

∑
t=1

1

2γλt+1

(∥λt − λ∥2
2 + (γλt+1)2∥∇λL(λt, λt)∥2

2 − ∥λt+1 − λ∥2
2) −

βλ
2

∥λ − λt∥2
2

(b)
≤ βλ

2

T

∑
t=1

((t − 1)∥λt − λ∥2
2 − t∥λt+1 − λ∥2

2) +
G2
λ

2βλ

T

∑
t=1

1

t

≤
G2
λ

2βλ
(1 + logT ),

where (a) follows from the property of projection and (b) follows from the definition of γλt+1. The following inequality can
be shown in a similar way:

T

∑
t=1

(wt −w)∇wL(wt, λt) − βw∥w −wt∥2
2 ≤

G2
w

2βw
(1 + logT ).

Summing up the two inequalities above and using Lemma 5 completes the proof.
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Algorithm OPTIMISTIC STOCHASTIC-AFL

Initialization: w0 and λ0 ∈ Λ.
Parameters: step size γw > 0 and γλ > 0.
For t = 1 to T :

1. Obtain stochastic gradients: δwL(wt−1, λt−1) and δλL(wt−1, λt−1).

2. wt = PROJECT(wt−1 − 2γwδwL(wt−1, λt−1) + γwδwL(wmax(t−2,0), λmax(t−2,0)),W).

3. λt = PROJECT(λt−1 + 2γλδλL(wt−1, λt−1) − γλδλL(wmax(t−2,0), λmax(t−2,0)),Λ).

Output: wT , λT .

Figure 7. Pseudocode of the OPTIMISTIC STOCHASTIC-AFL algorithm.

F.3. Optimistic stochastic algorithm

Recently, Rakhlin & Sridharan (2013) and Daskalakis et al. (2017) gave an optimistic gradient descent algorithm for
minimax optimizations. Our algorithm can also be modified to derive a stochastic optimistic algorithm, which we refer to as
OPTIMISTIC-STOCHASTIC-AFL. The pseudocode of this algorithm is also given in Figure 7. However, the convergence
analysis we have presented so far does not cover this algorithm.


